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Abstract—This paper presents a theoretical analysis where general and 

accurate formulas for the design of Fabry-Pérot antennas (FPA) are 

derived from a simple ray optics approach. The beam-splitting condition 

predicted from the leaky-wave (LW) theory is analyzed here from ray optics 

analysis. Excellent agreement is observed with the results obtained from the 

LW analysis in a significant frequency range. Thereby, these expressions 

allow to design FPAs accurately without performing dispersion analysis of 

the leaky modes inside the structure. 

 
Index Terms— Fabry-Pérot resonant cavity antennas, leaky 

wave antenna, ray optics analysis, splitting condition. 

I. INTRODUCTION 

ABRY-PEROT antennas (FPA) introduced by Trentini [1] 

have been of high interest because of its high directivity 

and structural simplicity. Based on the use of a partially 

reflecting surface (PRS), as shown in Fig. 1a, its radiation 

mechanism has given rise to several works based on analytical 

developments focused on it [2]-[7]. Firstly, a simple ray optics 

analysis was employed to model their response [1], [3], taking 

into account the presence of multiple reflections between the 

ground plane and the PRS (see Fig. 1a). It has been observed 

that this approach is accurate enough as a first step design of 

these antennas [3]. A useful expression describing the relation 

between the PRS reflection coefficient 𝑅 = rejφ (where r is 

the magnitude and φ the phase), the height of the PRS (h) over 

the ground plane, the operating frequency 𝑓 and the power 

pattern PT function of the observation angle 𝜃 has been 

derived in [1, eq. (3)]: 

PT(θ) =  
1 − r(θ)2

1 + r(θ)2 − 2r(θ) × cos (φ(θ) − π −
4πh
λ0

cos(θ))

F2(θ)    (1) 

where 𝜆0 = 2𝜋 k0⁄ , the wavelength in free space and F2(θ) is 

the radiation pattern of the primary antenna, that could equal 1 

if this primary feed is assumed isotropic. This analytical 

formula is obtained assuming an infinite PRS and ground 

plane. 
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From (1), it is obvious that the maximum power at 

broadside (θ = 0) is obtained when the resonance condition is 

satisfied: 

𝜑(0) =
4πh

c
f − (2N − 1)𝜋, N = 0,1,2 … (2) 

In practice, (2) is used to do a first design of the FPA. Then 

in a second step, a full wave simulation can be used to 

optimize the real prototype with a finite antenna length and 

real excitation. 

 
Fig. 1.  Schematic diagram of the FPA and geometry of the PRS. (a) LWA 

and illustration of the simple ray analysis of the resonant cavity antenna 

formed by a PRS over a ground plane, (b) illustration of the LWA approach, 

(c) TEN model and equation. 

A few decades later, the leaky-wave theoretical principle 

was applied to describe the fundamental operation of FPAs 

[8], [5] (see Fig. 1b). This model allows to predict the 

radiation characteristics by predicting the propagation of 

radiative transverse electric (TE) and/or transverse magnetic 

(TM) leaky modes (LM) inside the Fabry-Pérot cavity (FPC) 

(see the illustration depicted in Fig. 1c). To determine the 

complex propagation constants of these LMs, a transverse 

equivalent network (TEN) can be engineered and 

transcendental resonance equation must be solved by 

numerical methods. The wavenumbers of these modes are 

useful data to obtain the radiation response of such antenna. 

Moreover, the far field radiated by the FPA can be computed 

from these propagation constants [3]. Based on this physical 

interpretation, lots of analytical expressions can be derived to 

help designers [7].  

From this theory, the maximization of the power density 

radiated at broadside of such antenna (see Fig. 1a) can be 

derived analytically [4, eq. (4)], and the optimum condition 
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also known as the beam-splitting condition corresponds to the 

equation α=β [4]. Simple equations [4, eq. (20), (21)] can be 

obtained respectively to choose the cavity height h and the 

corresponding leaky-wave (LW) phase β and attenuation 

constants α for a given frequency and PRS. 

