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Introduction

The ergodicity of randomly forced 2D Navier-Stokes (NS) system has been widely studied in the literature in the case of bounded domains (see the papers [FM95, KS00, EMS01, BKL02] for the first results and the book [START_REF] Kuksin | Mathematics of Two-Dimensional Turbulence[END_REF] and the reviews [START_REF] Flandoli | An introduction to 3D stochastic fluid dynamics[END_REF][START_REF] Debussche | Ergodicity results for the stochastic Navier-Stokes equations: an introduction[END_REF] for a detailed discussion of different methods and for further references). This paper is concerned with the ergodic behaviour of the NS system in an unbounded domain D in R 2 with smooth boundary ∂D: ∂ t u -ν∆u + u, ∇ u + ∇p = η(t, x), x ∈ D, (0.1) div u = 0, u| ∂D = 0, (0.2)

u(0) = u 0 . (0.3)
Here ν > 0 is the kinematic viscosity of the fluid, u = (u 1 (t, x), u 2 (t, x)) is the velocity field, p = p(t, x) is the pressure, and η is an external random force.

To have a suitable dissipativity property for solutions, we assume that D is a Poincaré domain, 1 i.e., there is a number λ 1 > 0 such that

D |v| 2 dx ≤ λ -1 1 D |∇v| 2 dx, v ∈ C ∞ 0 (D, R 2 ). (0.4)
The random force η is a process of the form

η(t, x) = ∞ k=1 I [k-1,k) (t)η k (t -k + 1, x), t ≥ 0, x ∈ D, (0.5) 
where I [k-1,k) is the indicator function of the interval [k -1, k) and {η k } is a sequence of independent and identically distributed (i.i.d.) random variables in the space 2 E := L 2 ([0, 1], H). Moreover, the law of η k is assumed to be decomposable in the following sense.

Decomposability. There is an orthonormal basis {e j } in E such that

η k = ∞ j=1
b j ξ jk e j (0.6)

for some real-valued independent random variables ξ jk verifying |ξ jk | ≤ 1 and some positive numbers b j such that ∞ j=1 b 2 j < ∞. The law of the random variable ξ jk is absolutely continuous with respect to the Lebesgue measure and the corresponding density ρ j is C 1 -smooth and ρ j (0) > 0 for all j ≥ 1.

The restriction to integer times of the velocity field u t defines a family of Markov processes (u k , P u ) parametrised by the initial condition u 0 = u ∈ H. The associated Markov operators are denoted by P k and P * k . Recall that a measure µ ∈ P(H) is stationary for the family (u k , P u ) if P * 1 µ = µ. In this paper, we prove the following result.

Main Theorem. Under the above assumptions, the family (u k , P u ) has a unique stationary measure µ ∈ P(H). Moreover, it is exponentially mixing in the following sense: for any compact set H ⊂ H, there are numbers C > 0 and c > 0 such that

P * k λ -µ * L(H) ≤ Ce -ck , k ≥ 0 (0.7)
for any initial measure λ ∈ P(H) with supp λ ⊂ H. Here • * L(H) is the dual-Lipschitz metric defined by (0.11).

To the best of our knowledge, this is the first result that establishes uniqueness of stationary measure and exponential mixing for the NS system in an unbounded domain. In this unbounded setting there are at least two additional difficulties compared to the case of a bounded domain. First, the resolving operator of the equation is not compact and does not have a compact attracting set. The second and more important difficulty is related to the presence of a continuous component in the spectrum of the Stokes operator. Let us note that the existence of a stationary measure for the NS system perturbed by the random force (0.5) can be established by combining the Bogolyubov-Krylov argument and the asymptotic compactness of the dynamics. When the driving force is a white noise, existence results are obtained in [START_REF] Eckmann | Invariant measures for stochastic partial differential equations in unbounded domains[END_REF], for a real Ginzburg-Landau equation, in [START_REF] Rougemont | Space-time invariant measures, entropy, and dimension for stochastic Ginzburg-Landau equations[END_REF], for a complex Ginzburg-Landau equation, in [START_REF] Brzeźniak | Asymptotic compactness and absorbing sets for 2D stochastic Navier-Stokes equations on some unbounded domains[END_REF], for the NS system, and in [START_REF] Ekren | Existence of invariant measures for the stochastic damped Schrödinger equation[END_REF], for a damped Schrödinger equation.

