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ABSTRACT

Aims. An improved method for estimating distances to open clusters is presented and applied to Hipparcos data for the Pleiades and
the Hyades. The method is applied in the context of the historic Pleiades distance problem, with a discussion of previous criticisms of
Hipparcos parallaxes. This is followed by an outlook for Gaia, where the improved method could be especially useful.
Methods. Based on maximum likelihood estimation, the method combines parallax, position, apparent magnitude, colour, proper
motion, and radial velocity information to estimate the parameters describing an open cluster precisely and without bias.
Results. We find the distance to the Pleiades to be 120.3 ± 1.5 pc, in accordance with previously published work using the same
dataset. We find that error correlations cannot be responsible for the still present discrepancy between Hipparcos and photometric
methods. Additionally, the three-dimensional space velocity and physical structure of Pleiades is parametrised, where we find strong
evidence of mass segregation. The distance to the Hyades is found to be 46.35 ± 0.35 pc, also in accordance with previous results.
Through the use of simulations, we confirm that the method is unbiased, so will be useful for accurate open cluster parameter
estimation with Gaia at distances up to several thousand parsec.

Key words. methods: statistical – astrometry – open clusters and associations: general

1. Introduction

Open clusters have long been used as a testing ground for a
large number of astronomical theories. Determining the dis-
tances to nearby open clusters is critical, since they have his-
torically formed the first step in the calibration of the distance
scale. Because all stars within an open cluster are expected to
have the same age and metallicity, accurate distance estimates
are highly useful in calibrating the main sequence and checking
stellar evolutionary theory through comparison with theoretical
isochrones.

Until recently, accurate distances to even the most nearby
clusters have not been possible. The Hipparcos astrometric
mission of 1989 (Perryman & ESA 1997) for the first time gave
accurate parallax measurements for over one hundred thousand
stars and has been used extensively to give direct distance mea-
surements to more than 30 open clusters.

Still, many questions remain. While revolutionary in its
time, the milliarcsecond astrometry and limiting magnitude
(Hp < 12.5) of Hipparcos allow calculating distances to only
the nearest open clusters, and even then do so with a precision
no better than a few percent. Owing to the relatively small size
of most open clusters compared with their distances and the pre-
cision of measurements, the Hipparcos data has been unable to
give definitive answers about the internal structure and physical
size of such clusters.

� Appendices are available in electronic form at
http://www.aanda.org

Additionally, the release of the Hipparcos catalogue
in 1997 has led to some controversy. The most famous is the
case of the Pleiades, where methods based on Hipparcos data
(van Leeuwen & Hansen Ruiz 1997; Robichon et al. 1999a;
Mermilliod et al. 1997) gave a distance estimate that was
some 10% shorter than works based on photometric methods
(Pinsonneault et al. 1998; Robichon et al. 1999b; Stello & Nissen
2001) (see Sect. 6).

With the launch of Gaia, the European Space Agency’s sec-
ond major astrometric satellite, the situation is set to change.
Building on the success of Hipparcos, Gaia will provide micro-
arcsecond astrometric precision and a limiting magnitude of 20,
which will revolutionise many aspects of astronomy.

With the above in mind, it is apparent that a new method
is required that is capable of squeezing the maximum precision
from the currently available data and is capable of utilising infor-
mation from the full range of observed quantities (astrometric,
photometric, and kinematic information). This will be particu-
larly true after the launch of Gaia, which will produce a rich
dataset that will include not only accurate parallax measure-
ments, but also photometry at millimag precision and a full set of
kinematics obtained from proper motions combined with radial
velocity measurements from the on-board radial velocity spec-
trometer (for stars with GRVS < 17).

The use of trigonometric parallaxes can be problematic, and
care must be taken to account for effects such as the Lutz &
Kelker (1973) or Malmquist (1936) biases, sample selection ef-
fects and non-linear transformations, such as those highlighted
by Arenou & Luri (1999) and Arenou & Luri (2002).
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In Sect. 2 the rationale behind the method is described, fol-
lowed by the exact mathematical formulation in Sect. 3. A de-
scription of the observational data used is given in Sect. 4, and
the results of application of the method to the Pleiades and
Hyades given in Sects. 5 and 7. The possible effects of corre-
lated errors in the Hipparcos catalogue are discussed in Sect. 6.
The use of the method with Gaia data is tested using simulations
in Sect. 8.

2. Methods

Maximum likelihood estimation (MLE) has been used in rela-
tion to open clusters since 1958, where Vasilevskis et al. (1958)
used MLE to perform cluster membership selection from proper
motions.

For the Hyades and Pleiades, Chen and Zhao used a com-
bination of the convergent point method with MLE in order
to simultaneously determine mean parallax and kinematics for
the Hyades (Zhao & Chen 1994) and later the Pleiades (Li &
Junliang 1999). These early approaches applied the principles of
MLE in its basic form, but improvements by Luri et al. (1996)
resolved several shortcomings in its use. The improvements, de-
scribed in full in Luri et al. (1996), have been used extensively
in this work and allow the following improvements:

– The use of numerical methods avoids the necessity of ap-
proximating or simplifying complex equations during the
formulation of the MLE, thus avoiding any loss of precision.

– Explicitly taking into account sample selection effects
caused by observational constraints is required to correctly
model the joint probability density function (PDF) of the
sample. These selection effects introduce various biases
into the sample, e.g. Malmquist, and their correct treatment
within the formulation of the density laws avoids the need for
a posteriori corrections, which are often poorly understood.

– Through the construction of the MLE joint PDF, where all
of a star’s available information is used simultaneously, pos-
terior estimates of a star’s properties can be obtained with
increased precision compared with the original data. This
can be extended to calculate cluster membership probabil-
ities without the need for external membership selection.

– The three-dimensional spatial distribution of the stars in a
cluster is modelled, along with their kinematic distribution,
assuming all the members follow a single velocity ellipsoid.
Additionally, their absolute magnitude is modelled assum-
ing the stars absolute magnitudes can be described by an
isochrone. This links each of a star’s observables to the prop-
erties of the cluster to which it belongs, giving tight con-
straints on the quantification of a clusters parameters. With
a sufficient quantity of data, it is possible to extract higher
order information, as can be achieved through a Bayesian
hierarchical model.

3. Mathematical formulation

3.1. Definition

The MLE is a method for estimating the parameters of a statisti-
cal model. By specifying a joint PDF for all observables and tak-
ing an initial guess at the value of each parameter, the likelihood
of having taken a set of observations is calculated. Maximising
this function by varying the parameters results in the MLE of the
parameters in the statistical model.

The likelihood function can be defined as

V(θ) =
n∏

i= 1

O(yi|θ) (1)

where the joint PDF O(yi|θ) is made up of the un-normalised
PDFD(yi|θ) and a normalisation constant Ci, such that

O(yi|θ) = C−1
i D(yi|θ), (2)

and θ is the vector giving the parameters of the model.
In MLE, the user is free to define any model. For reli-

able results, the models chosen must resemble the system be-
ing modelled, and can incorporate the a priori information one
may have about the system. In our case, we have chosen that
θ = (R, σR,M(V−I), σM,U,V,W, σUVW ), where R is the distance
to the centre of the cluster assuming a spherical Gaussian dis-
tribution, σR the intrinsic dispersion around the mean distance,
M(V − I) the mean absolute magnitude as a function of colour,
σM the intrinsic dispersion around the mean absolute magnitude,
U, V , and W are the three components of the clusters velocity
ellipsoid in galactic Cartesian coordinates, and σUVW is the in-
trinsic dispersion in the clusters velocity.