In this paper, the approach introduced in 4 to derive the 

splitting condition is applied for the first time on the power 

pattern formula (1) obtained from the ray optics analysis. The 

splitting condition and several formulas useful for antenna 

design are then derived. Contrary to the equations derived 

from the LW analysis and expressed in terms of the 

propagation constants, these formulas are functions of the 

magnitude r and the phase of the reflection coefficient of the 

PRS φ. The accuracy and the validity range of these formulas 

are evaluated and compared with the ones obtained from a LW 

analysis. 

II. RAY OPTICS ANALYSIS – THE SPLITTING CONDITION 

From the ray optics approach, an analytic formula for the 

power pattern of the LWA shown in Fig. 1a is obtained by 

doing the summation of the transmitted rays: 

PT(θ, f, εr)

=  
1 − r2

1 + r2 − 2r × cos(φ − π − 2√εrk0hcos(θ′))
 

(3) 

 

Contrary to previous works such as [1]-[3], the presence of a 

dielectric substrate of permittivity εr between the PRS and the 

conductive plane is considered in this work. Both amplitude r 

and phase φ of the PRS reflection coefficient are a function of 

the angle of incidence θ′ corresponding to the ray propagating 

inside the cavity filled with a dielectric substrate of relative 

permittivity εr and thickness (cavity height) h. The radiation 

angle θ in free space is linked to θ′ by the Snell–Descartes 

law:  

θ′ =  asin (
1

√εr

sin(θ)) (4) 

The PRS reflection coefficient (R in Fig. 1c) can be linked 

to the phase β and the attenuation constants α by using the 

equivalent circuit of the transverse section of the structure 

shown in Fig. 1c [3]. Note also that the TEN introduces the 

PRS as an admittance YPRS=jB̅ η0⁄ , where η0 is the free-space 

characteristic impedance and B̅ the normalized susceptance. 

For the sake of clarity, a one-dimensional antenna is under 

consideration, so only the TE mode is considered in this study. 
Therefore, the admittances for the TE polarization have the 

following known expressions [4]:  

Y0 =
|cosθ′|

η0

,  Y1 =
√εr|cosθ′|

η0

 (5) 

where Y0 is the free space characteristic admittance and Y1 the 

characteristic admittance of the substrate medium inside the 

FPC (see Fig. 1c). Then, the reflection coefficient R is 

obtained easily from microwave transmission line theory: 

R(θ, εr) = [1 (YPRS + Y0)⁄ − 1 Y1⁄ ]/[1 (YPRS + Y0)⁄ + 1 Y1⁄ ] 

For θ = 0, an analytical expression of r and φ, function of B̅ 
can be easily derived: 

r(0, εr) =  
(((√εr + 1)(√εr − 1) − B̅2)

2
+ 4εrB̅2)

1 2⁄

(√εr + 1)2 + B̅2
 

 

tan(φ(0, εr)) =  
−2B̅√εr

(√εr + 1)(√εr − 1) − B̅2
 (6) 

To establish the splitting condition, the same approach as 

the one introduced in [4] is done afterwards. For the sake of 

simplicity, let us consider the structure where the PRS is 

separated from the ground plane by a vacuum layer (εr =
1, θ = θ′). The derivative of the denominator DPT in (3) with 

respect to the angle of incidence θ is: 

DPT(θ)′ = 2r × r′

− (2r′ × cos(Φ) − r × sin(Φ)
× φ′) 

(7) 

where Φ = φ - π - 2k0×h×cos(θ). The stationary point of PT can 

be found by equating (7) to zero. From (7), at θ = 0, the 

maximum of PT is obtained when Φ = φ −  π −  2k0 × h =
 2Nπ, N = 0,1,2 … which exactly corresponds to (2). A 

second condition is assumed on r, which is the variation of the 

reflection magnitude with the angle of incidence does not 

varies significantly when θ goes to zero (r′(θ) ≈ 0). This 

second condition is not restrictive in practice for this kind of 

antenna, as the variation of r when θ is small, can be 

considered close to zero. Concerning the condition on  Φ, this 

result means that the classical expression (2) is met 

theoretically when the splitting condition α=β obtained by the 

LW approach is satisfied. In such case, a single maximum at 

broadside (θ = 0º) is observable on the radiation power 

pattern.  