The uniqueness of stationary measure and mixing properties for PDEs in unbounded domains have been studied previously only for the Burgers equation. The case of inviscid equation on the real line has been considered in the paper [START_REF] Bakhtin | Space-time stationary solutions for the Burgers equation[END_REF], under the assumption that the driving force is a space-time homogeneous Poisson point process. The proof is based on a combination of Lagrangian methods and first/last passage percolation theory. This result is generalised to the viscous case in the recent paper [START_REF] Bakhtin | Thermodynamic Limit for Directed Polymers and Stationary Solutions of the Burgers Equation[END_REF], where the perturbation is a space-time homogeneous random kick force. In both papers, the stationary measure is space translation invariant. In the case of the NS system perturbed by a homogeneous noise, the uniqueness of a space-time translation invariant measure (and in some cases also the existence) remains an open problem.

The proof of the Main Theorem uses a controllability approach of the papers [START_REF] Shirikyan | Control and mixing for 2D Navier-Stokes equations with space-time localised noise[END_REF][START_REF] Shirikyan | Controllability implies mixing II. Convergence in the dual-Lipschitz metric[END_REF], where exponential mixing is established for the NS system with a space-time and boundary localised forcing. In [START_REF] Nersesyan | Exponential mixing for a class of dissipative PDEs with bounded degenerate noise[END_REF][START_REF] Kuksin | Mixing via controllability for randomly forced nonlinear dissipative PDEs[END_REF], methods of control theory are used to study a family of parabolic PDEs with a random perturbation that is highly degenerate in the Fourier space; see also the paper [START_REF] Kuksin | Exponential mixing for dissipative PDEs with bounded non-degenerate noise[END_REF], where a non-degenerate version of these results is presented. In [START_REF] Jakšić | Large deviations and entropy production in viscous fluid flows[END_REF], controllability is used to derive large deviations principle for the Lagrangian trajectories of the NS system.

The main novelty of the controllability argument we use here is that the deterministic operator is not supposed to be regularising to a space that is compactly embedded into the main phase space (see Theorem 1.1). That regularisation condition is replaced by two weaker properties: we assume that the nonlinear dynamics is asymptotically compact and the linearised operator can be decomposed into a sum of two operators one of which is dissipative and the other is compact (see (1.3)). It is proved that these weaker conditions are still sufficient for the exponential mixing. We make an essential use of the form of the nonlinearity to verify these properties for the NS system. The reader is referred to Section 1 for further discussion of the abstract controllability criterion and to Section 2 for the verification of the conditions of this criterion for the NS system.

Let us close this section with two remarks. Note that the convergence rate c in (0.7) depends on the initial compact H. Indeed, this is related to the fact that the NS system in the unbounded case does not have a compact invariant attracting set. Without going into the details, let us mention that the existence of such attracting set (and a uniform convergence rate) can be recovered if we take initial condition and forcing in weighted Sobolev spaces as in [START_REF] Babin | The attractor of a Navier-Stokes system in an unbounded channel-like domain[END_REF].

The second remark is about the NS system with the Ekman damping. By literally repeating the arguments of the proof of the Main Theorem, one can establish exponential mixing in the case of the whole space D = R 2 or arbitrary unbounded3 domain D ⊂ R 2 with smooth boundary for the following system:

∂ t u -ν∆u + au + u, ∇ u + ∇p = η(t, x), div u = 0, u| ∂D = 0,
where a > 0 is the damping parameter. The damping ensures a dissipativity property for the solutions without any assumption on the domain. We shall not discuss the details of this generalisation in this paper.

Notation

Let D ⊂ R 2 be an unbounded Poincaré domain with smooth boundary. In this paper, we use the following functional spaces.

C ∞ 0 (D, R 2 ) is the space of compactly supported smooth functions u : D → R 2 , and V = {u ∈ C ∞ 0 (D, R 2 ) : div u = 0}. (0.8)
H s (D, R 2 ) and L p (D, R 2 ) are the Sobolev and Lebesgue spaces on D. We consider the NS system in the usual functional spaces:

H = closure of V in L 2 (D, R 2 ), (0.9) V = closure of V in H 1 (D, R 2 ) (0.10)
endowed with the scalar products

u, v = D u • v dx, u, v 1 = D (∇u 1 • ∇v 1 + ∇u 2 • ∇v 2 ) dx
and the corresponding norms

• = •, • and • 1 = •, • 1 . The Poincaré in- equality (0.4) implies that • 1 is equivalent to the norm inherited from H 1 (D, R 2 ).
The dual of V with respect to the scalar product in H is denoted by V ′ .