The vector (y = m, l, b, �, μl, μδ, vr) describes the observed
properties of each star, and (y0 = m0, l0, b0, r0, μα∗ ,0, μδ0, vr0) is
the vector describing the “true” underlying stellar properties un-
affected by observational errors.

We can then define the un-normalised1 PDF such that

D(yi|θ) = S(yi)
∫
∀y0

ϕM0ϕrlb0ϕv0E(yi|y0) dy0, (3)

where ϕM0 , ϕrlb, ϕv are the PDFs describing the nature of the
open cluster, and S(y) is the selection function, which takes the
probability of observing a star into account, given the proper-
ties of the star and the instruments’ observational capabilities.
To take the fact that Hipparcos is a magnitude limited sample
into account, a step function is used with

S(y) =

{
1, if Hp < 12.5.
0, otherwise.

(4)

The case is more complicatedin reality, with Hipparcos only
being complete up to magnitude Hp < 7. At fainter magnitudes,
stars were selected using a number of criteria and used as an
input catalogue (Turon et al. 1992). Hipparcos had a physi-
cal limit in the number of stars observable in a single field of
view, and it suffered from glare effects on the telescope when
observing stars very close together on the sky. Therefore, deci-
sions were made on a case-by-case basis as to which stars to
observe, depending on the number and position of stars in each
field of view. The Hipparcos mission pre launch status report
states that: “once the list of likely cluster members had been es-
tablished and the worst veiling glare cases excluded, a somewhat
arbitrary compromise had to be found”. The hand selection of
stars for observation makes it impossible to accurately model a
selection function based on apparent magnitude that can describe
the selection probability for the underlying cluster population,
which does not strictly follow the definition given in Eq. (4).
However, as the Hipparcos star selection mostly depended on
the proximity of target stars to each other on the sky and not on
magnitude, the effects on the results given in Sects. 5 and 7 are
minimal.
1 Although the PDF must be normalised, it is convenient to define the
un-normalised PDF first, and then come back to the normalisation con-
stant when all of the components of the PDF have been defined.
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3.2. Models

The distribution of absolute magnitudes in a given photometric
band is assumed to be a Gaussian distribution around a mean
colour-absolute magnitude relation, Mmean, with some disper-
sion, σM:

ϕM = e
−0.5

(
M −Mmean (V − I)

σM

)2

. (5)

Here, the absolute magnitude is given by

M = m + 5log10(�) + 5 − A, (6)

where m is the apparent magnitude of the star,� its parallax, and
A is the interstellar extinction of the star in the same photometric
band.

In the following work, the interstellar extinction is assumed
to be known, although it can be left as a free fit parameter. For
the Pleiades, a single extinction value of AHp = 0.0975 mag
in the Hipparcos band H is used for all members. This is de-
rived from a reddening of E(B − V) = 0.025 ± 0.003 found by
Groenewegen et al. (2007), which is converted to an extinction
estimate in the visual band through AV = 3.1E(B − V) and then
into the Hipparcos band Hp. For the Hyades, the level of extinc-
tion is assumed to be negligible, and an extinction of AHp = 0
is assumed. If available, individual extinction estimates for each
star could be used, in order to correctly take effects of differential
reddening into account.

The term Mmean(V − I) gives the mean absolute magnitude
of stars as a function of colour, while σM is the intrinsic disper-
sion. For simplicity, known binaries are removed. Additionally,
the given distribution does not support the giant branch, since
this would require the magnitude function to turn back on it-
self, giving a non-unique solution. Therefore, giants are also re-
moved, enabling the application of this method to all clusters,
irrespective of age.

The fitting procedure has two options:

1. It fits the position of points on the colour-absolute magnitude
diagram, to which a spline function is fitted in order to de-
termine a colour-dependent absolute magnitude distribution
approximating the isochrone of the cluster; or

2. If a theoretical isochrone is supplied as input, the shape of the
magnitude distribution is taken from the isochrone. While
the shape of the isochrone is conserved, the isochrone is free
to be shifted in absolute magnitude.

If using the second option, the age and metallicity of the clus-
ter must be assumed. This makes the first option preferable for
clusters with little information on age and metallicity, because
parameters can be determined without having to be concerned
with models that depend on this information.

The spatial distribution we have assumed follows a spherical
Gaussian distribution in Cartesian coordinates that, expressed in
a rotated galactic coordinate system (see Appendix A), follows:

ϕrl′b′ = r2cos(b′)e
− 0.5
σ2

S
(R2 + r2 − 2rRcos(b′)cos(l′))

(7)

where the term r2cos(b′) is the Jacobian of the coordinate trans-
formation, R the mean distance to the cluster, r the distance to
the individual star, and l′ and b′ are the rotated coordinates of
the star.

The Gaussian spatial distribution was chosen for ease of im-
plementation, and as a first approximation of the cluster’s spatial
structure. It is possible to use a distribution specifically suited to

open clusters, such as King’s profile (King 1962), which could
make the distribution more realistic. This is a possible improve-
ment for later additions to this work.

Finally, the velocity distribution in Cartesian coordinates is
defined as the velocity ellipsoid:

ϕv = e
−0.5

(
U −Umean
σU

)2
−0.5

(
V −Vmean
σV

)2
−0.5

(
W −Wmean
σW

)2

, (8)

where Umean, Vmean, and Wmean are the components of the clus-
ter’s mean velocity along each Cartesian axis.

The distribution in observational errors is given by

E(y|y0) = E(�|�o)E(μα∗ |μα∗ ,0)E(μδ|μδ,0)E(vr|vr0)δ(m, l
′, b′). (9)

All observational errors are assumed to follow a Gaussian distri-
bution with a variance given by the formal error εy. Here, � is
the parallax, μα∗ and μδ the proper motions, and m the apparent
magnitude. The delta function δ(m, l′, b′) describes the case for
which a parameter’s observational error is small enough to be
deemed negligible.

An additional benefit of using this formulation with “true”
object parameters in the models and then linking these true pa-
rameters with the observed quantities is that observational data
including negative parallaxes can be used directly without prob-
lems attempting to calculate the logarithm of a negative number
(e.g. in Eq. (6)). The inclusion of stars with negative parallaxes
is essential for avoiding biasing the sample by preferentially re-
moving more distant stars and biasing the average distance by
selecting the stars with only positive errors.

The normalisation constant required for O(yi|θ) is found
by integrating the un-normalised joint probability distribu-
tionD(y|θ) over all y:

C =
∫
∀y0

∫
∀y
ϕM0ϕ�0l′0b′0ϕvS(y)E(y|y0) dydy0. (10)

The exact analytical solution has been found where possible, and
the remaining integrals with no analytical solution are solved
numerically (see Appendix B).

3.3. Formal errors

The Hessian matrix is constructed through numerical differen-
tiation of the likelihood function at its global maximum. The
inverse of the Hessian matrix is the covariance matrix, and the
formal errors are calculated from the square root of the diagonal
of the covariance matrix. After calculating the covariance matrix
and formal errors, correlations between each of the parameters
can easily be obtained.

