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Abstract Salmonella enterica serovar Enteritidis

(SE) is the most frequently-detected Salmonella in

foodborne outbreaks in the European Union. Among

such outbreaks, egg and egg products were identified

as the most common vehicles of infection. Possibly,

the major antibacterial property of egg white is iron

restriction, which results from the presence of the iron-

binding protein, ovotransferrin. To circumvent iron

restriction, SE synthesise catecholate siderophores

(i.e. enterobactin and salmochelin) that can chelate

iron from host iron-binding proteins. Here, we high-

light the role of lipocalin-like proteins found in egg

white that could enhance egg-white iron restriction

through sequestration of certain siderophores, includ-

ing enterobactin. Indeed, it is now apparent that the

egg-white lipocalin, Ex-FABP, can inhibit bacterial

growth via its siderophore-binding capacity in vitro.

However, it remains unclear whether Ex-FABP per-

forms such a function in egg white or during bird

infection. Regarding the two other lipocalins of egg

white (Cal-c and a-1-glycoprotein), there is currently
no evidence to indicate that they sequester

siderophores.

Keywords Salmonella Enteritidis � Salmochelin �
Enterobactin � Ex-FABP � Cal-c � Alpha-1-
ovoglycoprotein

Survival of Salmonella within egg white

and the role of iron restriction

The powerful antibacterial defence mechanisms

of egg white

In the EU, Salmonella enterica is the bacterium most

frequently (93%) detected in egg white, with S.

enterica serovar Enteriditis (SE) being the major

(67%) strain associated with outbreaks caused by eggs

and egg products (EFSA 2014). Thus, SE appears to be

very well suited to infection of, and survival within,

eggs (Clavijo et al. 2006; Vylder et al. 2013; Gantois

et al. 2008). Egg white is noted for its strong

antimicrobial activity which indicates that SE has

powerful egg-white resistance mechanisms. Indeed,

the various antimicrobial activities exhibited by egg

white can be considered to present a unique set of

challenges for bacterial invaders. These include

physico-chemical factors, in particular high pH
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(inhibiting growth; Sharp and Whitaker 1927) and

high viscosity (limiting motility; Schneider and

Doetsch 1974; Yadav and Vadehra 1977); in addition,

high osmolarity (causing osmotic stress) has been

suggested (Clavijo et al. 2006). The pH of egg white

shifts from * 7.6 (upon oviposition) to 9.3 (a few

days later) as a result of CO2 release (Sharp and Powell

1931). The viscosity of egg white (with a shear rate of

400 s-1: 5 mPa.s-1 at 20 �C; Lang and Rha 1982) is

mainly caused by the presence of ovomucin, a

glycoprotein contributing 3.5% w/w of the total egg

albumin protein (egg white has a total protein content

of * 10% w/w; Kovacs-Nolan et al. 2005).

In addition to these physico-chemical factors, egg

white possesses an array of proteins that provide

further defence against pathogens [see review by

Baron et al. (2016) for more detail], notably:

• ovotransferrin (oTf), involved in iron deprivation

(Garibaldi 1970) and bacterial membrane damage

(Aguilera et al. 2003);

• lysozyme (Derde et al. 2013) and defensins

(Hervé-Grépinet et al. 2010; Gong et al. 2010),

that would be expected to disrupt bacterial mem-

brane integrity;

• ovalbumin X, a heparin-binding protein exhibiting

antimicrobial activity (Réhault-Godbert et al.

2013);

• ovostatin (Nagase et al. 1983) and cystatin (We-

sierska et al. 2005), presumed to inhibit exogenous

proteases; and

• avidin (Banks et al. 1986), a biotin sequestration

protein.

The major role of iron restriction

and ovotransferrin in egg-white defence

It is generally accepted that the major factor limiting

bacterial growth in egg white is iron restriction. This

results from the presence of oTf, a powerful iron-

binding protein (Garibaldi 1970; Lock and Board

1992; Baron et al. 1997). The iron restriction of egg

white was first discovered by Schade and Caroline

(1944) who found that exposure to egg white inhibits

the growth of Shigella dysenteriae. Among 31 growth

factors added to egg white, only iron overcame the

observed egg white-imposed growth inhibition. Two

years later, Alderton et al. (1946) identified the egg-

white factor responsible as ‘conalbumin’, which is

now known to be a member of the transferrin family

and is more commonly referred as oTf. Since these

early studies, subsequent work has confirmed the role

of oTf as an egg-white iron-restriction agent prevent-

ing growth of a range of microbial species, including

Salmonella (Schade and Caroline 1944; Valenti et al.

1983, 1985; Ibrahim 1997; Baron et al. 1997, 2000).