Let X be a Polish space with metric d. B(X) denotes the Borel σ-algebra on X. C b (X) is the space of continuous functions g : X → R endowed with the supnorm g ∞ . When X is compact, we write C(X). L b (X) is the space of functions g ∈ C b (X) for which the following norm is finite:

g L(X) = g ∞ + sup u =v |g(u) -g(v)| d(u, v) .
P(X) is the set of Borel probability measures on X endowed with the metric

µ 1 -µ 2 * L(X) = sup g L(X) ≤1 | g, µ 1 -g, µ 2 |, µ 1 , µ 2 ∈ P(X), (0.11)
where g, µ = X g(u)µ(du).

Let E be a Banach space endowed with a norm • E , and let

J T = [0, T ]. L p (J T , E), 1 ≤ p < ∞ is the space of measurable functions u : J T → E such that u L p (JT ,E) = T 0 u(s) p E ds 1 p < ∞. C(J T , E) is the space of continuous functions u : J T → E with the norm u C(JT ,E) = sup t∈JT u(t) E .
L(E, Y ) is the space of bounded linear operators from E to another Banach space Y . We write

L(E) when E = Y . B E (a, R) is the closed ball in E of radius R centered at a. We write B E (R) when a = 0. D(η) is the law of E-valued random variable η.

Abstract criterion

Let H be a separable Hilbert space, and E be a separable Banach space. In this section, we consider a random dynamical system of the form 

u k = S(u k-1 , η k ), k ≥ 1, ( 1 
u 0 = u ∈ H (1.2)
and the vectors η i = ζ i , i = 1, . . . , k. For any set H ⊂ H, we define the set of attainability in time k ≥ 1:

A k (H) := {S k (u; ζ 1 , . . . , ζ k ) : u ∈ H, ζ 1 , . . . , ζ k ∈ K}
and the set of attainability in infinite time:

A(H) := ∪ ∞ k=1 A k (H) H .
The following five conditions are assumed to be satisfied for the mapping S and the measure ℓ.

(i) Regularity. The mapping S : H × E → H is twice continuously differentiable, and its derivatives are bounded on bounded subsets. Moreover, for any (u, η) ∈ H × K, the derivative (D u S)(u, η) can be represented as

(D u S)(u, η) = Ψ 1 + Ψ 2 (u, η), (1.3)
where the operators4 Ψ 1 , Ψ 2 (u, η) ∈ L(H) are such that

Ψ 1 L(H) =: κ < 1 (1.4)
and Ψ 2 (u, η) is compact.

(ii) Asymptotic compactness. For any bounded sequence {u n 0 } in H, any integers l n ≥ 1 such that l n → ∞, and any family

{ζ n m : m, n ≥ 1} ⊂ K, the sequence {S ln (u n 0 ; ζ n 1 , . . . , ζ n ln )} is precompact in H. (iii)
Approximate controllability to a point. There is a point û ∈ H with the following property: for any ε > 0 and any compact H in H, there is an integer n ≥ 1 such that, for any initial point u ∈ H, there are vectors

ζ 1 , . . . , ζ n ∈ K satisfying S n (u; ζ 1 , . . . , ζ n ) -û ≤ ε.
(1.5) (iv) Approximate controllability of the linearisation. For any u ∈ H and η ∈ K, the image of the linear mapping (D η S)(u, η) : E → H is dense in H.

(v) Decomposability. The set K is compact in E. Moreover, there are sequences of closed subspaces {F n } and {G n } in E satisfying the following properties:

• F n are finite-dimensional, F n ⊂ F n+1 for any n ≥ 1, and E = ∪ n F n .
• E is the direct sum of the spaces F n and G n , and the norms of the corresponding projections P n and Q n are bounded in n ≥ 1.

• ℓ is the product of projections P n * ℓ and Q n * ℓ for any n ≥ 1. Moreover, the measures P n * ℓ have C 1 -smooth densities with respect to the Lebesgue measure on F n .

System (1.1) defines a family of Markov processes (u k , P u ) in H parametrised by the initial condition (1.2). Let P k : C b (H) → C b (H) and P * k : P(H) → P(H) be the associated Markov operators.

Theorem 1.1. Under Conditions (i)-(v), the family (u k , P u ) has a unique stationary measure µ ∈ P(H). Moreover, for any compact set H in H, there are numbers C > 0 and c > 0 such that

P * k λ -µ * L(H) ≤ Ce -ck , k ≥ 1 (1.6)
for any initial measure λ ∈ P(H) with supp λ ⊂ H.

