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Abstract

Dynamic vibration absorbers (DVA) are classic and effective devices to reduce the amplitude of vibration sus-

tained by structures. A promising alternative to the DVAs is the electromagnetic shunt damper (EMSD), in

which the electrical shunt circuit serves as the absorbing oscillator. The objective of this paper is to carry out op-

timum designs of an EMSD connected to a resistive-inductive-capacitive (RLC) shunt circuit, by adopting three

different calibration strategies: the fixed points theory, H2 optimization criterion and maximum damping cri-

terion. The aforementioned optimization strategies are appropriate to different excitation scenarios: harmonic,

random and transient vibration, respectively. Analytical expressions of optimal parameters are formulated in

terms of the ratio of external inductance in the shunt and inherent inductance of electromagnetic transducer.

Lower bounds of inductance ratio in the region of stability are also specified for each strategy, based on which the

ultimate attainable performance of EMSDs can be predicted. Numerical investigation underlines that including

a negative inductance in the shunt always contributes to reduce the frequency response magnitude, broaden the

absorbing area around targeted vibration mode, increase the damping performance, and thereby accelerate the

decay rate of transient vibration.

Keywords: Electromagnetic shunt damping, negative impedances, optimum design, fixed points theory, H2

optimization criterion, maximum damping criterion

1. Introduction

When subjected to environmental disturbances, mechanical systems may undergo undesirable vibrations which

could result in potential damages to the structure. Therefore, vibration damping is an important issue in lots

of domains, such as transport, energy and civil structure. The most popular and reliable anti-vibration device

is probably the classic DVA [1], which can be modelled as a mass-spring-damper system and is attached to the

primary structure to reduce its vibration. Despite its simplicity and effectiveness, DVA presents two obvious

limitations: increase of total mass of system due to the mechanical oscillator and need of large volume due to

the moving part.

The tuning of DVAs has been widely investigated since the first half of last century. Den Hartog studied

its optimum design under harmonic vibration and introduced the well-known fixed points theory in his book

Mechanical Vibrations [2]. This pioneering theory considers that under harmonic vibration, the frequency

response of undamped primary structure will always pass through two invariant points regardless of damping

introduced by the auxiliary oscillator, and the optimal system parameters should be selected in such a way
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that the two invariant points are global maximum and have equal magnitudes. In fact, this empirical technique

only conducts to an approximative solution to the H∞ optimization problem, which aims at minimizing the

maximum amplitude of frequency response. The exact method had not been proposed until Nishihara et al. [3]

adopted an algebraic approach to successfully solve this problem in 2002. When subjected to broadband random

vibration, one can note that the area under the frequency response curve of primary system should be minimized

instead of displacement magnitudes at certain discrete frequencies [4]. Hence, the objective function for the

H2 optimization problem is the squared norm of frequency response of the primary structure, and analytical

solutions were proposed by Asami et al. for undamped [5] and damped primary structure [6] under random

vibration. Another common excitation scenario is that the main system undergoes short-term disturbances. In

this case, the maximum damping criterion should be adopted, which aims at decreasing the transient response

as fast as possible. This criterion is based on pole placement technique, and is widely used in the field of shunt

damping with smart materials [7, 8], or vibration control of civil structures [9]. Given that the decay rate of

transient response is governed by the real part of eigenvalues of coupled system, maximizing the absolute values

of real parts of roots will reduce the transient vibration response in a minimum time.

In the past few decades, numerous alternatives to the DVAs have been proposed, such as electromechanical

shunt dampers [10–12], which are connected with an electrical shunt circuit, and are usually localized between

the primary structure and its base. In this way, the absorbing oscillator is electrical and can be fine-tuned to

attenuate vibrations of the structure.

Hagood and von Flotow [7] proposed to attenuate the vibrations of a cantilever beam by using a piezoelectric

patch shunted with a resistive-inductive (RL) series impedance. In their work, both the H∞ optimization

criterion (fixed points theory) and the pole placement technique were adopted to obtain optimal parameters. By

using these two methods, Caruso [8] performed optimization analyses and conducted a performance comparison

for three shunt circuits, RL in series, RL in parallel and series RL in parallel with a capacitor (RLC parallel).

It was demonstrated that compared to the RL series circuit, the positive parallel capacitance will significantly

deteriorate the shunt damping performance; further details about the influence of positive capacitances in the

shunt and methods to avoid the problem can be found in [13–15]. Therefore, one can imagine that a negative

capacitance could be included in the shunt impedance to improve the damping performance and enhance its

robustness [16–20]. Indeed, the negative capacitance contributes to artificially enhance the electromechanical

coupling so that the achievable attenuation will be increased [16, 19, 21].