Indeed, iron-acquisition mutants of SE display

decreased survival and/or growth in egg white (Kang

et al. 2006). Such studies confirm the antibacterial role

of iron restriction in egg white. A recent global

transcriptomic study (Baron et al. 2017) revealed a

major iron-starvation response of SE upon exposure to

egg white which was caused by relief of Fur- (the

global transcriptional regulator of iron-dependent

gene expression; Rabsch et al. 2003) mediated

repression. Likewise, a quantitative proteomic analy-

sis (isobaric tags for relative and absolute quantitation;

iTRAQ) showed that iron-acquisition-system-related

proteins are induced by egg white (Qin et al. 2019).

These findings confirm that SE suffers from iron

limitation in egg white. The low iron availability in

egg white exerts a strong bacteriostatic influence

(Bullen et al. 1978; Baron et al. 1997) because iron is

essential for growth of nearly all organisms, including

bacteria (Andrews et al. 2003). In many ways, the

antibacterial iron-restriction strategy of egg white is

comparable to the iron-dependent ‘nutritional immu-

nity’ defence mechanisms observed in mammals,

where serum transferrin maintains concentrations of

extracellular free iron at levels (10-18 M) well below

those that support bacterial growth (Bullen et al.

2005).

OTf is believed to be the critical iron-restriction

component in egg white. Like other members of the

transferrin family, its structure consists of two ‘lobes’,

each with a strong affinity for a single Fe3? ion

(apparent binding constant of around 1032 M-1, with of

1.5 9 1018 M-1 and 1.5 9 1014 M-1 for the C- and

N-terminal lobes, respectively, at pH 7.5; Guha-

Thakurta et al. 2003; Chart 1993; Schneider et al.

1984). The iron-restriction-based bacteriostatic activ-

ity of oTf is enhanced by bicarbonate (which is likely

related to the apparent dependence of metal binding on

the presence of a suitable anion; Valenti et al. 1983)

and high pH (Valenti et al. 1981; Antonini et al. 1977;

Lin et al. 1994). Interestingly, egg white contains

levels of iron (* 0.1 mg iron per 100 g which is

equivalent to * 18 lM; USDA 2010; Nys and
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Sauveur 2004) that would normally be sufficient for

bacterial growth. However, oTf is present in such high

abundance in egg white (170 lM; 13% of total protein

content, second most abundant egg white protein after

ovalbumin; Sauveur 1988) that oTf iron-binding

capacity exceeds iron availability by 17-fold. Since

egg white is aerobic and has a high pH (after laying),

iron in egg white would be expected to be largely in

the ferric state (the form bound by oTf) so it can be

assumed that virtually all iron in egg white is bound to

oTf such that very little is freely available (Sauveur

1988). However, some bacteria are more susceptible

to growth inhibition by oTf than others. Indeed,

in vitro studies showed that the most sensitive species

are Pseudomonas and Escherichia coli, and the most

resistant are Staphylococcus aureus, Proteus and

Klebsiella (Valenti et al. 1983). Unsurprisingly, the

effects of oTf can be relieved by iron-mobilising

agents (e.g. citrate) (Valenti et al. 1983). OTf also

appears to possess additional antibacterial activities

since its effects are diminished when separated from

direct contact with bacteria through location in a

dialysis bag or immobilisation on beads (Valenti et al.

1985). Indeed, it has been shown that oTf can partially

penetrate and permeabilise bacterial membranes,

acting as an uncoupling agent (Aguilera et al. 2003).

This activity is likely related to the presence of a Cys-

rich antibacterial-peptide-like motif located on the

surface of the oTf molecule which confers the ability

to kill Gram-negative bacteria (Ibrahim et al.

1998, 2000).

Iron acquisition by Salmonella

The role of the two siderophores of Salmonella

in iron uptake and pathogenicity

The most important mechanism used by bacteria to

circumvent iron restriction involves the synthesis of

siderophores that bind exogenous ferric iron with high

affinity and specificity, and enable acquisition of iron

from host sources (Andrews et al. 2003). The

siderophores employed by Salmonella are cate-

cholates called enterobactin (or enterochelin) and

salmochelin. Enterobactin was first identified in E. coli

(O’Brien and Gibson 1970) and Salmonella Typhi-

murium (ST) (Pollack and Neilands 1970). Although

enterobactin synthesis was shown to be required for

survival of ST in low-iron in vitro environments

(Pollack et al. 1970), its role in pathogenesis is limited

for reasons that were, initially, unclear (Benjamin

et al. 1985; Rabsch et al. 2003). Salmochelin (which is

closely similar to enterobactin) was not identified until

more than three decades after enterobactin when it was

found to be a product of pathogenic enterobacteria,

such as Salmonella (Hantke et al. 2003). It was

designated ‘salmochelin’ as it appeared at first to be a

characteristic of Salmonella strains. However,

salmochelins have now been reported in avian

pathogenic E. coli (APEC), uropathogenic E. coli

(UPEC), ST and Klebsiella pneumoniae where they

contribute to virulence (Caza et al. 2008; Gao et al.