3.4. Data binning

While some parameters, such as mean distance, are “global” pa-
rameters describing some general property of the open cluster,
a number of the parameters show a dependence on colour. For
example, the physical spatial distribution of some clusters is be-
lieved to change as a function of mass, hence colour, through the
process of mass segregation.

With a sufficiently precise data set containing enough stars,
it is possible to fit a smooth function describing a parameter’s
colour dependence, if applicable, by estimating the parameters
of, for example, a polynomial approximation of the dependence.
Owing to the limited available data in the Hipparcos catalogue
for the Pleiades and Hyades, there is insufficient information to
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constrain such distributions in all cases, so where necessary an
approximation has been made by binning the data.

A star’s normalised PDF can be thought of as the sum of
several other PDFs, such that

D(yi|θ)
C =

W(V − I)1D(yi|θ) +W(V − I)2D(yi|θ) + ...
C (11)

where C is the normalisation constant andW(V − I) a selection
function dependent on colour:

W =

{
w, if (V − I)min < (V − I)star < (V − I)max.

0, otherwise,
(12)

where w is a normalised coefficient that depends on the relative
number of stars per colour bin.

The normalisation constant C is found by integrating the
PDF over all y:

C =
∫
∀y
D(y|θ) dy (13)

≡
∫
∀y
W(V − I)1D(y|θ)dy +

∫
∀y
W(V − I)2D(y|θ)dy + ... (14)

The strength of this approach is that parameters with a single
value of interest (with no colour dependence) are described by
only one parameter in θ. Where more information can be gained
by producing an estimate of a parameter in each colour bin, it is
possible to define a separate parameter for each colour bin.

The parameters to be estimated therefore become

θ = (R, σn
R,M

n+1, σn
M ,U,V,W, σUVW ), (15)

where n is the number of bins, R the mean distance to the clus-
ter (assuming a spherical Gaussian distribution), σn

R the intrinsic
dispersion around the mean distance in each colour bin, Mn+1 are
the absolute magnitude values used for fitting the spline function
of the isochrone, U, V , and W are the three components of the
velocity ellipsoid, and σUVW is the velocity dispersion.

3.5. Testing with simulations

The method described in Sect. 3 was implemented and tested
extensively using simulations. During development and testing
of the MLE implementation, simulated catalogues were con-
structed using Monte Carlo techniques. Each star in the sim-
ulated population is given a position in Cartesian coordinates,
which is then converted into a sky position and distance, and
given a velocity in Cartesian coordinates, which is converted into
proper motions and a radial velocity. The values are randomly
chosen from a spherical Gaussian spatial distribution and a ve-
locity ellipsoid, with the mean and variance of each distribution
chosen by hand. The relationship between colour and absolute
magnitude is assumed to be linear for simplicity.

Basic simulation of observational errors was achieved by
adding an error value derived from a Gaussian random number
generator to each parameter in the simulated catalogue, with the
variance chosen to be a value similar to the errors found in the
Hipparcos catalogue. Additionally, the more realistic AMUSE
open cluster simulator (Pelupessy et al. 2013) was used to sim-
ulate open clusters with more realistic distributions, including a
realistic isochone.

The final stage of testing with simulations uses a set
of 500 simulated open clusters found in the Gaia Simulator

Fig. 1. CMD for a simulated Pleiades like cluster found in the GaiaSimu
library, with a distance of 2.6 kpc. Open circles show the “true” simu-
lated absolute magnitudes without errors. Blue crosses are the points
fitted with the ML method applied to the data after the simulation of
observational errors. The solid line is the resulting isochrone-like se-
quence, showing accurate reconstruction of the isochrone-like sequence
from error effected data.

(Masana et al. 2010; Robin et al. 2012) in order to test the suit-
ability of the method in use with Gaia data (see Sect. 8). The
Gaia Object Generator (Isasi et al. 2010) was used to simulate
realistic errors as expected for Gaia catalogue data. Using the
ML method on this simulated data showed the successful ex-
traction of an isochrone-like sequence from error-effected data
(Fig. 1) and could reproduce the input distance of the cluster,
within formal error bounds and, after repeated testing, with no
significant bias.

In the following sections (4, 5, 6, and 7), we apply the
method to the best currently available data on the Pleiades and
the Hyades. In Sect. 8 we use simulations to extrapolate the use
of the method out to greater distances, in expectation of the Gaia
data.

4. Data

The method described here has been applied to the new
Hipparcos reduction (van Leeuwen 2007) data for 54 well
known Pleiades members. The 54 cluster members are believed
to be a clean sample and have been identified and used in numer-
ous previous studies (e.g. van Leeuwen & Hansen Ruiz 1997;
Robichon et al. 1999a and Makarov 2002).

The new Hipparcos reduction has several advantages over
the original Hipparcos catalogue, including a reduction in the
formal errors by up to a factor of 4 for the brightest stars
and a claimed reduction, by up to a factor of 10, in the cor-
relations between stars observed over small angles. This was
achieved through a completely new method for formulating
the Hipparcos satellite’s attitude model, replacing the previous
“great-circles” reduction process with a fully iterative global so-
lution. This new method of catalogue reconstruction supersedes
an earlier attempt by Makarov (2002) to reduce correlation in the
Hipparcos catalogue specifically for the Pleiades open cluster.

This reduction in correlations is particularly important in the
study of open clusters. This is because correlated errors in the
original Hipparcos catalogue were blamed for the cases of dis-
crepancy between distances calculated with Hipparcos paral-
laxes, compared with photometric data or other methods.
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Table 1. Colour-independent results obtained for the Pleiades from the
method applied to the new Hipparcos reduction.

Parameter Estimated Error
Distance (pc) 120.3 1.5
μα∗ (arcsec year−1) 19.9 0.3
μδ (arcsec year−1) –45.3 0.3
σμα∗ (arcsec year−1) 1.7 0.3
σμδ (arcsec year−1) 1.5 0.2

Where radial velocity information has been used, it was
obtained from (Mermilliod et al. 2009; Raboud & Mermilliod
1998; Morse et al. 1991; Liu et al. 1991) through the WEBDA
database.

5. Results – Pleiades

The results of the application of the method described in Sect. 3
can be seen in Tables 1 and 2. Parameters describing the general
properties of the cluster, such as mean distance and mean proper
motion are given in Table 1, whereas colour-dependent param-
eters are given in Table 2. For the latter, stars were divided into
four color bins. The choice of bins is arbitrary and have been
selected to give roughly the same number of stars per bin.

5.1. Distance

The mean distance to the Pleiades has been estimated to
be 120.3 ± 1.5 pc. This agrees with van Leeuwen (2009), who
finds 120.2 ± 2.0 pc using the same dataset. The formal errors
assigned to each parameter are calculated from the square root
of the covariance matrix of the likelihood function. The for-
mal error is approximately 25% smaller than from van Leeuwen
(2009), with the increased precision from the use of this method
attributed to the inclusion of parallax, position, proper motion,
colour, and apparent magnitude information.

The distance is given as a general property of the cluster
alone (Table 1), because there is no physical reason to expect
differing distances for different colour bins, unlike, for example,
the size parameter, σR.

The mean distance to the cluster has been included as a
colour-dependent parameter during testing, in order to check the
ML method functions as expected and to check that there are
no biases present in the Hipparcos catalogue. The mean dis-
tance to the cluster was found to be consistent across all colour
bins, within the error bounds. This is a good test that there is no
colour- dependent bias in the Hipparcos Pleiades data.