Analogous to piezoelectric shunt damping, Behrens et al. [22, 23] proposed the concept of electromagnetic

shunt damping. Compared to its piezoelectric counterpart, the electromagnetic transducers present some ben-

efits: smaller shunt voltages, larger control forces, larger strokes and more robustness [22–24]. By adopting

the fixed points theory, Inoue et al. [25] analytically derived optimal parameters of EMSDs connected with

an either resistive (R) or resistive-capacitive (RC) shunt circuit in the harmonic vibration scenario. Tang et

al. [26] determined exact solutions to both H∞ and H2 optimization problems for an EMSD connected with

a RC series shunt circuit. Similar to the case of piezoelectric shunt damping, negative impedances can be also

adopted in the electromagnetic shunt damping. As pointed out in Ref. [22], the electromagnetic transducer

can be modelled as an inductor, a resistor and a velocity-controlled voltage source in series. Hence, a negative

resistance and/or a negative inductance can be employed in the shunt circuits. In this way, the total electrical

impedance of EMSD will be reduced so that the current in the circuit will increase, which thereby results in the

improvement of damping performance. Under the guidance of this idea, fruitful researches were conducted on
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electromagnetic shunt damping with negative impedances [27–32]. Niu et al. [27] investigated vibration damp-

ing of a cantilever beam under harmonic excitation by using a C shunt or a RC series shunt with a negative

resistance, which demonstrated that the latter one provides better attenuation performance than the purely

capacitive shunt. Yan et al. [28] designed a novel isolator based on EMSD with a negative resistance, which

can suppress vibration effectively under both sinusoidal and half-cycle sine pulse excitation. In Ref. [29, 30],

a shunt impedance composed of a negative inductance and a negative resistance in series was used to suppress

multimodal vibration of a cantilever plate and the transverse vibration of a cantilever beam. It has been proven

in [29, 30] that compared to a traditional DVA, an EMSD with negative impedances can attenuate vibration on

multiple modes, and it presents the advantage of structural simplicity compared to active shunt absorbers, where

a feedback system is indispensable and complicated control algorithms are required for real-time adjustment.

The authors remark that no research has yet been conducted on optimization of EMSDs with a negative

inductance in series with a RC shunt circuit. In order to fill this gap in the current literature, an EMSD shunted

with a RLC series circuit will be investigated and optimum designs will be conducted in three aforementioned

excitation scenarios corresponding to three different criteria: fixed points theory (FPT), H2 optimization crite-

rion and maximum damping criterion (MDC). By comparing with the existing literature, we seek to validate

the proposed study and depict the influence of the additional negative inductance on damping performance of

resonant EMSDs.

This paper is organized as follows. Section 2 presents the mathematical modelling of an undamped mechan-

ical system controlled by a resonant EMSD and recasts it into a dimensionless form. Section 3 is contributed to

the optimum design according to each calibration. In the next section, a detailed numerical investigation will

be carried out to compare the performance of EMSD with different optimal parameters in various excitation

scenarios.

2. Mathematical modelling

As sketched in Fig. 1, the undamped primary system is represented by a generic mass-spring model of single

degree of freedom (SDOF). The electromagnetic transducer consists of a permanent magnet, an electric con-

ductor (in the form of coil) which is shunted by a closed circuit. When subjected to external excitation, the

relative velocity between the magnet and coil results in the change of the magnetic flux enclosed by the coil,

which further induces a voltage across the terminals of coil. According to the Faraday-Lenz law, the induced

voltage Vi is related to the relative velocity by

Vi = Blẋ = kvẋ (1)

where B represents the magnetic flux, l denotes the effective length of winding, the dot stands for differentiation

with respect to time t, x indicates the displacement of coil relative to the magnetic field, namely the displacement

of main structure relative to its base, kv is defined as voltage constant of electromagnetic transducer and the

subscript i refers to induced/inherent property. The electric current generated in the coil will produce a Lorentz

force Fi, which is opposite in direction to the relative velocity and proportional in magnitude to the current,

i.e.

Fi = kf q̇ (2)

where kf stands for the force constant of electromagnetic transducer and q is the electric charge flowing into the

external impedance. It is worth noting that this reaction force Fi usually opposes the relative motion between
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the permanent magnet and the coil, hence it acts as a damping force. Besides, the relationship between kv and

kf is usually simplified as kv = kf = ke [33].

The electromagnetic transducer can be modelled as a resistor Ri, an inductor Li and a velocity-controlled

voltage source Vi in series, as shown in Fig. 2. In this study, the inherent inductance Li is supposed to

be irrelevant to the changes of magnetic boundary conditions of the magnetic material and is considered as

constant.

Therefore, the dynamics of an undamped primary structure of SDOF under force excitation f(t), coupled

to an EMSD shunted with a RLC series circuit, can be described by the following equations of motion:

Msẍ +Ksx + Fi = f(t) (3a)

Lq̈ +Rq̇ + 1

C
q − Vi = 0 (3b)

where Ms is the equivalent mass, Ks is the mechanical stiffness and C denotes the capacitance. Moreover,

R = Ri +Re and L = Li +Le designate the total resistance and inductance in the circuit, where the subscript e

refers to external shunt impedances.

In order to facilitate the following optimum designs, a series of system constants and dimensionless param-

eters are introduced as follows:

κ = Ri
Liωs

, θ = ke√
KsLi

, ωs =
√

Ks

Ms
, ωe = 1√

LC
,

α = ω

ωs
, β = Re

Ri
, γ = Le

Li
, φ = ωe

ωs
.