2012; Crouch et al. 2008; Bachman et al. 2012). It

should be noted that the ferrous-iron transport systems

of Salmonella (FeoABC and SitABCD) can also

contribute to pathogenicity and/or gut colonisation

(see review by Carpenter and Payne 2014).

Enterobactin: a powerful siderophore,

but with limited effect in vivo

Enterobactin is a serine macrotrilactone (Fig. 1) that

has a far higher affinity for iron than oTf (formation

constants of 1052 and 1032 M-1, respectively), which

allows siderophore-producing bacteria to use oTf as a

source of iron (Chart 1993). Although the metabolism

of enterobactin is best studied in E. coli, Salmonella

possesses a highly similar set of enterobactin-related

genes which are assumed to play similar roles. The

enterobactin precursor, 2,3-dihydroxybenzoate

(DHB), is synthesized from chorismate by enzymes

encoded by the entC, entB and entA genes. In a second

step, DHB and serine are combined, polymerized and

cyclized to form enterobactin by enzymes encoded by

the entE, entB and entF genes (Gehring et al. 1998).

EntS is required for enterobactin export through the

cytosolic membrane (Furrer et al. 2002) whereas TolC

is involved in enterobactin efflux across the outer

membrane (Bleuel et al. 2005) (Fig. 2). Once com-

plexed with ferric iron, uptake of ferric-enterobactin

into the periplasm is mediated by the iron-regulated

outer-membrane proteins, FepA and Cir (and IroN in

Salmonella) (Rabsch et al. 1999, 2003); the energy-

transducing TonB-ExbBD complex is also required

for this step (Skare et al. 1993; Fig. 2). Ferric-

enterobactin is then imported into the cytoplasm by

the ATP-binding cassette transporter, FepBDGC
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(Langman et al. 1972; Chenault and Earhart 1992).

Finally, the imported ferric-enterobactin complex is

processed by the Fes esterase which cleaves the cyclic

ring of the siderophore, lowering affinity for the bound

iron which enables dissociation (O’Brien et al. 1971).

Despite its high affinity for iron, enterobactin is not

as effective as other siderophores in vivo (Konopka

et al. 1982; Montgomerie et al. 1984), and this poor

performance appears to be related to its rapid clear-

ance from the serum (Konopka and Neilands 1984).

An unknown factor in serum was found to impede

transfer of iron from transferrin to enterobactin, and

from 55Fe-enterobactin to E. coli (Konopka and

Neilands 1984). However, serum has little impact on

iron chelation by the aerobactin siderophore

(Konopka and Neilands 1984). Aerobactin was also

shown to provide a significant selective advantage for

E. coli growth in vitro (Williams and Carbonetti

1986), and in a cutaneous infection model (Demir and

Kaleli 2004), even though its affinity for iron is weaker

than that of enterobactin (formation constants of 1023

and 1052 M-1, respectively; Neilands, 1981). Similar

findings were found for S. enterica, as enterobactin is

not a virulence factor for ST or SE in mouse and

chicken infection models (Benjamin et al. 1985;

Rabsch et al. 2003). Later, the serum factor respon-

sible for limiting the action of enterobactin was

identified as an acute-phase protein, called LCN2

(lipocalin 2 or neutrophil gelatinase-associated lipo-

calin) (Goetz et al. 2002), that previously had an

unclear specific purpose. LCN2 was subsequently

found to be induced and secreted in response to

activation of Toll-like innate immune receptors (Flo

et al. 2004), bind to enterobactin (Goetz et al. 2002)

and inhibit enterobactin activity partly through rapid

clearance from the serum (Devireddy et al. 2005), and

thus shown to function as a ‘siderocalin’ (siderophore-

binding lipocalin).

Salmochelin: a glucosylated siderophore,

promoting Salmonella pathogenicity through

LCN2 evasion

Salmochelin S4 is a diglucosyl-C enterobactin

(Fig. 1). The affinity of salmochelin for Fe3? is not

reported (Valdebenito et al. 2006; Watts et al. 2012),

however, it is assumed that glucosylation does not

significantly impact Fe3? ligation or affinity (Luo et al.