5.2. Kinematics

Testing was carried out for two cases: first where only
Hipparcos data has been used, and second including the use
of radial velocity data where available. Fifteen Hipparcos
Pleiades members have radial velocity data (less than one third
of the sample). Working in a mixed case, where some stars have
radial velocity information and some do not, is possible through
marginalisation of terms with missing data from the joint PDFs.

With the inclusion of radial velocity data, the variance in the
space velocity has been found to be nearly 6 kms−1. We believe
that a lack of homogeneity in the data is responsible for the large
variance, because the data is compiled from several sources.
While there is no change in the estimation of the mean distance

to the cluster between the two cases, the formal errors are in fact
larger with the inclusion of radial velocity data. Therefore, the
lack of an accurate and homogeneous catalogue of radial veloci-
ties for a significant number of Hipparcos Pleiades stars means
that radial velocity information has been ignored, and the results
shown are for a fitting to a Gaussian distribution in proper mo-
tion rather than a three-dimensional space velocity.

The variance in the distribution in proper motions is found
to be 1.7 ± 0.3 and 1.5 ± 0.2 mas year−1 for μα∗ and μδ, re-
spectively. Taking the distance to be 120.3 pc, this variance is
equivalent to a variance in the velocity distribution of the cluster
of 1.3 ± 0.4 km s−1.

5.3. Size

The spatial distribution of the open cluster is modelled using
a spherical Gaussian distribution, with its center at some dis-
tance R and a variance around the mean distance σR. The vari-
ance has been included as a colour-dependent term and is esti-
mated for each colour bin. The results show an increase in σR
with an increase in colour (V − I), which corresponds directly to
a decrease in stellar mass.

As the variance in the spatial distribution increases
from 3.3 pc to 13.2 pc over the full colour range for the ob-
served stars, we find strong evidence for mass segregation. This
relationship between stellar mass and the spatial distribution of
stars in a cluster has been reported for the Pleiades with a simi-
lar degree of segregation, using a star counting technique for the
two-dimensional case of the cluster projected onto the plane of
the sky (Converse & Stahler 2008).

5.4. Absolute magnitude distribution

An approximation to the isochrone of the cluster is found by
fitting points in the colour-absolute magnitude diagram to find
the absolute magnitude distribution of the star as a function of
colour. A spline function converts these points into a smooth
line, which can be thought of as the observed isochrone of the
cluster. The points used for the spline function are found by
the fitting method and labelled A and B for each colour bin in
Table 2. The resolution of the resulting fit only depends on the
number of stars, which limits the possible number of bins, and
the precision of the data.

The intrinsic dispersion, σM , is the dispersion in absolute
magnitude around the mean magnitude given by the magnitude
distribution, over any narrow colour range (V − I) to (V − I) +
δ(V − I). Since the dispersion is not constant over the whole colour
range, the value of σM is given for each colour bin.

The results of the fitting can be seen in Table 2, where
they have been plotted onto the colour magnitude diagram of
the Pleiades in Fig. 2. The theoretical isochrone taken from the
PARSEC library (Bressan et al. 2012) can be seen in green. The
isochrone was generated using PARSEC v1.1, with an age of
100 Myr, and Z = 0.03.

Excluding the turn off (V − I < 0.1), the shape of the theo-
retical isochrone is accurately obtained by the fitting procedure
(see Fig. 2). The ∼0.3 mag difference in absolute magnitude be-
tween the theoretical isochrone and the sequence found by the
fitting procedure is the discrepancy historically reported between
Hipparcos and photometry-based methods.

Above the main sequence turn off, neither the theoretical
isochrone nor the results from this work accurately fit the data.
This is due to the presence of stars migrating to the giant branch.
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Table 2. Colour-dependent results obtained for the Pleiades from the method applied to the new Hipparcos reduction.

(−0.1 < V − I < 0.0) (0.0 < V − I < 0.4) (0.4 < V − I < 0.6) (0.6 < V − I < 0.8)
Parameter Estimated Error Estimated Error Estimated Error Estimated Error
σR (pc) 3.4 1.0 4.9 0.9 10.3 2.9 13.1 3.8
σM (mag) 1.6 0.5 0.45 0.06 0.22 0.06 0.17 0.06
A (start point) –2.4 0.7 0.2 0.2 3.0 0.1 4.2 0.1
B (end point) 0.2 0.2 3.0 0.1 4.2 0.1 5.4 0.3

Notes. In the four bins there are 9, 21, 12, and 12 stars (low (V − I) to high). A and B are the points found for the spline function fitting to the
colour-absolute magnitude relationship, with A at the start of the bin and B at the end. Each corresponds to a cross in Fig. 2.

Fig. 2. Colour-absolute magnitude diagram for the 54 Hipparcos
Pleiades members. MH is the absolute magnitude in the Hipparcos
photometric band calculated using the posterior parallax. The blue
crosses are the results of the fitting, with the spline function giving
the magnitude dependence as the thick line. The green dashed line is
the theoretical isochrone generated using PARSEC v1.1, with an age
of 100 Myr, and Z = 0.03 (Bressan et al. 2012).

The intrinsic dispersion of absolute magnitude around the
isochrone is found for each colour bin. The large dispersion in
the first bin is due to the presence of the turn off, and subse-
quently the dispersion around the main sequence decreases with
increased V − I.

6. Correlations

The main argument against Hipparcos-based distance estimates
of open clusters has been that Hipparcos trigonometric par-
allaxes have correlated errors on small angular scales. Indeed,
this has been cited as the cause of the large (0.3 mag) discrep-
ancy in the Pleiades distance between Hipparcos-based and
photometry-based methods. Narayanan & Gould (1999) argue
that correlated parallax errors cause a stark difference between
Hipparcos trigonometric parallaxes and the Hipparcos kine-
matic parallaxes derived from proper motions.

According to Narayanan & Gould (1999), the proper-
motion-based parallax can be determined from Hipparcos data
using

�pm,i =

〈
(Vt)i C−1

i μHIP,i

〉
〈
(Vt)i C−1

i (Vt)i

〉 , (16)

where (Vt)i is the transverse velocity of the cluster in the plane of
the sky at the position of the star i, Ci is the sum of the velocity

Fig. 3. Smoothed contours of the difference between the Hipparcos
parallaxes and the proper-motion-based parallax (�Hip − �pm) of
the 54 Pleiades cluster members, with data taken from the original
Hipparcos catalogue (1997). Thin contours are at intervals of 0.1 milli-
arcseconds, thick contours at intervals of 1 milli-arcsecond.

Table 3. Results obtained for the Pleiades after cutting all stars at or
above the apparent location of the main sequence turn off: (V− I) > 0.1.

Parameter Estimated Error
Distance (pc) 122.1 3.7
μα∗ (arcsec year−1) 20.0 0.5
μδ (arcsec year−1) –45.9 0.3
σμα∗ (arcsec year−1) 2.0 0.4
σμδ (arcsec year−1) 1.3 0.3

dispersion tensor divided by the square of the mean distance to
the cluster and the covariance matrix of the Hipparcos proper
motion, and μHIP,i is the vector describing the proper motion of
the star.

Narayanan and Gould used a plot showing the contours of
the difference between Hipparcos parallaxes and the paral-
laxes derived from proper motions (Eq. (16)) to argue that the
Hipparcos parallaxes are systematically larger by up to two
milli-arcseconds throughout the inner 6 ◦ of the Pleiades. This
figure has been recreated in Fig. 3 with the 54 member stars used
in this work.