(4)

where κ is a constant depending only on inherent system parameters and θ stands for the electromagnetic

coupling coefficient. ωs and ωe denote the resonant frequencies in the mechanical and electrical domains re-

spectively. Besides, α is the forcing frequency normalized by the natural frequency, β (or γ) denotes the ratio

of external and internal resistance (or inductance), φ represents the frequency tuning ratio. One can note that

this electromechanical system can be now described by merely two parameters, κ and θ, instead of five physical

properties (Ms, Ks, ke, Ri and Li). Finally, by substituting Eqs. (1) and (2) into Eq. (3) and rescaling the

time t by t = τ/ωs and the electrical state variable q by q = y√Ms/Li, the equations of motion (3) can be

conveniently rewritten in a dimensionless form:

x′′ + x + θy′ = f(τ)/Ks (5a)

(1 + γ)y′′ + κ(1 + β)y′ + (1 + γ)φ2y = θx′ (5b)

where the superscript ′ indicates differentiation with respect to dimensionless time τ . Therefore, the following

optimization procedure will be performed with regard to the normalized forcing frequency α, resistance ratio β,

inductance ratio γ and frequency tuning ratio φ. Besides, the electrical damping ratio ξe is introduced here:

ξe = R

2Lωs
= κ(1 + β)

2(1 + γ) (6)

Denoting the complex magnitudes of displacement x and force f by X and F , respectively, the frequency

response function (FRF) is then defined as:

H(s̄) = X

F /Ks
= (1 + γ)φ2 + κ(1 + β)s̄ + (1 + γ)s̄2(1 + γ)φ2 + κ(1 + β)s̄ + [(1 + γ)(1 + φ2) + θ2]s̄2 + κ(1 + β)s̄3 + (1 + γ)s̄4 (7)
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where s̄ = s/ωs = jω/ωs = jα with j = √−1. And the squared magnitude of the FRF is formulated as:

H2(α) = RRRRRRRRRRR
X

F /Ks

RRRRRRRRRRR
2 = (1 + γ)2(φ2 − α2)2 + α2κ2(1 + β)2[(1 + γ)(1 − α2)(φ2 − α2) − θ2α2]2 + α2κ2(1 + β)2(1 − α2)2 (8)

The dimensionless equations of motion (5) is used to study the dynamics of coupled system in temporal domain,

the FRF function (7) is employed as objective function in optimum design under random vibration and its

squared magnitude (8) is adopted to minimize the H∞ norm of frequency response. These general formulations

can be easily adapted to some simpler electrical networks, e.g. R shunt, RL shunt and RC shunt by imposing

γ = φ = 0, φ = 0 and γ = 0, respectively.

3. Closed-form solutions to optimization of EMSDs

In this section, the optimization of resonant EMSDs will be carried out based on Eqs. (5) and (7) according

to different optimization criteria. The ultimate performance of shunt damper will be also determined in each

optimization scenario. Given that negative impedances will be probably employed in the shunt circuits, it is

then essential to perform a stability analysis of the electromechanical system in order to clarify the general

constraint on negative impedances.

3.1. Stability conditions

By taking Z = (x, y, x′, y′)⊺ as state vector, the dimensionless equations of motion (5) can be recast into a matrix

form, i.e.:

Z′ =AZ + b (9)

where b only contains external forcing terms and A represents the system matrix relevant to the dimensionless

system, which is expressed as:

A =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0

0 0 0 1

−1 0 0 −θ
0 −φ2 θ

1 + γ −κ(1 + β)
1 + γ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(10)

Denoting λ the eigenvalues of the system, the corresponding characteristic polynomial is then calculated by the

determinant as follows:

det(A − λI) = λ4 + δ1λ3 + δ2λ2 + δ3λ + δ4 (11)

where coefficients are all real and are expressed as:

δ1 = κ(1 + β)
1 + γ , δ2 = 1 + φ2 + θ2

1 + γ , δ3 = κ(1 + β)
1 + γ , δ4 = φ2. (12)

According the Routh-Hurwitz stability criterion, the electromechanical system is asymptotically stable if and

only if all of the roots of its characteristic polynomial (11) lie in the left half of the complex plane. Precisely,

the necessary and sufficient conditions are formulated as:

δ1 > 0

δ3 > 0

δ4 > 0

δ1δ2δ3 > δ23 + δ21δ4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Ô⇒ ⎧⎪⎪⎪⎨⎪⎪⎪⎩

β > βcri = −1

γ > γcri = −1
(13)
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which implies that the absolute value of negative resistance (or inductance) should be always less than that of

inherent impedances of electromagnetic transducer for the RLC series shunt circuit. It is worth noting that more

strict constraints on negative impedances could exist in specific optimization analysis, which will be discussed

additionally. Finally, recalling the research works on piezoelectric shunt damping [16, 19], a similarity between

both damping techniques can be underlined that the stability of electromechanical system is related to the ratio

between the inherent electric features of transducer and electric parameters of shunt.

In the following, closed-form solutions will be derived to optimum designs of EMSDs based on three afore-

mentioned optimization criteria: fixed points theory, H2 optimization criterion and maximum damping criterion.

3.2. Optimum design based on fixed points theory

In this subsection, the coupled system is subjected to harmonic force excitation and the optimum design is

conducted according to the fixed points theory proposed by Den Hartog [2]. The optimal frequency tuning

ratio φ is firstly defined, with which the magnitudes at the two invariant points are equalized. The two fixed

points locate at frequencies where the frequency response amplitude of primary structure is independent of

the electrical damping ξe. Considering now two extreme cases where no electrical damping is present (namely

ξe → 0) and where the electromagnetic coil is open-circuited (namely ξe → ∞), the corresponding squared

magnitudes of FRF can be then simplified as:

H2
ξe→0 = (1 + γ)2(φ2 − α2)2

[(1 + γ)(φ2 − α2)(1 − α2) − θ2α2]2
, H2

ξe→∞ = 1(1 − α2)2 . (14)

Equating the previous magnitudes yields a quadratic expression in α2 such that

α4 − (1 + φ2 + θ2

2(1 + γ))α2 + φ2 = 0 (15)

from which one can realize that the two squared frequencies at fixed points satisfy:

α2
fpt,1 + α2

fpt,2 = 1 + φ2 + θ2

2(1 + γ) (16)

In addition, the magnitudes should be equal at the fixed points, i.e.