 

 
Fig. 2.  (a) Radiated power density vs θ for 3 frequencies around the 

splitting condition f =10.07 GHz. (b) Zoom on the neighbourhood around 

θ=0º. The FPA is shown in Fig. 1: p=5mm, Ls=4mm, εr=1, h =14 mm. The 

corresponding coefficients B̅ and r(0,1) are given at broadside in Fig. 2a.  
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This can be observed in Fig. 2, where the variation of the 

radiated power density (3) with the angle of incidence θ for 

three frequencies in the neighborhood of the splitting 

condition frequency are shown in Fig. 2. The first derivative 

of DPT, and the expression Φ are also plotted. A LWA with a 
metallic slot-based frequency selective surface (FSS) has been 

considered (see Fig. 1). At the splitting frequency 

(fsc=10.07GHz), and assuming r′(θsc) ≈ 0, it can be observed 

that PT is maximum at θ = 0, where Φ is also equal to zero (so 

resonance equation is met) (see Fig. 2b). For a higher 

frequency, the splitting condition is not met, so two symmetric 

main radiation lobes pointing at (θsc, −θsc) are expected. This 

is observed if a frequency slightly higher than fsc is analyzed, 

e.g. f=10.30GHz (see Fig. 2). In this case, the expression φ - π 

- 2k0×h×cos(θ) = 2Nπ is met at (12º,-12 º), matching the 

angles where PT is maximum. Finally, it is also worth to note 

that for f=9.80GHz, which is lower than fsc, DPT(θ)′ = 0 at 

θ = 0, but Φ = 0 is not met for any θ, so the FPA is not 

resonating and power at broadside is not optimal (the antenna 

is operating inside the cutoff region of the FPC). 

a) Optimization condition for the FPC height 

Equation (2) can be used to compute the cavity height h, 

filled with a dielectric substrate 𝜀𝑟 and respecting the splitting 

condition at the desired frequency f, for θ = θ′ = 0: 

 

h =
φ(0) − (2N − 1)π

2√εrk0

=

 atan (
−2B̅√εr

(√εr + 1)(√εr − 1) − B̅2) − (2N − 1)π

2√εrk0

 

(8) 

 

Equation [4, eq. (20)], is an optimization condition for h that 
has also been derived from the dispersion equation (LW 

theory). Note that the following approximations have been 

taken into account to obtain [4, eq. (20)]: α=β <0.5 and B̅ >3. 

Expressions [4, eq. (20)] and (8) are both plotted in Fig. 3 for 

different values of 𝜀𝑟. For each value of B̅ and by considering 

the splitting condition α=β, the substrate thickness h and α 

have also been computed by solving the Transverse 

Resonance Equation (TRE) derived from the TEN:  

Y0 +  YPRS = jY1cot (h√εrk
o

2 − [β − jα]2)      (9) 

Both approximations from the ray optics and the LWA 

analysis are seen to be very accurate when B̅ ≥ 3. For lower 

values of B̅, (8) can be modified [noted in Fig. 3 as (8) mod] 

by adding the term −(1 + B̅) B̅2 + εr
1 4⁄⁄  in the argument of 

the arctangent function in (8), in order to increase its range of 

validity. Indeed, a better accuracy is now also obtained for 

lower values of B̅ < 3 when this modification is introduced, as 
observed in Fig. 3. 

b) Formula of the LM phase and attenuation constants 

An approximated expression for the LM wavenumber was 

also introduced in [4]. Equation [4, eq. (21)], can be used 

when the splitting condition is met for the antenna, but only 

when α=β <<1 and for large B̅. Based on the ray analysis, it is 

also possible to derive an accurate expression. This formula of 

the LM wavenumber can be found by equating (3) to [4, eq. 

(4)], which corresponds here to (10): 

PT[4] =  
|E0|2(β2 + α2)cos2(θ)

(k0
2sin2θ − β2 + α2) + 4 + α2β2

 (10) 

where the electric field amplitude 𝐸0 is similar to F(θ) 
previously introduced in (1). Indeed, both equations 

correspond to the radiated power density by the antenna, 

respectively derived from the ray analysis and the LWA 

approach respectively. As proved in Appendix I, when we 

consider the splitting condition α=β at fsc, and (2) at 

broadside θ = θ′ = 0, the following formula can be derived: 

𝛼 = β =
 √εrk0[1 − r(0, εr)]

√π[1 − r(0, εr)2]
 (11) 

The frequency chosen to compute (11) can be noted as the 

splitting frequency fsc. For the lossless structure under study, a 

comparison between (11), [4, eq. (21)] and the value extracted 

from the TEN model is given in Fig. 4. Contrary to the 

asymptotic expression [4, eq. (21)], (11) shows very good 

agreement in the full range of B̅. 
 