2006). The genetic locus responsible for this glucosy-

lation of enterobactin in Salmonella is the iro-gene

cluster (or ‘iroA locus’) (Hantke et al. 2003). This

locus consists of two convergent transcription units:

iroBCDE and iroN (Bäumler et al. 1998). Salmochelin

synthesis involves the di-glucosylation of enterobactin

Fig. 1 Enterobactin (Ent), Salmochelin (S4) and related

structures. a Structure of enterobactin. b Schematic represen-

tation of Ent, S4 and its derivatives. Salmochelin S4 and S2 are

both di-glucosylated forms of enterobactin (DGEnt) but the

latter is linear. MGEnt is a 2,3-dihydroxybenzoyl serine

macrotrilactone that is glucosylated only once. The salmochelin

degradation products, S1 and SX are the mono-glucosylated

dimer and monomer, respectively. Ser serine, DHB

dihydroxybenzoate
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into S4 in a step catalysed by the glucosyltransferase,

IroB (Bister et al. 2004); the resulting salmochelin is

then exported across the cytosolic membrane by IroC

(Crouch et al. 2008; Fig. 2). Once complexed with

ferric iron, ferric-salmochelin is taken up across the

outer membrane via IroN (Hantke et al. 2003) and is

subsequently linearized to the S2 form by the

periplasm IroE esterase (Lin et al. 2005; Zhu et al.

2005). The S2 form is then transported into the

cytoplasm via FepBCDG (which also imports enter-

obactin) (Crouch et al. 2008). The imported S2

salmochelin is further esterified by IroD into mono-

meric and/or dimeric forms, which is presumed to

facilitate iron release (Lin et al. 2005; Zhu et al. 2005).

The resulting degradation products, S1 and SX (mono-

glucosylated dimer and monomer, respectively), are

exported from the cytoplasm into the medium where

they potentially contribute to iron acquisition (Lin

et al. 2005; Zhu et al. 2005). Initially, the reason for the

glucosylation of enterobactin (generating salmoche-

lin) was unclear. Subsequently, it was discovered that

although LCN2 has high affinity for enterobactin (Kd

of 0.41 ± 0.11 nM) and its derivatives/precursors

(DHB, Kd of 7.9 ± 1.8 nM), as well as other cate-

cholate-type ferric siderophores (e.g. parabactin,

cepabactin and carboxymycobactins; Goetz et al.

2002; Holmes et al. 2005), it does not effectively bind

to salmochelin S4 (Fischbach et al. 2006; Valdebenito

et al. 2007). Furthermore, the LCN2 receptor, 24p3,

was shown to mediate the import of ferri-siderophore-

bound LCN2 into mammalian cells, removing both the

iron and enterobactin from circulation (Devireddy

et al. 2005). Thus, glucosylation of enterobactin is

considered to be a strategy employed by pathogens to

prevent siderophore sequestration and removal from

circulation by LCN2.

LNC2 was originally identified as a component of

neutrophil granules but is also expressed in epithelial

cells in response to inflammatory signals (Kjeldsen

et al. 1993). Nielsen et al. (1996) revealed that LCN2

might bind lipophilic inflammatory mediators like

platelet-activating factor, leukotriene B4 and

lipopolysaccharide. This led to the initial suggestion

that LCN2 acts as immune-modulatory factor through

transport of lipophilic molecules to inflammation sites

(Goetz et al. 2000). As eluded to above, a clearer

Fig. 2 Summary of synthesis, export, import and utilisation, of

enterobactin and salmochelin. Enterobactin (synthesised by

EntABCDEF) is mono or di-glucosylated by IroB. Enterobactin

is exported from the cytoplasm by EntS whereas salmochelin is

exported by IroC. TolC is then involved in enterobactin efflux

across the outer membrane. Once complexed with ferric iron,

ferri-salmochelin is taken up across the outer membrane via

IroN and is then linearized to the S2 form by the periplasm IroE

esterase, whereas ferri-enterobactin is taken up via CirA, or

FepA. The Fe-S2 and Fe-Ent are then transported into the

cytoplasm via the FepBCDG ATP-binding cassette transporter,

and are then esterified by the IroD and Fes esterases,

respectively, which is presumed to facilitate iron release. The

resulting salmochelin degradation products, S1 and SX, are

exported from the cytoplasm into the medium. It is important to

note that the Iro transport components can also assist with

enterobactin utilisation
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purpose for LCN2 became apparent when the protein

was produced heterologously in E. coli and was

isolated bound, surprisingly, to a red chromophore,

which was subsequently identified as enterobactin

(Goetz et al. 2002). This finding led to further studies

demonstrating a role for LCN2 in host–pathogen

interactions (Bachman et al. 2012; Fischbach et al.

2006; Flo et al. 2004). These further studies showed

that the iro-gene cluster confers resistance to the

growth inhibitory effects of LCN2 in vitro and that

mice rapidly succumb to infection by E. coli H9049

harbouring the iro-gene cluster, but not its iro-free

counterpart (Fischbach et al. 2006). Other studies

showed that salmochelin contributes to virulence of

both avian pathogenic and uropathogenic E. coli

(APEC and UPEC) through its iron-binding activity

(Gao et al. 2012). Indeed, salmochelin-defective

mutants of APEC E058 and UPEC U17 showed

significantly decreased pathogenicity compared to the

wild-type strains in a chicken infection model (Gao

et al. 2012). Likewise, the efficient glucosylation

(IroB), transport (IroC and IroN) and processing (IroD

and IroE) of salmochelins were shown to be required

for APEC virulence (Caza et al. 2008). The role of

glucosylation in S. enterica pathogenicity was further

illustrated by the observation that the iro locus confers

a competitive advantage to ST in colonizing the

inflamed intestine of wild-type, but not of LCN2-

deficient, mice (Raffatellu et al. 2009). It should be

noted that the glucosylation and linearisation of

enterobactin was suggested to enhance the activity of

salmochelin through increasing its hydrophilic nature,

which might be advantageous for iron scavenging in a

membrane-rich microenvironment (Luo et al. 2006).