Figure 4 has been produced using the method described
by Narayanan & Gould (1999), but using parallax data from
the new Hipparcos reduction. While in the original plot from
Narayanan and Gould there is clearly a region where the trigono-
metric parallaxes are larger than those derived from proper mo-
tions, this feature has been reduced in severity by a factor of two
by using the new Hipparcos reduction.
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Table 4. Results obtained for the Pleiades after cutting all stars at or above the apparent location of the main sequence turn off.

(0.1 < V − I < 0.4) (0.4 < V − I < 0.6) (0.6 < V − I < 0.8)
Parameter Estimated Error Estimated Error Estimated Error
σR (pc) 9.3 2.5 8.2 2.3 12.5 3.6
σM (mag) 0.14 0.06 0.22 0.06 0.13 0.06
A (start point) 1.6 0.2 3.1 0.1 4.1 0.1
B (end point) 3.1 0.1 4.1 0.1 5.8 0.2

Notes. The results remain unchanged within the error range. In the three bins there are 9, 12, and 12 stars (low (V − I) to high).

Fig. 4. Same as Fig. 3, but with parallax data taken from the new
Hipparcos reduction (2007).

This new figure confirms, for the case of the Pleiades, claims
made by van Leeuwen (2007) that correlations in the new reduc-
tion have been reduced significantly. Additionally, this disagrees
with claims that the shorter distance for the Pleiades derived
from Hipparcos is due to the correlated errors in parallaxes for
Pleiades stars. If this was the case, one would expect the distance
estimate from the new Hipparcos reduction to be greater now
that the correlations have been reduced.

In fact, the distance derived from the new reduction in this
work and by van Leeuwen (2009) put the Hipparcos distance
to the Pleiades at 2.5 pc longer than those derived from the orig-
inal Hipparcos catalogue, a much smaller difference than the
roughly 10% historic discrepancy. The method presented here
has also been applied to the original Hipparcos catalogue. The
difference between the estimated distance from the old and new
Hipparcos reductions is only 2%. The small change in dis-
tance estimate despite the reduction in correlations by a factor
of 10 implies that correlations cannot be responsible for the long-
standing discrepancy.

Additionally, in the calculation of the proper-motion-based
parallax, a mean distance to the cluster must be assumed.
Narayanan & Gould (1999) derived a distance to the Pleiades
of 131 pc using Hipparcos proper motions, which was then
used in calculating the proper-motion-based parallaxes that form
the basis of Fig. 3 and their argument against Hipparcos. Using
the distance of 120 pc as found in this work and implied by stud-
ies using Hipparcos parallaxes, the baseline for the correlation
plots is shifted, as can be seen in Fig. 5. In this final figure no
significant residual biasing the results is apparent, contrary to the
original claims.

Fig. 5. Same as Fig. 4, but with an assumed mean cluster distance
of 120 pc as implied by the Hipparcos data for the computation of
the proper motion based parallax.

7. Results – Hyades

This method has also been applied to the new Hipparcos reduc-
tion for the Hyades open cluster. Of the 282 potential Hyades
members used by Perryman et al. (1998), a detailed study by
de Bruijne et al. (2001) finds 218 probable members, which are
used as the basis of this study. Radial velocities from ground-
based observations have been collected in Perryman et al. (1998)
and used extensively here.

The star HIP20205 was rejected as a giant, because the
isochrone fitting does not currently support fitting of the giant
branch.

Galli et al. (2012) reject the star HIP28774 in their analysis
of the Hyades cluster due to conflicting data for this star in the
old and new Hipparcos reductions. In the following sections,
this star is not present in our membership list after selecting only
the stars in the inner 10 pc. When using the full 218 probable
members, the star is included, however its removal has no real
effect on the results. This is due to the very low precision of the
data on this star in the Hipparcos catalogue, and therefore its
very low statistical weight within the method.

7.1. Distance

As in Perryman et al. (1998), we select only the stars within the
inner 10 pc for the distance estimation, since the large spatial
dispersion and presence of numerous halo stars is not modelled
well by a spherical Gaussian distribution. The distance to the
Hyades has been estimated as 46.35 ± 0.35 pc. This is slightly
more than Perryman et al. (1998), who finds 46.34±0.27 pc, and
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slightly smaller than van Leeuwen (2009), who finds 46.45 ±
0.50 pc. Perryman et al. (1998) used the original Hipparcos
catalogue, whereas van Leeuwen (2009) used the new reduction
from 2007. Both authors used differing membership selection
and determination techniques.

The three-dimensional dispersion in the spatial distribution
of the cluster’s core is estimated to be 3.4 ± 0.2 pc, which is con-
sistent with the observed distribution in sky position. Assuming
this dispersion in the spatial distribution, the selection of stars
with cluster radius of less than 10 pc corresponds to a 3σ limit,
and so the spatial distribution of the core of the cluster should
not be significantly affected.

Using the ML method on the full 218 probable member stars,
including halo stars, the mean distance is found to be 42.6 ±
0.5 pc. The decrease in precision with the increase in the number
of stars is attributed to the clearly non-Gaussian distribution of
a dense core and a large number of disperse halo stars. In this
case the spatial distribution of the cluster’s core is estimated to
be 15.8 ± 3.9 pc. The modelling of the spatial distribution could
be improved through the use of a King’s profile (King 1962) or
an exponential distribution. This is being considered for future
improvements.

That member stars are found with distances from the center
greater than its tidal radius of ∼10 pc (Madsen et al. 2001) is
reasonable, and is expected due to the large number of so-called
halo stars. These stars have been found to exist in the Hyades at
a radius of 10 to 20 pc (Brown & Perryman 1997), and although
they are effected by the galactic gravitational field, they remain
bound to the cluster for some significant time.

7.2. Kinematics

The space velocity of the Hyades has been found to be 46.5 ±
0.2 km s−1, with an internal dispersion on the velocity of 1.11 ±
0.05 km s−1. The internal dispersion is slightly larger than those
in the literature reviewed by de Bruijne et al. (2001), who find a
dispersion of ∼0.3 km s−1.

As for the case of the Pleiades, the high velocity dispersion
is attributed to an inhomogeneous radial velocity data. As high-
lighted by Brown & Perryman (1997), the radial velocity data for
the Hyades comes from a combination of sources with greatly
varying precision and zero points.

7.3. Absolute magnitude distribution

As described in Sect. 5.4, an estimate of the isochrone of the
cluster is produced through fitting a smoothed line to the mean
absolute magnitude Mmean in Eq. (5). The results of the fitting
can be seen in Fig. 6, with the theoretical isochrone overlaid in
green.

In contrast to the results for the Pleiades, the isochrone from
the ML method and the theoretical isochrone from the PARSEC
library are in strong agreement in both shape and position over
most of the main sequence, with some divergence at the extreme
ends of the colour range, where there are few stars to constrain
the model fit.

The offset in the case of the Pleiades was caused by the
long-standing discrepancy between Hipparcos and photomet-
ric methods. This is not present in the case of the Hyades, where
Hipparcos-based distances generally agree with other methods.