Fig. 3.  Optimization condition for the design of h as function of the 

normalized shunt susceptance B̅. Comparison between (8) obtained from the 

ray analysis and h = 1 (k0√εr) × [acot(B̅ √εr⁄ ) + π]⁄  obtained from the 

dispersion equation [4, eq. (20)] (LWA - Approximation), and from the full 

TEN resolution (LWA). A modified expression, (8) mod, is also shown for 

comparison. The structure is shown in Fig. 1a. εr= 2.2, f = 10GHz.  

 
Fig. 4.  Normalized  attenuation α k0⁄  and phase β k0⁄  constants of the TE 

LM versus the normalized shunt susceptance B̅. The corresponding antenna is 

plotted in Fig. 1. Expression (8) mod has been used to compute the cavity 

height h for each value of  B̅  in the case of the TEN computation.  εr = 2.2, 

fsc= 10GHz.  
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III. GENERAL FORMULA OF THE RADIATIVE POWER 

In a neighborhood of the frequency at which the splitting 
condition is met, it is now possible to extent the accuracy of 

the formula of the radiative power (3). The objective is to 

obtain exactly the same results between this formula expressed 

as functions of θ, f, 𝜀𝑟 , B̅ and the ones from the expressions 

derived with the LWA theory (expressed with 𝛼, 𝛽), thus 

obtaining an accurate and direct analytical expression which 

do not need solving the TEN to obtain the LM wavenumber.  

Equation [2, eq. 13], which has been firstly introduced, 

gives the radiated power density. It is easy to observe that this 
equation corresponds to (10) multiplied by the coefficient 

1 (𝛽2 + 𝛼2)⁄ . Using the previous work done to derive (11), as 
proved in Appendix II, the following expression can be 

derived: 

Pray
C (θ, f) =  PT(θ, f, εr)

π2

(2εrk0
2)2

1 − r(0, εr)2

[1 − r(0, εr)]2
cos(θ) (12) 

As mentioned, r and 𝜑 can always be rewritten in terms of 

B̅ [e.g. r(0, εr)  is given by (6)]. The comparison between Pray
C  

and [2, eq. 13] is plotted in Fig. 5. A very good agreement can 
be seen. A parametric study has shown that this agreement is 

obtained whatever 𝜀𝑟 and f, but for B̅ ≥ 1. For smaller values 

of B̅, good accuracy is obtained only when f = fsc. Strictly 

speaking, this corresponds to the frequency for which (12) has 

been analytically derived (see Appendix II).  

 
Fig. 5.  a) Radiative power density as a function of θ in the neighbourhood 

of the splitting frequency (fsc=20GHz, frequency range: 19 GHz – 21 GHz). 

Comparison between (12) (ray analysis) and [2, eq. 13] (LWA approach). 

B̅ = 20, 𝜀𝑟=2.2, h=5.2mm. (b) Zoom on Fig. 5(a) on a smaller range of θ. All 

curves are normalized to the value derived for fsc=20GHz, θ = 0. 

The same approach has been done with (10), which is a 
more accurate formula. Indeed, the presence of the coefficient 

(𝛽2 + 𝛼2) allows to take into account the variation of the 
radiated power magnitude when the beam pointing is off 

broadside. The following formula has been obtained:  

Pray
L (θ, f) =  PT(θ, f, εr)

π

2εrk0
2 g(f)cos(θ) (13a) 

with 

g(f) = {1 + [
4B̅2

εr
1 2⁄ fsc

(fsc − f)]

2.11

}

1 2⁄

 

Note that when f = fsc, Pray
L  is simple equal to: 

Pray
L (θ, fsc) =  PT[4](θ, fsc) =  2α2 ∙ Pray

C (θ, fsc)

= PT(θ, fsc, εr)
π

2εrk0
2 cos(θ).  