1(1 − α2
fpt,1)2 = 1(1 − α2

fpt,2)2 (17)

which yields the optimal frequency tuning ratio φfpt and the maximum magnitude of FRF according to the

fixed points theory, to be respectively:

φ2fpt = 1 − θ2

2(1 + γ) , H∣
α=αfpt,φ=φfpt

=
√

2(1 + γ)
θ

. (18)

and the two equal peak magnitudes of FRF locate at:

α2
fpt,1 = 1 − θ√

2(1 + γ) , α2
fpt,2 = 1 + θ√

2(1 + γ) . (19)

In order to have a non-negative φ2fpt, the following constraint should be satisfied for the inductance ratio γ:

γfpt ≥ θ2
2
− 1 (20)
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In the following, the optimal resistance ratio β is determined in such a way that the magnitudes at the two fixed

points are global maximum, namely the frequency response curve passes the two fixed points with horizontal

tangent. Thus, an another optimal condition is formulated as:

∂H2

∂α
∣
α=αopt,β=βopt

= 1

D2
(∂N

∂α
⋅D −N ⋅ ∂D

∂α
) = 0 (21)

where N and D stand for the numerator and denominator polynomials of squared magnitude function of FRF,

which are given by

N(α) = (1 + γ)2(φ2 − α2)2 + α2κ2(1 + β)2
D(α) = [(1 + γ)(1 − α2)(φ2 − α2) − θ2α2]2 + α2κ2(1 + β)2(1 − α2)2 (22)

By substituting Eq. (22) into Eq. (21) and solving the ordinary differential equation, the optimal resistance

ratios obtained at each fixed point, αfpt,1 or αfpt,2, are slightly different with each other:

βfpt,1 = θ
√

1 + γ
2κ

¿ÁÁÀ6 −√
2

1 + γ θ − 1, βfpt,2 = θ
√

1 + γ
2κ

¿ÁÁÀ6 +√
2

1 + γ θ − 1. (23)

which is rational in that the two fixed points can not be local maximum simultaneously. As proposed in Ref. [2],

the optimal electrical damping ξe,fpt of the resonant shunt damper is defined as the root mean square value of

electrical damping ratios calculated at two invariant points by using Eq. (6). Therefore, the optimal resistance

ratio βfpt can be eventually calculated in such a way that:

βfpt =
√(βfpt,1 + 1)2 + (βfpt,2 + 1)2

2
− 1 = θ

κ

√
3

2
(1 + γ) − 1 (24)

The authors remark that our global expressions of optimal frequency tuning ratio (18) and optimal resistance

ratio (24) are consistent with the study reported in Ref. [25] when no additional inductance is included in the

shunt circuit (γ = 0).

By considering the general stability condition (13) and Eq. (20), one can find that in the optimal damping

scenario based on the fixed points theory, the inductance ratio γ should be bounded by

γ ≥ γcri,fpt = θ2
2
− 1 (25)

One can easily notice from Eq. (18) that the peak magnitude of FRF increases monotonically with inductance

ratio γ. Therefore, the best achievable damping performance of a RLC series shunt is attained when γ is tuned

at the critical value. At this specific value γcri,fpt, we have

βcri,fpt =
√

3θ2

2κ
− 1, φcri,fpt = 0, Hcri,fpt = 1. (26)

from which we conclude that the critical damping performance of a RLC shunt is observed at the occasion of

electrical resonance being vanished.

Reminding the similarity between classic DVAs and EMSDs, one can define the equivalent “mass” ratio µ

for EMSDs in such a way [34]

µ = k2eC
Ms

= θ2(1 + γ)φ2 (27)

In the optimal scenario relevant to fixed points theory, the equivalent mass ratio µ can be expressed in terms of

inductance ratio γ and electromagnetic coupling coefficient θ by substituting Eq. (18) into Eq. (27), yielding

µfpt = θ2

1 + γ − θ2
2

(28)
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One can conclude that a negative inductance (γ < 0) will result in a greater equivalent mass ratio leading to

a better performance of vibration attenuation, as observed for classic DVAs. When the inductance ratio γ is

tuned fairly close to its lower bound γcri,fpt, the equivalent mass ratio µfpt tends to infinity and the EMSDs will

reach its ultimate attenuation performance. Therefore, the advantage claimed for EMSDs over DVAs resides in

the fact that the equivalent mass ratio can go up to infinity by using negative impedance in the shunt circuit,

while it is impossible for DVAs in light of physical restrictions, such as mass, volume etc.

3.3. Optimum design based on H2 optimization criterion

In this subsection, the electromechanical system is considered to be randomly excited. Since the input cannot be

characterized by a single harmonic frequency, the H2 optimization criterion should be thus employed to minimize

the total vibration energy over the whole range of frequency, namely the area covered by the frequency response

curve of the main system.