See the papers [Shi15, Shi19, KNS18, KNS19, KZ18, JNPS19] for related abstract criteria for uniqueness of stationary measure and mixing. The formulation of Theorem 1.1 is close to the results in [KNS19, JNPS19], but the proof is based on a theorem obtained in [START_REF] Shirikyan | Controllability implies mixing II. Convergence in the dual-Lipschitz metric[END_REF]. There are two main differences in our formulation. First, in Condition (i), we do not suppose that the mapping S (or its linearisation) takes values in a space that is compactly embedded into H. Instead, we assume that (D u S)(u, η) is a sum of dissipative and compact operators. The second difference is Condition (ii), which allows to recover some compactness properties5 for the dynamics. These two new conditions make Theorem 1.1 applicable to the NS system in unbounded domains. Moreover, this theorem can be applied to dissipative PDEs without parabolic regularisation (this will be addressed in a subsequent publication).

As in this paper the random perturbation is non-degenerate, the image of the mapping (D η S)(u, η) is assumed to be dense for any η in K; degenerate versions of this criterion can also be envisaged (cf. [START_REF] Nersesyan | Exponential mixing for a class of dissipative PDEs with bounded degenerate noise[END_REF][START_REF] Kuksin | Mixing via controllability for randomly forced nonlinear dissipative PDEs[END_REF]).

Proof of Theorem 1.1. Step 1: Existence of stationary measure. The set X := A(H) is compact in H. Indeed, it suffices to show that any sequence {v n } of the form

v n = S ln (u n 0 ; ζ n 1 , . . . , ζ n ln )
with some u n 0 ∈ H, ζ n 1 , . . . , ζ n ln ∈ K, and l n ≥ 1, is precompact in H. If the sequence {l n } is bounded, then v n ∈ A m (H) for all n ≥ 1, where m = max{l n }. The fact that A m (H) is compact (as image of a compact set by a continuous mapping) implies that {v n } is precompact. In the case l n → ∞, the conclusion follows from Condition (ii).

The compactness of X, combined with the invariance property S(X×K) ⊂ X and the usual Bogolyubov-Krylov argument (e.g., see Section 2.5 in [START_REF] Kuksin | Mathematics of Two-Dimensional Turbulence[END_REF]), implies the existence of a stationary measure µ ∈ P(X).

Step 2: Limit (1.6). According to Theorem 1.1 in [START_REF] Shirikyan | Controllability implies mixing II. Convergence in the dual-Lipschitz metric[END_REF], limit (1.6) will be established if we verify the following property.

Local stabilisation. Let D δ := {(u, u ′ ) ∈ X × X : u -u ′ ≤ δ}.
For any R 0 and any compact K ⊂ E, there is a finite-dimensional subspace E ⊂ E, and a continuous mapping

Φ : D δ × B E (R) → E, (u, u ′ , η) → η ′ ,
which is continuously differentiable in η and satisfies the inequalities

sup η∈BE (R) Φ(u, u ′ , η) E + D η Φ(u, u ′ , η) L(E) ≤ C u -u ′ , (1.7) sup η∈K S(u, η) -S(u ′ , η + Φ(u, u ′ , η)) ≤ q u -u ′ , (u, u ′ ) ∈ D δ (1.8)
for some positive constants C, δ, and q < 1. Let us show that Conditions (i), (iv), and (v) imply this local stabilisation property. We use a construction of approximate right inverse for linear operators from Section 2.2 in [START_REF] Nersesyan | Exponential mixing for a class of dissipative PDEs with bounded degenerate noise[END_REF]. For any u ∈ X and η ∈ E, let A(u, η) : E → H be given by A(u, η) := (D η S)(u, η). Then G(u, η) := A(u, η) A(u, η) * : H → H is non-negative self-adjoint operator and Im(G(u, η)) is dense in H by Condition (iv). Thus (G(u, η) + γI) -1 is well defined for any γ > 0, and we have the limit

G(u, η)(G(u, η) + γI) -1 f → f as γ → 0 + , f ∈ H,
(1.9) by Lemma 2.4 in [START_REF] Nersesyan | Exponential mixing for a class of dissipative PDEs with bounded degenerate noise[END_REF]. This shows that A(u, η) * (G(u, η) + γI) -1 is an approximate right inverse for A(u, η). We truncate it to obtain an operator with finite-dimensional image:

R M,γ (u, η) := P M A(u, η) * (G(u, η) + γI) -1 ,
where P M is a projection as in Condition (v) and M ≥ 1 and γ > 0 are parameters that will be chosen later. It is straightforward to see that

R M,γ (u, η) L(H,E) + (D η R M,γ )(u, η) L(H×E,E) ≤ C 1 (R, M, γ) (1.10)
for any u ∈ X and η ∈ B E (R), where the constant C 1 (R, M, γ) > 0 does not depend on (u, η). By the Taylor formula, for any u, u ′ ∈ X and η, η ′ ∈ B E (R), we have