Dispersion around the main sequence has been greatly re-
duced compared with computing the absolute magnitude from
the data directly, by computing posterior distances for each star

Fig. 6. Colour-absolute magnitude diagram for the 128 Hipparcos
Hyades members found in the inner 10 pc of the clusters core. MHP

is the absolute magnitude in the Hipparcos band, and is calculated us-
ing the posterior parallax. The blue crosses are the results of the fitting,
with the spline function giving the magnitude dependence as the thick
line. The dashed line is the theoretical isochrone from the PARSEC li-
brary, with an age of 630 Myr and Z = 0.024.

Table 5. Colour-independent results obtained from the method applied
to Hyades stars in the new Hipparcos reduction.

Parameter Estimated Error
Distance (pc) 46.35 0.35
U (km s−1) –42.24 0.11
V (km s−1) –19.27 0.12
W (km s−1) –1.55 0.11
σUVW (km s−1) 1.10 0.05

from the results of the fitting and the individual Hipparcos
observations.

8. Outlook for Gaia

The method described in Sect. 3 will be particularly useful after
the release of the Gaia astrometric catalogue. That the Gaia cat-
alogue will include all of the information required for applying
this method, including radial velocities for GRVS < 17, in one
self-consistent catalogue makes Gaia ideal for studying open
clusters to greater precision and at greater distances than was
possible previously. Indeed, Gaia is expected to observe some
one billion stars, including stars in numerous open clusters. This
will allow application of this method to many more clusters,
including those at much greater distances than was previously
possible.

To test the performance of the ML method with Gaia data,
a simulated open cluster was created, and simulated Gaia ob-
servational errors applied. To continue with the case study of
the Pleiades, a simulated star catalogue for a Pleiades-like clus-
ter was obtained from GaiaSimu. This (Masana et al. 2010;
Robin et al. 2012) is a set of libraries containing the Gaia
Universe Model and instrument models used by the Gaia Data
Processing and Analysis Consortium (DPAC). It contains a
database of 500 simulated open clusters, including the Pleiades,
constructed from Padova isochrones and a Chabrier/Salpeter
IMF.

To apply simulated Gaia observational errors, the data was
processed using the Gaia Object Generator (GOG). It (Isasi et al.
2010) is a simulator of the Gaia end of mission catalogue, and
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Table 6. Colour-dependent results obtained from the method applied to the new Hipparcos reduction for the Hyades open cluster.

(0.1 < V − I < 0.6) (0.6 < V − I < 0.8) (0.8 < V − I < 1.25) (1.25 < V − I < 1.8)
Parameter Estimated Error Estimated Error Estimated Error Estimated Error
σR (pc) 3.42 0.27 5.50 0.67 2.30 0.15 2.55 0.45
σM (mag) 0.39 0.04 0.32 0.04 1.63 0.19 0.34 0.12
A (start point) 0.77 0.24 3.98 0.05 5.25 0.07 7.25 0.15
B (end point) 3.98 0.05 5.25 0.07 7.25 0.15 9.26 0.57

Notes. In the four bins there are 76, 55, 53, and 21 stars (low (V − I) to high).

Distance (pc)

Fig. 7. Results of the distance estimation to a simulated Pleiades-like cluster placed at a factor of 10 to 30 times the original distance. Filled circles
show the percentage difference between the MLE-estimated distances and the true distance, open circles are the percentage difference between the
inverse of the mean of the parallax and the true distance, and green shading highlights 1, 2, and 3σ errors extrapolated over the entire range.

is one of the major products of DPAC’s simulation efforts. It
contains all of the currently available predicted error models
for the Gaia satellite, and is capable of transforming an input
catalogue of “true” stellar properties into simulated Gaia obser-
vations including predicted observational effects and the instru-
mental capabilities.

In the Gaia case, the selection function in Eq. (4) is modelled
as a step function at G = 20 mag. Because Gaia is expected to
be complete up to this magnitude, the step function should be a
good approximation to the real case.

8.1. Pleiades with Gaia

The GaiaSimu and GOG simulated Pleiades contains
some 1000 stars, placed at a distance of 130 pc and occu-
pying the same region of the sky as the real Pleiades. With
simulated parallax errors of between 10 and 100 μas, the vast
majority of the star’s distances are very accurately measured.

With such a precise data set, both the estimated distance from
MLE and the distance obtained directly from the mean of the
parallax are both within 0.01 pc of the true value. This high-
lights that, for the nearest open clusters, it will be possible with
Gaia data to go further beyond the current goal of determining
the distance and kinematic and structural parameters, to having
highly detailed information on many aspects of open clusters.

In such cases, the mean distance of a cluster determined
through the ML method will not in itself be useful, although in-
dividual stars’ posterior distance estimates from the method will
be unbiased and therefore preferable to distances found by in-
verting individual parallaxes. In terms of determining a cluster’s
spatial distribution, the direct use of parallax information results

in a bias in the results not present during the application of the
ML method.

8.2. Distant clusters with Gaia

To test the performance of the ML method with open clusters
at greater distances, the GaiaSimu simulated Pleiades was mod-
ified, increasing the distance while conserving all other prop-
erties. The open cluster was moved to a range of distances be-
tween 10 and 30 times the originally assumed distance of 130 pc
(i.e. up to a distance of 4 kpc). Then the Pleiades-like clusters
were processed with GOG to simulate Gaia observational errors.

Using the same simulated open cluster moved to different
distances allows a direct comparison of the ML method perfor-
mance at different distances. Figure 7 shows the results of the
distance estimation using the ML method, showing the percent-
age difference between the “true” distance and the distance esti-
mated from MLE, Δ(dreal − dMLE)/dreal, and comparing this with
the percentage difference between the “true” distance with the
inverse of the mean parallax, Δ(dreal−d1/�̄)/dreal. As the distance
to the cluster increases, the stars become fainter and the obser-
vational errors larger. As can be clearly seen in Fig. 7, the mean
of the parallax is susceptible to large random error, in addition to
Lutz-Kelker effects and other statistical biases, and is unsuitable
for accurate distance determination in magnitude-limited data
sets and those with significant observational errors.

As with the Hipparcos Pleiades and Hyades data, the CMD
is plotted with the isochrone-like sequence obtained from the
observational data and shown in Fig. 8. These plots have been
created using the simulated clusters at 1300, 2600, and 3900 pc,
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Fig. 8. CMD for the simulated Pleiades like cluster at distances
of 1300 pc (top), 2600 pc (middle) and 3900 pc (bottom). The three clus-
ters have 216, 143 and 114 observed members respectively. Open cir-
cles show the “true” simulated absolute magnitudes without errors, and
filled circles show the absolute magnitudes calculated directly from the
simulated observations including simulated gaia errors. Stars with neg-
ative parallaxes are omitted from the figure but included in the ML es-
timation. Reddening in V − I is assumed known. The blue crosses are
the points fitted with the ML method and the solid line is the resulting
isochrone-like sequence.

showing that it is possible to obtain a reliable observational
isochrone from Gaia observations even when individual paral-
laxes are strongly affected by observational errors.

With this simulated dataset, the ML method is confirmed as
not suffering from significant statistical biases, and it is expected
to perform well with real Gaia data.

8.3. Membership selection

When studying open clusters, especially those at greater dis-
tances, membership selection has always been important and
problematic. When applying the ML method to distant open
clusters in the Gaia catalogue, the density of stars on the
sky could cause problems with misclassification and source
confusion.