Assuming that the excitation force has a constant power spectral density (PSD) Sf over the whole range of

frequency, we can then define a performance index I as:

I = E[x2]
2πSfωs/K2

s

(29)

where E[⋅] denotes the mean square value. And E[x2] can be evaluated by the following expression:

E[x2] = ∫ +∞

−∞

RRRRRRRRRRR
X

F

RRRRRRRRRRR
2

Sfdω = Sfωs
K2
s
∫ +∞

−∞

RRRRRRRRRRR
X

F /Ks

RRRRRRRRRRR
2

dα = Sfωs
K2
s
∫ +∞

−∞

H2(α)dα (30)

The infinite integral in Eq. (30) can be evaluated by applying the residue theorem [35]. An analytical form of

result for this integral is also provided in this paper. For a rational function G(α) having the form of

G(α) = b0 + b1(jα)1 + b2(jα)2 + b3(jα)3
a0 + a1(jα)1 + a2(jα)2 + a3(jα)3 + a4(jα)4 (31)

its corresponding integral over the infinite range of frequencies can be evaluated by the following closed-form

formula [36]:

∫ +∞

−∞

∣G(α)∣2dα = π
b20 (a2a3 − a1a4)

a0
+ a3 (b21 − 2b0b2) + a1 (b22 − 2b1b3) + b23 (a1a2 − a0a3)

a4
a1 (a2a3 − a1a4) − a0a23 (32)

By comparing Eqs. (7) and (31), the coefficients may be written as:

b0 = (1 + γ)φ2, b1 = (1 + β)κ, b2 = 1 + γ, b3 = 0,

a0 = (1 + γ)φ2, a1 = (1 + β)κ, a2 = (1 + γ)(1 + φ2) + θ2, a3 = (1 + β)κ, a4 = 1 + γ. (33)

Mathematically speaking, the global minimum of I(β,φ, γ) is attained at points satisfying the following condi-

tions:
∂I

∂β
= 0,

∂I

∂φ
= 0,

∂I

∂γ
= 0. (34)

However, the authors notice that such a global extreme of I(β,φ, γ) does not exist. Hence, a trade-off is made

and the optimization is only conducted with regard to resistance ratio β and frequency tuning ratio φ, i.e.

∂I

∂β
= 0,

∂I

∂φ
= 0. (35)
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from which the optimal values of β and φ can be obtained as a function of inductance ratio γ, respectively

φ2h2 = 1 − θ2

2(1 + γ)
βh2 = θ

κ

√
1 + γ − θ2

4
− 1

(36)

The non-negativity constraint on φ2h2 imposes that γ ≥ θ2/2− 1, and the general stability condition β > −1 leads

to γ > θ2/4 − 1. Therefore, the aforementioned optimal formulae (36) will not have physical meaning except if

the inductance ratio γ satisfies the following constraint

γ ≥ γcri,h2 = θ2
2
− 1 (37)

It is noted that this boundary value resides in the stable region, the critical attenuation performance of a series

RLC shunt under random vibration is then achieved at γ = γcri,h2, at which we have

βcri,h2 = θ2

2κ
− 1, φcri,h2 = 0. (38)

3.4. Optimum design based on maximum damping criterion

In this subsection, the coupled system is expected to experience short-term excitation. In the objective of

suppressing transient vibration response and accelerating its decay, the optimum design should be conducted

according to the maximum damping criterion. Before applying this calibration strategy, some basic features of

maximum damping criterion will be first presented.

In this study, the electromechanical system has two state variables, x and y in mechanical and electrical

domains, respectively. Therefore, its corresponding characteristic polynomial is of order 4 and thus 4 roots can

be obtained. Supposing that the transient response x(τ) can be described by the following form:

x(τ) = A1e
λ1τ +A2e

λ2τ +A3e
λ3τ +A4e

λ4τ (39)

where A1, A2, A3 and A4 are polynomials in terms of dimensionless time τ , which depends on the initial states of

system, and λ1, λ2, λ3 and λ4 stand for the eigenvalues of characteristic equation relevant to the dimensionless

system. The transient response should be eventually decayed to zero so that all eigenvalues should locate at

the left-half complex plane. And the decay rate is characterized by its time constants, which are the inverse

of real parts of eigenvalues. Moreover, the lower the time constants, the faster the transient response will be

suppressed. Thus, the performance index to be maximized in this calibration can be chosen as:

Λ = −max
i

{Re(λi)} (40)

Hence, the maximum damping criterion aims at maximizing the absolute value of the real part of the rightmost

eigenvalue, namely all eigenvalues should locate as far as possible away from the imaginary axis.

As stated in the literature [7, 8], the maximum damping is attained when the eigenvalues of system take the

form of a double pair of complex conjugates. Supposing that the four roots are expressed as: λ1 = λ3 = −p + jq
and λ2 = λ4 = −p− jq, with p being positive, the corresponding characteristic polynomial can be then factorized

and further formulated in terms of its four roots

(λ − λ1) ⋅ (λ − λ2) ⋅ (λ − λ3) ⋅ (λ − λ4) = 0 (41)
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which can be expanded and rewritten in the polynomial form of λ as

λ4 + 4pλ3 + (4p2 + 2r2)λ2 + 4pr2λ + r4 = 0 (42)

with r2 = p2 + q2 denoting the squared magnitude of roots.