S(u ′ , η ′ ) -S(u, η) = (D u S)(u, η)(u ′ -u) + (D η S)(u, η)(η ′ -η) + r(u, u ′ , η, η ′ ) (1.11) where r(u, u ′ , η, η ′ ) ≤ C 2 (R) u -u ′ 2 + η -η ′ 2 E .
(1.12)

The mapping Φ is defined by

Φ(u, u ′ , η) := -R M,γ (u, η)Ψ 2 (u, η)(u ′ -u).
Then (1.7) is verified due to (1.10) and

C 3 := sup (u,η)∈X×BE (R) Ψ 2 (u, η) L(H) + D η Ψ 2 (u, η) L(H×E,H) < ∞. (1.13)
The fact that C 3 is finite follows from the boundedness on X × B E (R) of the norms of the derivatives of S(u, η) and the representation (1.3). Assume that, for any ε > 0, we are able to find numbers M ≥ 1 and γ > 0 such that

(D η S)(u, η)R M,γ (u, η)Ψ 2 (u, η)g -Ψ 2 (u, η)g ≤ ε g (1.14)
for any u ∈ X, η ∈ K, and g ∈ H. Then combining (1.3), (1.4), and (1.11)-(1.14), we obtain

S(u, η) -S(u ′ , η + Φ(u, u ′ , η)) ≤ κ u ′ -u + ε u ′ -u + r(u, u ′ , η, η + Φ(u, u ′ , η)) ≤ (κ + ε + C 4 (ε, R) u ′ -u ) u ′ -u ≤ q u ′ -u
for any (u, u ′ ) ∈ D δ and η ∈ K, where ε > 0 and δ > 0 are sufficiently small and q < 1. This completes the proof of the local stabilisation and limit (1.6). Let us prove inequality (1.14). By (1.9), the continuous dependence of the operators (D η S)(u, η) and Ψ 2 (u, η) on (u, η), and a simple compactness argument, we find a large integer M ≥ 1 and a small number γ > 0 such that6 

(D η S)(u, η)R M,γ (u, η)f -f ≤ ε
for any u ∈ X, η ∈ K, and f ∈ Ψ 2 (u, η)(B H (1)). Then inequality (1.14) follows by homogeneity.

Step 3: Uniqueness of stationary measure. To complete the proof, it remains to show the uniqueness of stationary measure in P(H). Assume that µ is the stationary measure supported7 in A({û}), and let λ 1 be any stationary measure for (u k , P u ) in P(H). As λ 1 (A(H)) = 1, there is a sequence

{H n } of compacts in H such that λ 1 (A(H n )) > 1 -1/n for any n ≥ 1.
By Condition (iii), we have A({û}) ⊂ A(H n ), and µ and

λ 1 /λ 1 (A(H n )) are stationary measures for (u k , P u ) in P(A(H n )). So µ = λ 1 /λ 1 (A(H n ))
by the uniqueness of stationary measure on X = A(H n ). Therefore,

λ 1 (Γ) = lim n→∞ λ 1 (Γ ∩ A(H n )) = lim n→∞ λ 1 (Γ ∩ A(H n ))/λ 1 (A(H n )) = µ(Γ)
for any Γ ∈ B(H). Thus λ 1 = µ.

Proof of the Main Theorem

In this section, we prove the Main Theorem by applying Theorem 1.1. We begin with a short discussion of the deterministic NS system, then turn to the verification of Conditions (i)-(v) in an appropriate functional setting.

Preliminaries

Applying the Leray projection 8 Π to Eq. (0.1), we eliminate the pressure term and consider the evolution system

u + νLu + B(u) = η, (2.1) 
where L = -Π∆ is the Stokes operator and B(u

) = Π( u, ∇ u). Let us define a bilinear symmetric form [•, •] : V × V → R by [u, v] := u, v 1 - λ 1 2 u, v , u, v ∈ V.
The Poincaré inequality (see (0.4))

u 2 ≤ λ -1 1 u 2 1 , u ∈ V (2.2) implies that 1 2 u 2 1 ≤ [u] 2 := [u, u] ≤ u 2 1 . (2.3) Thus [•, •] defines a scalar product on V with norm [•] equivalent to • 1 .
Proposition 2.1. For any T > 0, u 0 ∈ H, and η ∈ L 2 (J T , H), there is a unique solution u ∈ C(J T , H) ∩ L 2 (J T , V ) of problem (2.1), (0.3). It satisfies the following inequalities

u(t) 2 ≤ e -νλ1t u 0 2 + ν -2 λ -1 1 η 2 L 2 (JT ,V ′ ) , t ∈ J T , (2.4) 
u 2 L 2 (JT ,V ) ≤ ν -1 u 0 2 + ν -2 η 2 L 2 (JT ,V ′ ) , (2.5) 
and the equality

u(t) 2 = e -νλ1t u 0 2 + 2 t 0 e -νλ1(t-s) η(s), u(s) -ν[u(s)] 2 ds, t ∈ J T .
(2.6)

Let us define the mapping

S t : H × L 2 (J T , H) → H, (u 0 , η) → u(t), t ∈ J T .
The following stability result holds.