Egg-white ‘lipocalins’: role in enhancing iron

restriction through sequestration of bacterial

siderophores?

Evidence for the presence of lipocalin-like proteins

in egg white

LCN2 belongs to the ‘lipocalin superfamily’ which

includes a variety of proteins involved in transport of

hydrophobic ligands, such as purpurin, retinol-binding

protein, a-1-glycoprotein, apolipoprotein, probasin, a-
1-microglobulin and prostaglandin D synthetase.

Although the family members display low overall

sequence identity (Greene et al. 2003), lipocalins share

a common three-dimensional structure characterised

by an eight-stranded b-barrel (with a small C-terminal

helix) that forms a chalice, at the bottom of which the

hydrophobic ligand is bound (Françoise 1994). Due to

their diversity, lipocalin-like proteins have various

functions e.g. in immune response, pheromone trans-

port, biological prostaglandin synthesis, retinoid bind-

ing and cancer cell interactions (Flower 1996).

Lipocalins can be divided into two major subfamilies

(see the Pfam database; El-Gebali et al. 2019). One

subfamily (PF00061) consists of * 4000 Pfam

entries that are mostly (88%) from Metazoan species,

and includes LCN2, whereas the other subfamily

(PF08212) consists of * 3000 entries, mostly from

(67%) Bacteria. Lipocalins are predominantly (92%)

single domain proteins and multiple homologues are

found in vertebrates (e.g. there are 37 lipocalins

identified in the human genome; Du et al. 2015).

Since lipocalins are found throughout most of the

living kingdom, it may not be surprising to find that

they are present in egg white. Extracellular fatty-acid-

binding protein (Ex-FABP) was the first lipocalin-like

protein identified in egg white and was discovered by a

proteomic analysis of hen egg white using 2-dimen-

sional gel electrophoresis (2-DE) followed by liquid

chromatography-mass spectroscopy (LC-MS/MS)

(Desert et al. 2001). Further work by Guérin-Dubiard

et al. (2006) using 2-DE, LC-MS/MS and MALDI-

TOF identified a total of 16 proteins in hen egg white,

including Ex-FABP as well as two other lipocalin-like

proteins: chondrogenesis-associated lipocalin (Cal-c
or prostaglandin D synthase) and a-1-ovoglycopro-
tein. The presence of the three lipocalin-like proteins

in egg white was later confirmed by further proteomic

analyses involving 1-DE with LC–MS/MS, 2-DE

combined with protein-enrichment (peptide ligand

libraries) technology, and a dual-pressure linear-ion-

trap Orbitrap instrument (LTQ Orbitrap Velos) (Mann

2007; D’Ambrosio et al. 2008; Mann andMann 2011).

Although the concentrations of the three lipocalin-

like proteins have not been reported, in the Guérin-

Dubiard et al. (2006) study the intensity of Cal-c and

Ex-FABP 2-DE spots were weak indicating a very low

concentration. In other work (Mann 2007; Mann and

Mann 2011), the exponentially-modified-protein

abundance index (emPAI) was used to provide an

estimate of the absolute abundance of each egg-white

protein, which indicated that the lipocalin-like
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proteins belong to the ‘minor proteins’ set (such as

avidin, cystatin, apolipoprotein D, HEP21, Defensin-

11) rather than the ‘major proteins’ set (such as

ovalbumin, ovotransferrin, lysozyme, ovomucoid and

ovoinhibitor). However, as a-1-ovoglycoprotein is

glycosylated its detection might be obscured (Mann

2007). In summary, although several studies have

shown that three lipocalin-like are present in egg

white, their exact concentrations remain unclear.

Therefore, their biological significance in egg white

remains to be established.

Sequestration of bacterial siderophores

by the lipocalin-like Ex-FABP protein found

in egg white

Ex-FABP was first discovered as a fatty-acid-binding

protein with a role in hen-embryo development

Cancedda et al. (1988) were the first to report and

identify Ex-FABP (Ch21) as a protein expressed and

secreted by in vitro differentiating hen chondrocytes at

a late stage of development. Ex-FABPwas later shown

to be a 21 kDa protein in cartilage (Cancedda et al.