By comparing coefficients in expressions (11) and (42), four equations can be obtained as follows:

4p = κ(1 + β)
1 + γ (43a)

4p2 + 2r2 = 1 + φ2 + θ2

1 + γ (43b)

4pr2 = κ(1 + β)
1 + γ (43c)

r4 = φ2 (43d)

Combining Eqs. (43a) and (43c) yields r = 1, hence, one has φ = r2 = 1 according to Eq. (43d). With the

knowledge of r and φ, one can determine the optimal β by substituting Eq. (43a) into Eq. (43b). Finally, the

optimal parameters tuned by maximum damping criterion can be described in terms of inductance ratio γ as

βmdc = 2θ

κ

√
1 + γ − 1, φmdc = 1, p = θ

2
√

1 + γ , r = 1. (44)

The inequality p2 ≤ r2 imposes that γ ≥ θ2/4−1. Therefore, the inductance ratio γ for the optimal configuration

based on maximum damping criterion should be constrained by

γ ≥ γcri,mdc = θ2
4
− 1 (45)

At this very critical value, the optimal parameters (44) are reduced to

βcri,mdc = θ2
κ
− 1, φcri,mdc = 1, pcri,mdc = 1. (46)

which designates that all the roots locate on the real axis of complex plane with their abscissa being −1.

3.5. Summary and discussion

Up to now, all optimal parameters of resonant EMSD are analytically derived according to three different

tuning rules, as summarized in Table 1. The optimal resistance ratio βopt and optimal frequency tuning ratio

φ2opt are given as a function of the inductance ratio γ whose lower bound is also specified in each case. It is

remarkable that the resistance and inductance ratios, β and γ, lie inside the stability region, and the need of

negative impedances is of the same order of magnitude as that of electromagnetic transducer, which is feasible

in practical applications.

Given that the electromechanical coupling coefficient θ is usually small, it is observable from Table 1 that

a negative resistance and/or a negative inductance could be involved in the shunt circuit. Negative resistances

and inductances do not exist physically, and could be implemented by means of negative impedance converters

[37].

Before going through the numerical analysis, the analytical solutions in this present paper should be com-

pared to existing solutions in the literature in order to verify the correctness of proposed study. Generally, an

EMSD is characterized by two tuning parameters: electrical damping ratio ξe and frequency tuning ratio φ. In

this work, the optimal electrical damping ratio ξe,opt can be evaluated by using Eq. (6) with the knowledge
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Fixed points theory H2 optimization Maximum damping

γ [θ2
2
− 1, +∞) [θ2

2
− 1, +∞) [θ2

4
− 1, +∞)

βopt
θ

κ

√
3

2
(1 + γ) − 1

θ

κ

√
1 + γ − θ2

4
− 1

2θ

κ

√
1 + γ − 1

φ2opt 1 − θ2

2(1 + γ) 1 − θ2

2(1 + γ) 1

Table 1: Optimal parameters of an EMSD connected with a RLC series shunt circuit based on different optimization criteria.

Criterion This paper Ref. [25] Ref. [26]

FPT

ξe =
√

3

8(1 + γ)θ
φ =

¿ÁÁÀ1 − θ2

2(1 + γ)
ξe =

√
3

8
θ

φ =
√

1 − θ2
2

H2

ξe =
¿ÁÁÀ θ2

4(1 + γ) − θ4

16(1 + γ)2
φ =

¿ÁÁÀ1 − θ2

2(1 + γ)
ξe =

√
θ2

4
− θ4

16

φ =
√

1 − θ2
2

Table 2: Comparison of optimal parameters with existing literature.

of optimal resistance ratio βopt, as listed in Table 1. It is worth noting that this present paper proposed a

systematic study on optimization of resonant EMSDs under various excitation scenarios, and to the best of our

knowledge, MDC-based optimum design had not been conducted before. For this reason, only optimal solutions

relevant to FPT and H2 optimization criterion are compared to current references. In Table 2 is presented

a comparison of optimal tuning parameters of resonant EMSDs developed in this paper and from the current

literature. It is remarkable from Table 2 that when no additional inductance is included in the shunt circuit,

namely γ = 0 and a RC shunt is employed instead of a RLC shunt, the optimal solutions in this paper are

exactly the same as the ones in Ref. [25] when tuning the EMSD according to the fixed points theory, and are

consistent with the results in Ref. [26] in terms of H2 optimum design. Hence, a conclusion can be drawn that

the proposed analytical solutions are correct and can be applied in any further study. Finally, the influence of

an additional inductance on the shunt performance will be underlined in the following numerical investigation.

4. Numerical investigation

In this section, the performance of resonant EMSDs with different optimization criteria will be examined under

various excitation circumstances and we will discuss the contribution of negative inductance to frequency re-

sponse magnitude and shunt damping capability. The following study is carried out for the model investigated

in Ref. [23], whose physical properties are listed in Table 3.

4.1. Harmonic excitation scenario

Figure 3 depicts the frequency response of primary structure with optimal parameters relevant to the fixed points

theory against the normalized excitation frequency α and the inductance ratio γ under harmonic excitation.

The squared magnitude of FRF, H2(α, γ), is drawn in logarithmic scale. It is noticeable that compared to the
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Parameter Ms Ks Ri Li ke

Value 0.15 56 3.3 1 3.4

Unit kg kN m−1 Ω mH N A−1

Table 3: Physical parameters of an EMSD extracted from Ref. [23].