(13b) 

Equation (13b), which is valid for f = fsc, can be derived 
analytically with the use of (17) and (21) given in Appendix I 

and by multiplying the results by cos(θ) to consider the angle 

dependency. Expression (13a) has been obtained from (13b) 

with a curve fitting approach. Fig. 6 shows the comparison 

between the two formulas. Again a very good agreement is 

obtained, especially for (13b) where both curves are 

superimposed perfectly whatever 𝜀𝑟 and fsc. Contrary to the 

results plotted in Fig. 5, in Fig. 6, the magnitude of the peak 
apex are not constant which is linked to the presence of the 

term (𝛽2 + 𝛼2). The validity range of (13) is comparable with 
the one of (12). A comparison study between (13) and (10) is 

given in Fig. 7 by varying  B̅ and 𝑓 on a wide range. Fig. 7a 

presents the absolute error for the same antenna already used 

in Fig. 6. In Fig. 7b the radiative power density as a function 

of θ for 4 specifics couples of values (B̅, f) is given. The 

absolute error for the same structure but with 𝜀𝑟 =10 is also 

given in Fig. 7c. A good agreement is obtained on a wide 

range of B̅ and f values. This is especially true for f = fsc, 
where the data comparison shows a very good accordance 

between both expressions: (13b) and (10). This result validates 

the accuracy of (11).  

 
Fig. 6.  Radiative power density as a function of 𝜃 in the neighbourhood of 

the splitting frequency (fsc=20GHz, frequency range: 19 GHz – 21 GHz). 

Comparison between (13) (ray analysis) and (10) (LWA approach). B̅ = 20, 

fsc=20GHz, 𝜀𝑟 =2.2, h=5.2mm. All curves are normalized to the value 

derived for fsc=20GHz, θ = 0.  

Last but not least, an analytic expression of 𝛼 and 𝛽 can be 
derived using the previous equations. Indeed, replacing 

  Pray
C (θ, f) and PT[4] in (22) by the obtained expressions from 

the ray optics approach [respectively (12) and (13)], it is 

possible to express 𝛼 and 𝛽 in term of θ, f, 𝜀𝑟 , B̅ : 
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α2 + β2 =
2εrk0

2

𝜋

(fsc)[1 − r(0, 𝜀𝑟 , fsc)]2

1 − r(0, 𝜀𝑟 , fsc)2
×  {1

+ [
4B̅2

𝜀𝑟
1 2⁄ fsc

(fsc − f)]

2.11

}

1 2⁄

  

(14) 

The phase constant β depends on the scan angle 𝜃𝑝 through 

the approximate formula [5]∶ 

β = k0sin(𝜃𝑝)  (15) 

It is seen that (15) remains very accurate when the scan angle 

is not too small [4] [the effect of the approximation is shown 

in Fig. 2a where 𝜃𝑝 computed form (15) is given at three 

different frequencies]. The scan angle can be obtained from 

the ray optic approach: 𝜃𝑝  is the angle for which the power 

pattern of the LWA (3) is maximum. It can be obtained 1) 

numerically from (3) [or (12) or (13)], or 2) by studding 

analytically (3) as done in section II (here a dielectric 𝜀𝑟 is 

taken into account). Thus, as previously derived, the solution 
of the following equation: 

φ(𝜃′) =  2𝑘0√εrℎ𝑐𝑜𝑠(𝜃′) + (2N + 1)π, N = 0,1,2 … (16) 

gives 𝜃′𝑝, and the scan angle 𝜃𝑝 is then obtained by (4). Note 

that as φ(𝜃)  can be expressed in terms of θ, f, 𝜀𝑟 , B̅, so β can 

also be expressed only with physical quantities coming from 

the ray optic approach. This expression of β can be used to 

obtain α using (14), always with the same physical quantities. 
Fig. 8 shows a comparison of α and β extracted from a TEN 