However, with an expected source density in the galactic
plane of around 3 × 105 stars per square degree, Gaia’s win-
dowing system for object detection is small enough to give a
low probability of source confusion even when observing dis-
tant open clusters.

In terms of membership selection, the ML method’s estima-
tion of an open cluster’s parameters can be used directly to per-
form membership probability tests. If the ML method is primed
using a sample of probable members, a χ2 test can be applied to
calculate membership probability for each star in the sample us-
ing the parallax, proper motion, and radial velocity information
simultaneously:

K2 = AC−1 AT, (17)

where A is the vector (�i−�ML, μα,i−μα,ML, μδ,i−μδ,ML, vri−
vr,ML), and C−1 is the sum of the catalogue’s covariance matrix
and the variance on each parameter due to the clusters intrinsic
dispersion in distance, proper motion, and radial velocity. Here,
�ML, μα,ML, μδ,ML, and vr,ML are the mean parallax, mean clus-
ter proper motion and mean radial velocity of the cluster, deter-
mined from the ML method.

Stars with K2 > 16.25 are rejected, in correspondence with
a χ2 test at three-sigma level with four degrees of freedom. This
process should be performed using an iterative process, rejecting
the worst outliers a few at a time and recalculating all fitting
parameters, until no further outliers remain.

Here, the estimated cluster distance and space velocity, in-
cluding intrinsic dispersion, are combined with the individual
observations and their associated errors in order to distinguish
between members and non-members in a single step.

Testing using a 1000-star sample of GOG simulated field
stars added to the five simulated Pleiades samples used in Fig. 7,
the χ2 test excluded field stars with a misclassification rate be-
tween 0.8 and 0.3%, assuming a worst case of zero radial veloc-
ity information.

9. Conclusions

An improved method for estimating the properties of open clus-
ters has been presented, and tested using real data on two nearby
and well studied open clusters. In addition to distance estima-
tion, internal kinematics and spatial structure were probed, with
mass segregation detected in the case of the Pleiades. These re-
sults confirm that the method performs as expected and highlight
the potential future uses of such a method when high quality par-
allax information is available from the Gaia mission.

After revisiting the “Pleiades problem”, we find that an
explanation cannot be found in error correlation problems in
Hipparcos. Through the use of simulations we find that Gaia
will measure the distance to Pleiades stars with precision of a
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fraction of a percent, enabling a conclusion to this long running
discrepancy.

The ML method can be extended further to give more de-
tailed information, such as including a model for cluster ellip-
ticity and orientation. It is possible to include and compare dif-
ferent spatial and kinematic distributions, allowing one to test
predictions on spatial structure, mass segregation, and peculiar
motions, and to test for other properties such as cluster rotation.
In the case of the absolute magnitude distribution, it would be
possible to give age and metallicity estimates by fitting and com-
paring sequences of different theoretical isochrones.

Unresolved binaries, which complicate studies of open clus-
ters, can be detected using the posterior distances calculated
using the ML method and the resulting colour−magnitude di-
agram. It is possible to extend the method to use a distribu-
tion in absolute magnitude that is asymmetrical around the main
sequence, in order to consider undetected unresolved binaries
within the method.

As mentioned in Sect. 5, a lack of quality radial velocity
data for Hipparcos Pleiades stars limits the application of the
method in fitting the full three-dimensional kinematics of the
open cluster. This is expected to change when Gaia comes to
fruition, because all stars with GRVS < 17 will have radial veloc-
ity information from the on-board radial velocity spectrometer.
Additionally, very high quality radial velocities for stars in more
than 100 open clusters will become available through the Gaia
ESO Survey (Gilmore et al. 2012), expanding the scope of the
method’s application to clusters at much greater distances.
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Appendix A: Cartesian to galactic coordinate
transformation

The spatial distribution of the cluster is given in Cartesian coor-
dinates by a Gaussian distribution in each axis:

ϕx = e
−0.5

(
x−X0
σS

)2

(A.1)

ϕy = e
−0.5

(
y−Y0
σS

)2

(A.2)

ϕz = e
−0.5

(
z−Z0
σS

)2

, (A.3)

where X0, Y0, and Z0 define the centre of the cluster in each axis,
and σS gives the variance of the distribution.

To transform this Cartesian PDF into polar coordinates as
required for our observables r, l, and b, we start with the rela-
tionship between our two sets of variables and find the inverse:

r =
√

x2 + y2 + z2 =⇒ x =
√

r2 − y2 − z2 (A.4)

l = tan−1
(
y

x

)
=⇒ y = tan(l)x (A.5)

b = sin−1
( z
r

)
=⇒ z = rsin(b) . (A.6)

Then we have two equations and two unknowns:

x2 = r2 − y2 − z2 = r2 − tan2(l)x2 − r2sin2(b) (A.7)

x2(1 + tan2(l)) = r2 − r2sin2(b) (A.8)

x2 =
r2 − r2sin2(b)

1 + tan2(l)
(A.9)

x = rcos(b)cos(l) (A.10)

y = rcos(b)sin(l) . (A.11)

Then we require the Jacobian: r2cos(b).
By substituting the x, y, and z found above into the original

PDF and multiplying by the Jacobian of the transformation, we
find the PDF in the new coordinate system:

ϕrlb = r2cos(b)

× e
− 0.5
σ2

S
((rcos(b)cos(l)−X0)2+(rcos(b)sin(l)−Y0)2+(rsin(b)−Z0)2)

. (A.12)

By rotating our coordinate system l, b→ l′, b′ to align the cluster
centre with the X axis, we have new coordinates l′ and b′ for
all the stars. In this rotated coordinate system, the cluster has
a position Y′0 = Z′0 = 0, and X′ is equivalent to the distance
to the clusters centre. The above spatial probability distribution
function can then be simplified as

ϕr′l′b′ = r2cos(b′)e
− 0.5
σ2

S
(R2+r2−2rRcos(b′)cos(l′))

(A.13)

where R is the distance to the cluster.
It should be noted that the two coordinate systems are

used simultaneously. The rotated coordinates (l′, b′) are used
in the integration over position to simplify the integrals as ex-
plained above. However, in the analytic solution to the integrals
over μα∗μδvr, the unrotated coordinates l and b are used.

Appendix B: Integration of the likelihood function

To evaluateD(y|θ) in Eq. (1) we must integrate over all y0, giv-
ing a multiple integral that can be split into three parts. First is
the integral over variables with assumed zero error, second kine-
matics, and finally distance.

B.1. Integration over m0, l′0 and b′0
As these variables have errors given by the delta function,
(m, l′, b′) = (m0, l′0, b

′
0) so we can use (m, l′, b′). This avoids in-

tegrating over these three parameters.