1988), muscle tissue (Gentili et al. 1998) and granu-

locytes (Dozin et al. 1992) of chicken embryos. This

protein was classified as a member of the superfamily

of lipocalins and thus was considered to have a likely

role in the transport of small hydrophobic molecules

(Cancedda et al. 1990). The protein was renamed

(from CH21) ‘extracellular fatty acid-binding protein’

because of its ability to selectively bind and transport

fatty acids (i.e. oleic, linoleic, and arachidonic acid) in

extracellular fluids and serum (Cancedda et al. 1996).

It was shown to be expressed during muscle-fibre

formation (Gentili et al. 1998) and later shown to have

involvement in endochondral-bone formation (Cer-

melli et al. 2000; Gentili et al. 2005). Transfection of

proliferating chondrocytes and myoblasts with an

expression vector expressing antisense Ex-FABP

cDNA led to a decreased cell viability. Therefore,

Ex-FABP seems to play a part in cell differentiation

and cell survival (Di Marco et al. 2003; Gentili et al.

2005). It was more recently shown that Ex-FABP

binds the C16 and C18 isoforms of lysophosphatidic

acid (LPA, 1- or 2-acyl-sn-glycerol-3-phosphate)

(Correnti et al. 2011). LPAs are phospholipids medi-

ating differentiation, inflammation, immune function,

oxidative stress, cell migration, smooth muscle

contraction, apoptosis and development (Zhao and

Natarajan 2014). It is likely that the functions of Ex-

FABP reported above depend on its role in sensing or

transporting phospholipids (Sia et al. 2013).

Ex-FABP also binds siderophores and inhibits

bacterial growth

More recent reports indicate that Ex-FABP functions

in pathogen defence through an ability to bind

siderophores, in a manner analogous to that of LCN2

(Correnti et al. 2011; Garénaux et al. 2013). This

suggests that Ex-FABP may have two distinct pur-

poses, one in fatty acid/LPA binding and another as a

siderophore-binding factor. Work of Correnti et al.

(2011) shows that Ex-FABP sequesters ferric-enter-

obactin, as well as its mono-glucosylated (Fe-MGEnt)

form with a Kd of 0.22 and 0.07 nM, respectively; but

not its di-glucosylated form (Fe-DGEnt; Kd-

[ 600 nM). Furthermore, Ex-FABP at 5 lM caused

growth inhibition of both E. coli and Bacillus subtilis

under iron-limited in vitro conditions. Growth was

restored by supplementing the cultures with stoichio-

metric amounts of FeCl3 (Correnti et al. 2011). Thus,

Ex-FABP might act to reduce bacterial growth in egg

white by enhancing iron restriction (Fig. 3). Ex-FABP

did not inhibit Pseudomonas aeruginosa growth under

iron limitation, which correlates with the observation

that Ex-FABP does not bind the corresponding

siderophores. Indeed, both enterobactin and bacil-

libactin produced by E. coli and B. subtilis (respec-

tively) were found to be sequestrated by Ex-FABP (Kd

of 0.5 and 30 nM, respectively), while pyochelin and

pyoverdine produced by P. aeruginosa were not

(Correnti et al. 2011). These findings are also in

accordance with those from Garénaux et al. (2013)

showing that E. coli K-12 is subject to a 105-fold

growth reduction when exposed to 2.5 lM Ex-FABP

or LCN2. However, when transformed with a plasmid

harbouring the iroBCDEN cluster, no growth defect

was observed by 2.5 lM Ex-FABP or LCN2. Expo-

sure of six poultry APEC isolates to 2.5 lMEx-FABP

or LCN2 inhibited the growth of strains producing

enterobactin as sole siderophore, but not those

producing additional siderophores (salmochelin, aer-

obactin and/or yersinabactin) (Garénaux et al. 2013).

Therefore, it can be concluded that Ex-FABP is an

avian siderocalin-type lipocalin with a function sim-

ilar to that of LCN2.
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The pleiotropic function (i.e. siderophore and LPA

binding) of Ex-FABP might be explained by the large

binding site of the molecule (Sia et al. 2013). Ex-

FABP has a three-dimensional fold common to that of

lipocalin family proteins but has an extra a-helix
(residues 22–30) and short helical element (residues

139–141). This results in an extended calyx that

encompasses upper and lower cavities (Fig. 4). The

upper cavity comprises a siderophore-binding site

with three catechol-binding pockets involving basic

residues (K82, R101 and R112) key to ligand binding

(Correnti et al. 2011). K82 forms hydrogen bonds with

the 3-OH of the catechol groups, while R101 and R112

provide significant electrostatic contributions to

ligand-binding. The lower cavity acts as a hydropho-

bic binding site that can bind C16 and C18 LPA.

Modelling of the complex shows that the side-chains

Y50, K82, R112 and Y114 of Ex-FABP make

hydrogen bonds with LPA (Correnti et al. 2011).