8 That is the orthogonal projection in L 2 (D, R 2 ) onto H.

Proposition 2.2. Assume that the sequence {u n 0 } converges weakly to u 0 in H and the sequence {η n } converges strongly to η in L 2 (J T , H). Then

S t (u n 0 , η n ) ⇀ S t (u 0 , η) weakly in H for t ∈ J T , (2.7) 
S • (u n 0 , η n ) ⇀ S • (u 0 , η) weakly in L 2 (J T , V ).
(2.8)

The proofs of these two propositions are carried out by standard methods and are given in the Appendix.

Let us now describe the functional setting in which Theorem 1.1 is applied. The space H is defined by (0.9), E := L 2 ([0, 1], H), and the mapping

S := S 1 : H × E → H, (u 0 , η) → u(1)
is the time-one shift along trajectories of Eq. (2.1). Then the restriction to integer times of the solution of (2.1), (0.3), (0.5) satisfies

u k = S(u k-1 , η k ), k ≥ 1, (2.9)
where {η k } is a sequence of i.i.d. random variables as in the decomposability condition in the Introduction. It is straightforward to see that Condition (v) satisfied.9 In the next three subsections, we check Conditions (i)-(iv).

Regularity condition

The smoothness of the mapping S : H × E → H and the boundedness of its derivatives on bounded subsets of H × E are proved using well-known methods (e.g., see Chapters I and VII in [START_REF] Babin | Attractors of Evolution Equations[END_REF] for the case of bounded domain D).

Let us consider the linearisation of Eq. (2.1) around the trajectory ũ(t) = S t (u, η) corresponding to an initial condition ũ(0) = u ∈ H and control η ∈ K:

ẇ + νLw + Q(ũ, w) = 0,
(2.10)

w(0) = w 0 , (2.11) 
where

Q(a, b) = Π( a, ∇ b) + Π( b, ∇ a).
(2.12)

Then (D u S)(u, η)w 0 = w(1) for any w 0 ∈ H, and we can write w = v 1 + v 2 , where v 1 and v 2 are the solutions of the problems

v1 + νLv 1 = 0, v 1 (0) = w 0 , (2.13) v2 + νLv 2 + Q(ũ, w) = 0, v 2 (0) = 0.
(2.14)

The representation (1.3) holds with the linear operators

Ψ 1 : H → H, w 0 → v 1 (1), Ψ 2 (u, η) : H → H, w 0 → v 2 (1).
Inequality v 1 (t) ≤ e -νλ1t/2 w 0 implies (1.4) with κ := e -νλ1/2 . The following lemma (whose proof is given in the Appendix) completes the verification of Condition (i).

Lemma 2.3. For any (u, η) ∈ H × K, the operator Ψ 2 (u, η) : H → H is compact.

Asymptotic compactness

For any integer k ≥ 1 and any function η ∈ L 2 (J k , H) of the form (0.5) with some sequence {η n } ⊂ E, we write u(t) = S t (u 0 , η) =: S t (u 0 ; η 1 , . . . , η k ), t ∈ J k .

(2.15)

Proposition 2.4. For any bounded sequence {u n 0 } in H, any sequence of integers l n ≥ 1 such that l n → ∞, and any family {ζ n m : m, n

≥ 1} ⊂ K, the sequence v n = S ln (u n 0 ; ζ n 1 , . . . , ζ n ln ) is precompact in H.
Proof. Let us first explain the scheme of the proof. Using the dissipativity of the system, we show that {v n } is bounded in H. As H is a Hilbert space, there is a subsequence {v kn } such that v kn ⇀ w weakly in H.

( Step 1: Boundedness. Let us show that, for any bounded set H ⊂ H, the attainability set A(H) ⊂ H is bounded. Indeed, let

M 1 := sup u∈H u 2 < ∞.
For any u 0 ∈ H and ζ 1 , . . . , ζ k ∈ K, let u k := S k (u 0 ; ζ 1 , . . . , ζ k ). Then by inequality (2.4), we have

u k 2 ≤ κ u k-1 2 + M 2 ,
where κ := e -νλ1 < 1 and M

2 := ν -2 λ -1 1 sup η∈K η 2 L 2 ([0,1],V ′ ) . Iterating this, we get u k 2 ≤ κ k u 0 2 + M 2 (1 -κ) -1 ≤ M 1 + M 2 (1 -κ) -1 =: M.