B.2. Integration over μα∗ ,0, μδ,0 and vr0

The triple integral over μα∗ ,0, μδ,0 and vr0 is

∫
∀μα∗ ,0μδ,0vr0

ϕv(U,V,W)E(z|z0) dμα∗ ,0 dμδ,0 dvr0 (B.1)

where

E(z|z0) = e
−0.5

(
μα∗ −μα∗ ,0
εμα∗

)2

e
−0.5

(
μδ−μδ,0
εμδ

)2

e
−0.5

(
vr−vr0
εvr

)2

. (B.2)

In order to perform the integral, the function ϕv(U,V,W) must be
expressed in terms of μα∗ ,0, μδ,0, and vr0. This is achieved through
the following expressions:

U = a1μα∗r + b1μδr + c1vr

a1 = −kcos(b)sin(l)

b1 = −ksin(b)cos(l)

c1 = cos(b)cos(l) (B.3)

V = a2μα∗r + b2μδr + c2vr

a2 = kcos(b)cos(l)

b2 = −ksin(b)sin(l)

c2 = cos(b)sin(l) (B.4)

W = a3μα∗r + b3μδr + c3vr

a3 = 0

b3 = kcos(b)

c3 = sin(b) (B.5)

where k = 4.74 Km year
”s pc ·

Therefore ϕv(U,V,W) can be written in terms of μα∗ ,0, μδ,0
and vr0 as

ϕv(U,V,W) = ep(μα∗ ,0,μδ,0,vr0|r). (B.6)

This can be integrated using the definite integral,∫ ∞

−∞
e−(αx2 + βx+ γ)dx =

√
π

α
e

(
β2

4α − γ
)
, (B.7)

giving the solution∫
∀μα∗ ,0μδ,0vr0

ϕv(U,V,W)E(y|y0) dμα∗,0 dμδ,0 dvr0 = K e

(
Y2

4X −Z
)

(B.8)

where K, X, Y, and Z are defined in Eq. (B.10).
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B.3. Integration over R

The remaining integral has no analytical solution and will there-
fore be performed numerically:

D(y|θ) =
∫

r
ϕM0ϕ�0l′0b′0 K e

(
Y2

4X −Z
)
e−0.5

(
�−�0
ε�

)2

dr0 (B.9)

K =

√
− π3

J2E1X

X =
D2

1

4E1
− F1

Y =
B1D1

2E1
−C1

Z =
B2

1

4E1
− A1

A1 =
A2

2

4J2
− D2

B1 =
A2B2

2J2
− E2

C1 =
A2C2

2J2
− F2

D1 =
B2C2

2J2
−G2

E1 =
B2

2

4J2
− H2

F1 =
C2

2

4J2
− I2

A2 = − μli

ε2μα∗
−

⎛⎜⎜⎜⎜⎝a1U0

σ2
U

+
a2V0

σ2
V

+
a3W0

σ2
W

⎞⎟⎟⎟⎟⎠ r

B2 =

⎛⎜⎜⎜⎜⎝a1b1

σ2
U

+
a2b2

σ2
V

+
a3b3

σ2
W

⎞⎟⎟⎟⎟⎠ r2

C2 =

⎛⎜⎜⎜⎜⎝a1c1

σ2
U

+
a2c2

σ2
V

+
a3c3

σ2
W

⎞⎟⎟⎟⎟⎠ r

D2 =
1
2

⎛⎜⎜⎜⎜⎝ μ2
li

ε2μα∗
+
μ2

bi

ε2μδ
+
v2ri

ε2vr
+

U2
0

σ2
U

+
V2

0

σ2
V

+
W2

0

σ2
W

⎞⎟⎟⎟⎟⎠
E2 = −μbi

ε2μδ
−

⎛⎜⎜⎜⎜⎝b1U0

σ2
U

+
b2V0

σ2
V

+
b3W0

σ2
W

⎞⎟⎟⎟⎟⎠ r

F2 = − vri

ε2vr
−

⎛⎜⎜⎜⎜⎝c1U0

σ2
U

+
c2V0

σ2
V

+
c3W0

σ2
W

⎞⎟⎟⎟⎟⎠
G2 =

⎛⎜⎜⎜⎜⎝b1c1

σ2
U

+
b2c2

σ2
V

+
b3c3

σ2
W

⎞⎟⎟⎟⎟⎠ r

H2 =
1
2

1
ε2μδ
+

1
2

⎛⎜⎜⎜⎜⎝ b2
1

σ2
U

+
b2

2

σ2
V

+
b2

3

σ2
W

⎞⎟⎟⎟⎟⎠ r2

I2 =
1
2

1
ε2vr
+

1
2

⎛⎜⎜⎜⎜⎝ c2
1

σ2
U

+
c2

2

σ2
V

+
c2

3

σ2
W

⎞⎟⎟⎟⎟⎠
J2 =

1
2

1
ε2μα∗

+
1
2

⎛⎜⎜⎜⎜⎝ a2
1

σ2
U

+
a2

2

σ2
V

+
a2

3

σ2
W

⎞⎟⎟⎟⎟⎠ r2 (B.10)

Appendix C: Normalisation coefficient

Until now we have been using the un-normalised joint prob-
ability distribution. Normalisation is achieved by dividing by
a normalisation constant, C. The normalisation constant is
found by integrating the un-normalised joint probability distri-
butionD(y|θ) over all y:

C =
∫
∀y0

∫
∀y
ϕM0ϕ�0l′0b′0ϕv0(U,V,W)S(y)E(y|y0) dy dy0. (C.1)

This integral can be performed in two parts, where I is defined
such that

C =
∫
∀y0

ϕM0ϕ�0l′0b′0ϕv0(U,V,W)
∫
∀y
S(y)E(y|y0) dy︸������������������︷︷������������������︸

I

dy0. (C.2)

Substituting in the selection functionS(y) and the PDF of the ob-
servational errors E(y|y0) gives the following seven-dimensional
integral:

I =
∫
∀y
θ(m − mlim)E(y|y0) dy. (C.3)

This integral can be split into two parts. The integral over the
delta function in E(y|y0) that, by definition, gives one; and the
integral over each Gaussian error,

I = θ(m − mlim)
∫
∀�μα∗μδvr

e−0.5
(
�−�0
ε�

)2

e
−0.5

(
μα∗ −μα∗ ,0
εμα∗

)2

e
−0.5

(
μδ −μδ,0
εμδ

)2

× e
−0.5

(
vr − vr0
εvr

)2

d� dμα∗ dμδ dvr

∫ ∞

−∞
δ(m, l′, b′)dm dl′ db′ (C.4)

I = θ(m − mlim)(2π)2ε�εμα∗ εμδ εvr . (C.5)

Here, θ(m − mlim) acts to provide an upper limit to the integral
over all MG. Substituting I back into C we have

C = (2π)2ε�εμα∗ εμδ εvr

×
∫ mlim

−∞

∫ ∞

0

∫ π/2

−π/2

∫ 2π

0

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
ϕm0ϕr0l′0b′0

× ϕv(U,V,W) dU dV dW dl′0 db′0 dr0 dm0. (C.6)

As with in the previous section, the integral can be split up into
a number of parts.

C.1. Integration over MG

Evaluating first the integral over apparent magnitude gives

∫ mlim

−∞
ϕm0 dm0 =

√
2π
2
σMerfc

(
A − mlim√

2σM

)
(C.7)
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where erfc is the complementary error function, and

A = 5log(r0) − 5 + Mmean. (C.8)

C.2. Integration over (U,V,W)

Integrating over (U,V ,W) gives∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
ϕv(U,V,W) dU dV dW = (2π)3/2σUσVσW . (C.9)

C.3. Integration over l′0, b′0, and r0

The remaining triple integral has no analytical solution and will
be performed numerically:

C = B
∫ ∞

0

∫ π/2

−π/2

∫ 2π

0
erfc

(
A − mlim√

2σM

)
ϕr0l′0b′0 dl′0 db′0 dr0 (C.10)

with: B = (2π)4

2 σUσVσWσMε�εμα∗ εμδ εvr .
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