The other lipocalins of egg white

Phylogenic relationship

A multiple-sequence alignment and phylogenetic

analysis of the three lipocalin-like proteins of egg

white is presented in Figs. 5 and 6. The tree can be

organised into three lobes, as described by Flower

et al. (2000): proteins in the green lobe include

prostaglandin D synthase (PTGDS), neutrophil lipo-

calin and a-1-microglobulin (a1 M); the blue lobe

includes bilin-binding protein (BBP), retinol-binding

protein (RBP) and apolipoprotein D (apoD); and the

orange lobe is formed of major-urinary protein (MUP)

and b-lactoglobulin (b-lg). This phylogenetic analysis
indicates that both Cal-c and a-1-ovoglycoprotein
have a human orthologue. This is in accordance with a

comparative analysis of the chicken genome that

showed that 60% of chicken protein-coding genes

have a single human orthologue (Consortium ICGS

2004). This tree also indicates that LCN2 from H.

sapiens is more closely related to Cal-c than to the

other two lipocalin-like proteins found in chicken egg

white, and that a-1-ovoglycoprotein could be consid-

ered as an outlier among the lipocalin family. Yet,

despite their limited sequence identities (26%; NCBI

2019), hen Ex-FABP and human LCN2 have similar

ligand-binding affinities (Correnti et al. 2011).

According to Fig. 6, there is a close homologue of

known function to Ex-FABP found in quail: the Q83

lipocalin (88% identity; NCBI 2019). Q83 was

originally identified based on its overexpression in

quail embryo fibroblasts transformed with the v-myc

oncogene. Q83 sequesters enterobactin with a mode of

binding equivalent to that of LCN2 (Coudevylle et al.

2010). This resembles Ex-FABP’s function, as

described above, in siderophore inhibition, and is

consistent with its presence in egg white. Surprisingly,

Fig. 3 Potential interactions between SE siderophores and Ex-

FABP. In the egg white, enterobactin (Ent) andMGEnt might be

sequestrated by Ex-FABP (represented by black semi-circles),

while DGEnt would remain free to chelate iron from

ovotransferrin (OTf indicated as green) and thus provide iron

to SE (glucosyl groups are shown as red diamonds). After

import into the cytoplasm, Fe3? (drawn as orange circles)

is finally released into the cytoplasm
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there is no close homologue of Ex-FABP in man, nor

of LCN2 in chicken: the closest human homologue of

Ex-FABP is lipocalin 15 and the closest chicken

homologue of LCN2 is Cal-c (28 and 30% amino-acid

Fig. 4 a X-ray diffraction (1.8 Å resolution) of Ex-FABP; two

ligands are represented, ferric-DHB in the upper cavity and

LPA in the lower cavity. Structure extracted from Protein Data

Bank (PMID: 22153502; Correnti et al. 2011). b Structure of a

C18 lysophosphatidic acid (LPA)

Fig. 5 Multiple-sequence alignment (Genomic Workbench) of

lipocalin-like proteins found in egg white with their closest

homologues extracted from the Pfam database (El-Gebali et al.

2019) and NCBI (2019). The Uniprot accession number of each

protein is in brackets. Three motifs are shown (*) centred on the

conserved tryptophan, threonine and arginine residues. These

residues are preserved in lipocalins and seal the bottom end of

the barrel, along with the 310-helix (Bao et al. 2015). Two

cysteine residues (#) playing a role in disulphide bridging are

also conserved. Residues (putatively) involved in siderophore

binding are circled in yellow for LCN2: R81, K125, K134

(Goetz et al. 2002) and blue for Q83: K83, R102, R113

(Coudevylle et al. 2010). For Ex-FABP, residues involved in

siderophore (K82, R101, R112) and LPA (Y50, K82, R112,

Y114) binding are circled in orange. The b-strands of the eight-
stranded b-barrel of the LCN2, Q83 and Ex-FABP are

underlined in yellow, orange and blue, respectively
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sequence identity, respectively; NCBI 2019). This

suggests that the siderophore-binding activities of

these two proteins have evolved independently, in

related proteins, in order to fulfil similar functional

requirements in innate immunity.

Alpha-1-ovoglycoprotein and Cal-c: their potential
functions in egg white

Alpha-1-ovoglycoprotein (or ‘orosomucoid’) shares a

closely-related common ancestor with other a1-acid
glycoproteins found in various animals (Fig. 6).