model and derived with ray optics formulas (14)-(16). The 

phase constant β computed numerically from (13) is also 

given. Note that both computations give exactly the same 

result as shown in Fig. 8. It is interesting to see that for a 

frequency lower than the splitting condition, that is to say 

when β is imposed to be null in first approximation, the value 

of α computed by the ray optics approach is in good 

agreement with the one extracted from the TEN model. This 

approximation is thus relevant in such case, and this is true for 

all the configurations tested (two different configurations are 
shown in Fig. 8). At the splitting frequency and nearby 

surroundings, a significant error is observed because β is not 

actually equal to zero [5]. The condition β=α in (14) has to be 

used, which rigorously corresponds to (11). For higher 

frequencies, in the neighborhood of the splitting condition 

frequency, the value of α obtained with formulas (14)-(16) can 

still be used in first approximation with a good accuracy. 

 

Fig. 8.  Normalized attenuation α k0⁄  and phase β k0⁄  constants of the TE LM 

versus the frequency extracted from a TEN model and derived with ray optics 

formulas (14)-(16), for two antenna configurations: a) the antenna parameters 

are given in Fig. 2: p=5mm, Ls=4mm, εr=1, h =14 mm, fsc= 10GHz. b) The 

antenna parameters are given in Fig. 5: B̅ = 20, 𝜀𝑟=2.2, 

h=5.2mm, fsc=20GHz. Same legend for both plots. 

IV.  CONCLUSION 

In this work, analytical formulas have been derived to analyze 

the splitting condition of Fabry Pérot Antennas (FPA) from a 

ray optics analysis approach. It has been shown that the 

classical formula used to compute the maximum power at 

boresight obtained from a ray analysis corresponds 

theoretically to the splitting condition that has been introduced 

from the leaky-wave approach. With the help of this formula, 

simple analytical expressions have been derived to aid in the 

design of these antennas, just as a function of the PRS 

reflectivity, frequency and the dielectric permittivity. An 
accurate formula describing the value of the leaky-mode phase 

and attenuation constants when the splitting condition is met 

have been obtained and an extended formula of the radiated 

power radiation, considering the presence of a dielectric 

substrate, have been also introduced. Thereby, this simple 

model does not require extracting the leaky mode propagation 

constants from a Transverse Equivalent Network (TEN) model 

 
Fig. 7.  Comparison study between (13) and (10) by varying B̅ and f on a wide range for the same antenna already used in Fig. 6. (a) Absolute error for εr =2.2.               

(b) Radiative power density computed with (13) and (10) as a function of θ for 4 specifics couples values of B̅ and f. (c) Absolute error for εr =10. 
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to compute the radiation pattern and the attenuation constant 

of this kind of leaky-wave antennas (LWAs).  

APPENDIX I 

The proof of (11) can be obtained by considering that (10) and 

(3) have to be equal up to a constant multiplier C:  

C ∙ PT[4] =  PT(θ, f, εr) (17) 

Equation (11) gives an accurate value of α and β when the 
splitting condition is met, that is to say, when α=β, by 

considering (2) and when looking at broadside θ = θ′ = 0. In 

such a case (17) can be rewritten as:  

 α = β = (
C

2

[1 − r (0, εr)]2 

[1 − r(0, εr)2]
)

1 2⁄

 (18) 

To obtain analytically the value of C, let us consider the 

condition B̅ ≫ 1 for which we should have [4, eq. 21], given 

below for simplicity (lossless configuration): 

α = β =
εr

3 4⁄
k0

√πB̅
 (19) 

With (6), an approximation of r(0, εr) when B̅ ≫ 1 can be 

derived:   

r(0, εr) = 1 −
2εr

1 2⁄

B̅2
 (20) 

By using (18) - (20), C can be extracted as follow, 

C =
2k0

2εr

π
 (21) 

and (11) is then directly deduced from (18) and (21). 

APPENDIX II 

The relation between [4, eq. (4)], [noted here (10) for PT[4]  ] 

and [2, eq. 13] (noted here  Pray
C  ) is given by (22): 

PT[4] =  (α2 + β2)  Pray
C (θ, f) (22) 

By considering (17), (21), (given in Appendix I) and (22), the 

relation between   Pray
C  and PT(θ, f, εr) can be obtained in terms 

of α and β. At the splitting condition, α and β can be replaced 

using (11). Equation (12) is then obtained. 
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