RC series shunt in Ref. [25] (curve C1 in Fig. 3, γ = 0), the inclusion of a negative inductance (γ < 0) in the

shunt circuit leads to a decrease of peak magnitudes (see also Eq. (18)) and a spreading of fixed points (the

two curves C3 and C4 separate from each other, see also Eq. (19)). In other words, increasing the magnitude

of negative inductance results in a more flat and smaller frequency response of the main system, broadening

the absorbing area where vibration magnitude is reduced. When the inductance ratio γ is tuned at the critical

value γcri,fpt (curve C2 in Fig. 3), the left invariant point will diminish to 0, namely the scenario of static force

excitation, thus the peak magnitude is reduced to that of static displacement of main system.

Frequency responses of the main system with different optimum designs are plotted in Fig. 4 with γ = 0

(namely RC series shunt in Ref. [25]) and γ = −0.5 (namely RLC series shunt) under harmonic disturbance. It

is noticed that in both cases, no flat plateau is present and an evident resonant peak exists in the mechanical

frequency response relevant to the maximum damping technique. It is reasonable due to the fact that this

technique is oriented towards transient vibration suppression instead of improving the steady state response.

Nevertheless, both the fixed point theory and H2 optimization criterion are based on the optimization of

frequency response of primary structure, hence the peak at resonance is cancelled, two lower peaks appear and

the frequency response curve becomes more flat. By applying a RC shunt circuit, as shown in Fig. 4a, the

maximum magnitude of the main system decreases from 28.6dB (short circuit) to 9.9dB (FPT), 10.1dB (H2)

and 13dB (MDC). The inclusion of negative inductance adds an attenuation of 3dB compared to the RC series

shunt for all three calibrations. Finally, one can state that the fixed point theory leads to the best performance

in terms of confining the H∞ norm of frequency response under harmonic excitation.

However, both optimization techniques other than maximum damping criterion aim at improving steady

state response, for which the damping capability of shunt circuit is not optimized and thereby the energy

dissipation linked to optimal electrical damping ξe,opt is not maximized. ξe,opt can be calculated by using Eq.

(6) with the optimal parameters listed in Table 1. As depicted in Fig. 5, the shunt circuit optimized by

the maximum damping criterion possesses the largest electrical damping over the whole range of inductance

ratio γ. And the shunt circuit calibrated by the H2 optimization criterion always underperforms its other two

counterparts in terms of electrical damping, namely dissipated energy. Besides, the optimal electrical damping

ratios ξe,opt always decreases as the magnitude of negative inductance reduces. As γ increases from γcri,fpt to

0 (namely the case of a RC series shunt in Ref. [25]), a reduction of 67.9% in ξe,opt is observed for the EMSD

relevant to maximum damping criterion.

4.2. Random excitation scenario

Fig. 6 demonstrates the fluctuation of optimal performance indices Iopt as a function of inductance ratio γ. The

H2-based shunt damper has the smallest performance index over the whole range of γ, which designates that

the relevant system vibrates the least. One can also notice that the fixed points theory leads to performance
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fairly close to the H2 optimization criterion, while the MDC-based shunt damper has the worst performance

under random vibration.

An analysis in the temporal domain is also conducted to investigate the dynamics responses of EMSDs

under random force excitation. The PSD of external force Sf is set as 10N2 ⋅Hz−1 and the inductance ratio is

imposed at γ = −0.5. In this scenario, the equations of motion (3) become actually a set of stochastic differential

equations (SDE), and the Euler-Maruyama scheme [38] is adopted to solve the SDEs numerically. The iteration

step is fixed at 10−4s and four simulations are performed with different system parameters, as shown in Fig. 7.

In order to characterize these random time histories, the root mean square value (RMS) is employed, which are

calculated as: (a) 13.3mm; (b) 4.3mm; (c) 4.2mm; (d) 4.9mm. In contrast to the short-circuited case, FPT-, H2-

and MDC-based EMSDs with RLC series shunt demonstrate the capability of reducing the RMS displacement

of mechanical system by 67.7%, 68.4% and 63.2%, respectively, while they outperform their counterparts with

RC series shunt (i.e. γ = 0) by 17.3%, 17.7% and 15.5%, respectively. It is then hinted that the H2-based EMSD

has the best performance under broadband random vibration (lowest RMS value) and the order of performance

is exactly the same as the one predicted by the performance index Iopt in the previous study.

4.3. Transient excitation scenario

The damping performance of transient vibration is now investigated. As described in previous section, the

exponential decay rate of vibration for a shunt circuit is quantified by the performance index Λ. Fig. 8a shows

the evolution of optimal performance indices Λopt relevant to each calibration strategy against the inductance

ratio γ. It is noticeable that the maximum damping criterion always has the largest performance index over

the whole range of inductance ratio γ, while that of H2 optimization criterion is always the smallest. It is

hinted that the maximum damping calibration yields the best decay rate of transient response due to short-

termed disturbance. In Fig. 8b, eigenvalues related to different criteria are located in the complex plane with

inductance ratio being γ = −0.5. The coupled system has two pairs of conjugate roots when calibrated by the

fixed point theory and H2 optimization criterion, while the two pairs of conjugate roots coalesce into a double

pair of conjugate roots for the maximum damping strategy and the absolute value of real parts of its roots

is the largest. The performance indices for three calibration procedures can be read directly as: Λfpt = 0.186,

Λh2 = 0.137, Λmdc = 0.321.