Despite its induction as an acute-phase protein, and

Fig. 6 Neighbour-joining tree of the lipocalin-like proteins

found in egg white and their closest homologues. The alignment

of lipocalin-like proteins (Fig. 5) extracted from the Pfam

family PF00061 and NCBI (2019) was used to build the

phylogeny tree with CLC Genomics Workbench (protein

distance was estimated from the Jukes-Cantor model). Three

lobes are identified with coloured half-circles (green for NGAL,

PTGDS and a1M; orange for b-lg andMUP; blue for RBP, BBP

and ApoD). Red stars show the lipocalin homologues found

in hen egg white. The blue star indicates human lipocalin-2
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its role in cellular inflammation and transport of drugs

in human serum, its biological purpose is unclear

(Huang and Ung 2013). In man, this protein is found in

the serum where it is heavily glycosylated and highly

acidic due to the presence of sialic acid. Human a1-
acid-glycoprotein (a1-AGP) is a highly glycosylated

protein (approximatively 45%) of 43 kDa with a pI of

2.7 (Schmid 1975). There are at least two genes

encoding a1-AGP identified, thus it has been sug-

gested that the protein found in plasma is a mixture of

the products of these two distinct genes (Dente et al.

1985). The normal plasma concentration in man is

between 0.7 and 1.0 g/L. However, as an acute-phase

protein, its concentration can increase to 3 g/L under

inflammatory conditions (Kremer et al. 1988). It is

known to bind lipopolysaccharide and can stimulate

the activation of inflammatory cell lines (Boutten et al.

1992). Interestingly, a1-AGP has a protective effect in

a mouse meningococcal shock model, suggesting a

potential antibacterial role (Moore et al. 1997). In egg

white, the a-1-ovoglycoprotein has an average molec-

ular weight of 30 kDa, an isoelectric point of

4.37–4.51 and a sugar content of about 25% (Mat-

sunaga et al. 2004). While little is known about its

function, this ovoglycoprotein is often used for its

chiral properties to separate drug enantiomers (Sada-

kane et al. 2002; Haginaka and Takehira 1997).

However, its biochemical, functional and biological

properties in egg white remain unknown.

The phylogenetic analysis (Fig. 6) indicates that

the closest homologue of Cal-c is lipocalin-like

prostaglandin synthase (PTGDS). In mammals,

PTGDS is secreted into various body fluids. This

protein catalyses the isomerization of prostaglandin

H2 to prostaglandin D2, and was reported to bind a

variety of lipophilic molecules such as biliverdin,

bilirubin and retinoic acid. In humans, this protein is

likely to be involved in both maturation and mainte-

nance of the central-nervous system and male repro-

ductive system (Saito et al. 2002; Urade and Hayaishi

2000). Two isoforms, of 22 kDa, can be separated by

2D-electrophoresis of egg white, thanks to their

different isoelectric points (pI of 5.6 and 6.0)

(Guérin-Dubiard et al. 2006). Pagano et al. (2003)

have shown that Cal-c expression correlates with

endochondral bone formation and the inflammatory

response. As for Ex-FABP, Cal-c mRNA is increas-

ingly synthesized during chondrocyte differentiation

both in vivo and in vitro. Although Ex-FABP and Cal-

c may both play a part in bone formation and the

inflammatory response, any possible role for Cal-c in

siderophore sequestration remains to be explored.

Conclusion

The antibacterial iron-restriction activity of egg white,

as mediated by oTf, is well established and it is now

apparent that the egg-white lipocalin, Ex-FABP, can

inhibit bacterial growth via an enhanced iron-restric-

tion effect that is mediated by its siderophore-binding

capacity. However, the siderophore-sequestering

activity of Ex-FABP has neither been studied in egg

white, nor with appropriate SE or hen infection

models. Furthermore, how and in what quantity this

protein is incorporated into egg white remains

unknown. As yet, it is unclear whether the other

lipocalins of egg white (Cal-c and a-1-glycoprotein)
might also sequester siderophores. Although many

egg-white proteins have been shown to be components

of the arsenal of defence factors within egg white, the

contribution (if any) of the three lipocalins as new egg-

white defence factors remains an open question,

although this now appears highly likely for Ex-FABP.

As matters stand, it is unclear whether the capacity of

salmochelin to assists SE virulence in mammalian

models can be extended to include support of SE

survival in egg white. Thus, there remains much scope

for further understanding of the role of lipocalin

proteins in the defence of egg white against bacteria.
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(1999) Salmonella typhimurium IroN and FepA proteins

mediate uptake of enterobactin but differ in their specificity

for other siderophores. J Bacteriol 181:3610–3612

Rabsch W, Methner U, Voigt W, Tscha H, Reissbrodt R, Wil-

liams PH (2003) Role of receptor proteins for enterobactin

123

Biometals

https://www.ncbi.nlm.nih.gov
https://www.ncbi.nlm.nih.gov


and 2, 3-dihydroxybenzoylserine in virulence of Sal-

monella enterica. Infect Immun 71:6953–6961

Raffatellu M, George MD, Akiyama Y et al (2009) Lipocalin-2

resistance confers an advantage to Salmonella enterica

serotype typhimurium for growth and survival in the

inflamed intestine. Cell Host Microbe 5:476–486
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