This shows that sup

u∈A(H)

u 2 ≤ M.

Step 

w 2 = u m (m) 2 = e -νλ1m w m 2 + 2 m 0 e -νλ1(m-s) ξ m (s), u m (s) -ν[u m (s)] 2 ds, (2.20) 
where

u m (t) = S t (w m , ξ m ), ξ m (t) = m k=1 I [k-1,k) (t)ξ m k (t -k + 1), t ∈ J m .
On the other hand, again by (2.6), we have As m ≥ 1 is arbitrary, we arrive at (2.18).

Approximate controllability

By the decomposability assumption, we have 0 ∈ K. In view of (2.4), Condition (iii) is verified with û = 0, ζ 1 = . . . = ζ n = 0, and sufficiently large n ≥ 1.

To check Condition (iv), we consider the following linearisation of Eq. (2.1) around the same trajectory ũ as in Section 2.2:

ẇ + νLw + Q(ũ, w) = ζ(t),
(2.23)

w(0) = 0,
where Q is given by (2.12). Then where the constant C 3 > 0 does not depend on the numbers n, m, ε. Combining this with (3.7) and choosing n and m sufficiently large, we see that Φ ũ(w kn 0 ) -Φ ũ(w km 0 ) L 2 (J,H -1 ) < 2C 3 ε.

This shows that Φ ũ is compact. Thus the map Ψ 2 : H → H is compact as a composition of Φ ũ with some linear continuous map.
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v kn 2 =+2 m 0 e 0 e 0 e 0 e

 20000 u n,m (m) 2 = e -νλ1m w n,m 2 -νλ1(m-s) η n,m (s), u n,m (s) -ν[u n,m (s)] 2 ds,(2.21)whereu n,m (t) = S t (w n,m , η n,m ), η n,m (t) = m k=1 I [k-1,k) (t)η n kn-m+k (t-k+1), t ∈ J m . Note that m -νλ1(m-s) η n,m (s), u n,m (s) ds → m -νλ1(m-s) ξ m (s), u m (s) ds, (2.22) as η n,m → ξ m strongly in L 2 (J m , H) and u n,m ⇀ u m weakly in L 2 (J m , V ). Since m 0 e -νλ1(m-s) [•] 2 ds 1/2is a norm in L 2 (J m , V ) which is equivalent to the original one, the following inequality holdsm 0 e -νλ1(m-s) [u m (s)] 2 ds ≤ lim infn→∞ m -νλ1(m-s) [u n,m (s)] 2 ds. Combining this with (2.20)-(2.22), we get lim sup n→∞ v kn 2 ≤ lim sup n→∞ e -νλ1m w n,m 2 + w 2 -e -νλ1m w m 2 ≤ e -νλ1m M + w 2 .

  (D η S)(u, η)ζ = w(1) for any ζ ∈ E. For any smooth function w 1 ∈ H, we can find a smooth function w : [0, 1] × D → R 2 such that w(0) = 0, w(1) = w 1 , and w(t) ∈ H for all t ∈ [0, 1]. Replacing w into Eq. (2.23), we find explicitly a control ζ ∈ E such that (D η S)(u, η)ζ = w 1 . This shows that the image of the mapping (D η S)(u, η) : E → H is dense in H for any (u, η) ∈ H ×K. Thus Conditions (i)-(v) are verified. Applying Theorem 1.1, we complete the proof of the Main Theorem.

  .1) where S : H × E → H is a continuous mapping and {η k } is a sequence of i.i.d. random variables in E. Let K ⊂ E be the support of the law ℓ := D(η k ). For any sequence {ζ k } in K, let us denote by S k (u; ζ 1 , . . . , ζ k ) the trajectory of (1.1) corresponding to the initial condition

  2: Proof of (2.18). From the previous step it follows that {v n } is bounded in H. Let {v kn } be a subsequence verifying (2.16). It is of the formv kn = S ℓn (u n 0 ; η n 1 , . . . , η n ℓn )for some vectors η n 1 , . . . , η n ℓn ∈ K and integers ℓ n ≥ 1 such that ℓ n → ∞. Using the boundedness of the set A({u n 0 , n ≥ 1}) and passing to a subsequence if necessary (applying the diagonal process), we can assume that

	w n,m := S ℓn-m (u n 0 ; η n 1 , . . . , η n ℓn-m ) ⇀ w m weakly in H	(2.19)
	From (2.16) we derive the equality	
	w = S m (w m ; ξ m 1 , . . . , ξ m m ) for any m ≥ 1.	
	This and (2.6) imply that	

for any m ≥ 1 and some w m ∈ H. Using the compactness of K and again passing to a subsequence if necessary, we can assume that

η n ℓn-i → ξ m m-i strongly in E, i = 0, . . . m

-1. Combining this with (2.19) and Proposition 2.2, we get v kn = S m (w n,m ; η n ℓn-m+1 , . . . , η n ℓn ) ⇀ S m (w m ; ξ m 1 , . . . , ξ m m ) weakly in H.