A numerical simulation is finally performed to investigate the transient vibration response of the EMSD. In

this study, the EMSD is supposed to undergo vibration freely, i.e. f(t) = 0, and an initial displacement condition

is imposed instead. The transient response of system can be then obtained by solving the dimensionless ordinary

differential equations (5) with the ode45 solver built in Matlab. The initial states are set as: x(0) = x0 = 1 and

x′(0) = y(0) = y′(0) = 0. In Figs. 9a and 9b, the transient responses of normalized displacement and absolute

acceleration are plotted when the EMSD is short-circuited (as marked by dotted line) or calibrated according

to three optimization criteria with negative inductance ratio being γ = γcri,fpt = γcri,h2. It is observable that

all calibration techniques contribute to attenuate the transient response significantly, compared to the short-

circuited scenario. Fig. 9b shows that the acceleration response related to maximum damping criterion decays

to zero more quickly than other two methods, while it leads to a relatively large displacement response. Another

simulation of MDC-based EMSDs is performed at γ = 0 (i.e. RC series shunt) and γcri,mdc (i.e. RLC series

shunt), as plotted in Figs. 9c and 9d. Compared to the RC series shunt, the RLC series shunt with negative

inductance can eliminate the disturbance and decay to zero in much shorter time. Besides, one can note that
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all its eigenvalues coincide and locate at (−1,0) in the complex plane when the inductance ratio γ arrives at

the critical value γcri,mdc, therefore, its utmost performance index is equal to unity, i.e. Λcri,mdc = 1.

4.4. Discussion

To this end, it is pertinent to investigate the applicability of current optimum designs, which are conducted

under the assumption of undamped primary system, to lightly damped mechanical systems. In Fig. 10a is

depicted the comparison of frequency responses of undamped primary system (marked by solid line) and the

one with 1% viscous damping (marked by dash-dotted line). The EMSD is calibrated by fixed points theory with

negative inductance ratio being γ = 0. It is suggested that the neglect of inherent damping of primary system

will lead to an overestimation of 3.7% on the peak vibration amplitude of primary system, which is negligible

in practical applications. Besides, the presence of inherent damping leads to a slight misalignment between

two resonance peaks. In Fig. 10b is demonstrated the peak vibration amplitude difference of damped primary

system compared to the one corresponding to undamped mechanical system as a function of viscous damping ξ.

It is apparent that the difference increases monotonically as the inherent damping of primary system increases.

One can thus draw a conclusion that the aforementioned optimum design for undamped primary system can be

employed in the case where the mechanical system is lightly damped.

5. Conclusions

This paper investigates an undamped system coupled with a resonant EMSD, and its optimum designs are

carried out according to three different optimization strategies, each of which is appropriate for a specific

excitation circumstance. The optimal parameters are derived analytically and are formulated as a function

of the inductance ratio γ. Lower bounds of inductance ratio γ in the stable region are also provided for all

three strategies. By comparing to the current literature, it is demonstrated that a negative inductance in series

connection with a RC shunt circuit will always result in reducing the peak magnitude of frequency response of

primary structure, increasing the absorbing frequency bandwidth and thus enhancing the damping performance.

For instance, the FPT-based resonant EMSDs can reduce the peak magnitude of primary system to the level

of static displacement when the negative inductance is tuned to the corresponding lower bound.

A detailed numerical investigation is performed, which compares the performance of resonant EMSDs with

different tuning rules under various types of disturbance. The fixed points theory and H2 optimization criterion

are more appropriate in terms of improving the steady state response, for which damping capability towards

target vibration mode is not optimized. While the maximum damping criterion is oriented towards increasing

the damping, and thereby accelerating the energy dissipation. Numerical results prove that the maximum

damping criterion can lead to the superior exponential decay rate.

In this paper, the close-form solution to the H∞ optimization problem of EMSDs connected with a RLC

series shunt circuit is obtained by using the fixed points theory, which designates that the solution provided

is merely approximative. Future works could be dedicated to the derivation of exact solutions to the H∞

optimization problem.

14



Ms

Ks Fi

f(t)
x

Vi

q

Figure 1: A SDOF undamped primary structure coupled with an EMSD under force excitation.
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Figure 2: Electrical model of electromagnetic transducer connected with a RLC series shunt circuit.
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Figure 9: Transient responses under free vibration with initial states as x(0) = x0 = 1 and x′(0) = y(0) = y′(0) = 0. (a)(b)

normalized displacement response and acceleration time history with γ = γcri,fpt = γcri,h2 (dotted line: SC, solid: FPT, dashed: H2,

dash-dotted: MDC). (c)(d) normalized displacement and acceleration time histories relevant to MDC-based EMSD (dotted line:

RC series shunt (i.e. γ = 0), solid: RLC series shunt with γ = γcri,mdc).

21



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

3

3.5

 = 0
 = 1%

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(%)

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

D
iff

er
en

ce
(%

)

(b)

Figure 10: Influence of mechanical damping ratio ξ of primary system on dynamics response: (a) comparison of frequency responses

of primary system without and with viscous damping (solid line: ξ = 0, dash-dotted: ξ = 1%); (b) Difference evolution between

peak vibration amplitude of damped and undamped primary system. The shunt circuit parameters are optimized by fixed points

theory with inductance ratio γ = 0.
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