I.e., domain D which does not necessarily satisfy the Poincaré inequality.

Ψ 1 does not depend on (u, η).

The asymptotic compactness is a well-known property in the study of the attractors for deterministic PDEs (e.g., see[START_REF] Ladyzhenskaya | Attractors for semigroups and evolution equations[END_REF][START_REF] Rosa | The global attractor for the 2D Navier-Stokes flow on some unbounded domains[END_REF]).

Here we use also the boundedness of the projections P M (see Condition (v)), which implies the limit P M → I as M → ∞ in the operator topology.

Using Condition (iii), it is easy to see that supp µ = A({û}).

Note that K := supp D(η k ) is compact in E, since it is contained in a Hilbert cube.
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Appendix

3.1 Proof of Proposition 2.1

The existence and uniqueness of solution is proved, e.g., in Chapter III of [START_REF] Temam | Navier-Stokes equations. Theory and numerical analysis[END_REF].

Here we give a formal derivation of inequalities (2.4) and (2.5) and equality (2.6).

Taking the scalar product in H of Eq. (2.1) with 2u and using the identity

Combining this with the Poincaré inequality, we obtain (2.4). From (3.1) we also derive the inequality

which implies (2.5). To prove (2.6), we rewrite the equality in (3.1) in the form

and apply the variation of constants formula.

Proof of Proposition 2.2

By Proposition 2.1, the sequence

) and numbers α 0 = α 1 = 2, and using the diagonal process, we find a subsequence {u kn } such that

for any R > 0. Passing to the limit in the equation for u kn (t), we conclude that u(t) is the solution S t (u 0 , η), t ∈ J T . Moreover, by the uniqueness of the limit, it is easy to see that limits (3.4)-(3.6) hold for the full sequence {u n }. This proves (2.8).

Let us take any ϕ ∈ V (see (0.8)). By inequality (2.4), we have

and by inequality (3.3),

for any t ∈ J T and τ ∈ (0, T -t). Thus the Arzelà-Ascoli theorem implies that

uniformly in t ∈ J T . Using the fact that V is dense in H, we get (2.7).

Proof of Lemma 2.3

Let us set J := [0, 1]. By Proposition 2.1, we have ũ = S • (u, η) ∈ L 2 (J, V ) for any u ∈ H and η ∈ K. Using standard methods, one can show that the mapping Ψ : w 0 → w (i.e., the resolving operator of problem (2.10), (2.11)) is continuous from

). Let us show that the linear mapping Φ ũ : H → L 2 (J, H -1 ), w 0 → ũ, ∇ w + w, ∇ ũ is compact. Indeed, let {w n 0 } be a bounded sequence in H. Then the sequence {Ψ(w n 0 )} is bounded in X . As in the previous subsection, we apply Theorem 2.1 of Chapter III in [START_REF] Temam | Navier-Stokes equations. Theory and numerical analysis[END_REF] with spaces

) and numbers α 0 = α 1 = 2, and use the diagonal process to find a subsequence {Ψ(w kn 0 )} converging strongly in L 2 (J, L 2 (D R )) for any R > 0. On the other hand, for any ε > 0, there is a number R > 0 and a smooth function ϕ : J × D → R 2 with supp ϕ(t, •) ⊂ D R for any t ∈ J and ũ -ϕ L 2 (J,V ) < ε.

(3.7)

Using the boundedness of the sequence {Φ ũ(w kn 0 )} in L 2 (J, V ) and the estimate a

we obtain Φ ũ(w kn 0 ) -Φ ũ(w km 0 ) L 2 (J,H -1 ) ≤ Φ ϕ (w kn 0 ) -Φ ϕ (w km 0 ) L 2 (J,H -1 ) + Φ ũ-ϕ (w kn 0 ) -Φ ũ-ϕ (w km 0 ) L 2 (J,H -1 ) ≤ C 3 Ψ(w kn 0 ) -Ψ(w km 0 )

1/2 L 2 (J,L 2 (DR))

+ C 3 ũ -ϕ L 2 (J,V ) ,