
HAL Id: hal-02053948
https://hal.science/hal-02053948v1

Submitted on 1 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Generic constructions of PoRs from codes and
instantiations

Julien Lavauzelle, Françoise Levy-Dit-Vehel

To cite this version:
Julien Lavauzelle, Françoise Levy-Dit-Vehel. Generic constructions of PoRs from codes and instan-
tiations. Journal of Mathematical Cryptology, In press, 13 (2), pp.81–106. �10.1515/jmc-2018-0018�.
�hal-02053948�

https://hal.science/hal-02053948v1
https://hal.archives-ouvertes.fr

Generic constructions of PoRs from codes and instantiations

Julien Lavauzelle † Françoise Levy-dit-Vehel ‡

Abstract

In this paper, we show how to construct, from any linear code, a Proof of Retrievability
(PoR) which features very low computation complexity on both the client (Verifier) and server
(Prover) side, as well as small client storage (typically 512 bits). We adapt the security model
initiated by Juels and Kaliski [JK07] to fit into the framework of Paterson et al. [PSU13],
from which our construction evolves. We thus provide a rigorous treatment of the security
of our generic design; more precisely, we sharply bound the extraction failure of our protocol
according to this security model. Next, we instantiate our formal construction with codes
built from tensor-products as well as with Reed-Muller codes and lifted codes [GKS13],
yielding PoRs with moderate communication complexity and (server) storage overhead, in
addition to the aforementioned features.

1 Introduction

1.1 Motivation

Cloud computing and storage has evolved quite spectacularly over the past decade. Especially,
data outsourcing allows users and companies to lighten their storage burden and maintenance
cost. Though, it raises several issues: for example, how can someone check efficiently that he
can retrieve without any loss a massive file that he had uploaded on a distant server and erased
from his personal system?

Proofs of retrievability (PoRs) address this issue. They are cryptographic protocols involving
two parts: a client (or a verifier) and a server (or a prover). PoRs usually consist in the following
phases. First, a key generation process creates secret material related to the file, meant to be kept
by the client only. Then the file is initialised, that is, it is encoded and/or encrypted according
to the secret data held by the client. This processed file is uploaded to the server. In order
to check retrievability, the client can run a verification procedure, which is the core of the PoR.
Finally, if the client is convinced that the server still holds his file, the client can proceed at any
time to the extraction of the file.

Several parameters must be taken into account. Plainly, the verification process has to feature a
low communication complexity, as the main goal is to avoid downloading a large part of the file to
only check its extractability. Second, the storage overhead induced by the protocol must be low,
as large server overhead would imply high fees for the customer. Third, the computation cost of
the verification procedure must be low, both for the client (which is likely to own a lightweight
device) and the server (whose computation work could also be expensive for the client).
∗This paper appears in: Journal of Mathematical Cryptology, 2019, DOI:10.1515/jmc-2018-0018
†LIX, École Polytechnique, Inria & CNRS UMR 7161, Université Paris-Saclay, 1 rue Honoré d’Estienne d’Orves,

Bâtiment Alan Turing, 91120, Palaiseau, France, julien.lavauzelle@inria.fr
‡ENSTA ParisTech, Inria & LIX, 828 boulevard des Maréchaux, 91762 Palaiseau, France, levy@ensta.fr

1

Notice that proofs of data possession (PDP) represent protocols close to what is needed in PoRs.
However, in PDPs one does not require the client to be able to extract the file from the server.
Instances of PDPs are given by Ateniese et al. [ABC+11]. Besides, protocols of Lillibridge et
al. [LEB+03] and Naor and Rothblum [NR09] are very often seen as precursors for PoRs. For
instance, the work of Naor and Rothblum [NR09] considers a setting in which the client directly
accesses the file stored by the prover/server (while the actual PoR definition uses “an arbitrary
program as opposed to a simple memory layout and this program may answer these questions in
an arbitrary manner” [SW13]).

1.2 Previous work

Juels and Kaliski [JK07] gave the first formal definition of PoRs. They also proposed a first
construction based on so-called sentinels (namely, random parts of the file to be checked during
the verification step) the client keeps secretly on his device. Additionally, an erasure code ensures
the integrity of the file to be extracted. This seminal work also raised several interesting points.
On the one hand, it revealed that (i) the client must store secret data to be used in the verification
step and (ii) coding is needed in order to retrieve the file without erasures or errors. On the
other hand, in JK’s construction the verification step can only be performed a finite number of
times, since sentinels cannot be reused endlessly.

As a consequence, Shacham and Waters proposed to consider unbounded-use PoRs in [SW13],
where they built two kinds of PoRs. The first one is based on linear combinations of authenticators
produced via pseudo-random functions; its security was proved using cryptographic tools such
as unforgeable MAC scheme, semantically secure symmetric encryption and secure PRFs. The
second one is a publicly verifiable scheme based on the Diffie-Hellman problem in bilinear groups.

Bowers, Juels and Oprea [BJO09] adopted a coding-theoretic approach (inner code, outer code)
to compare variants of SW and JK schemes. They focused on the efficiency of the schemes,
and proved that, despite bounded-use, new variants of JK construction are highly competitive
compared to other existing schemes.

In [PSU13], Paterson et al. provide a general framework for PoRs in the unconditional security
model. They show that retrievability of the file can be expressed as error-correction of a so-called
response code. That allows them to precisely quantify the extraction success as a function of the
success probability of a proving algorithm: indeed, in this setting, extraction can be naturally
seen as nearest-neighbour decoding in the response code. They notably apply their framework to
prove the security of a modified version of SW scheme. Also notice that, prior to [PSU13], Dodis,
Vahan and Wichs [DVW09] proposed another coding-theoretic model for PoRs that allowed them
to build efficient bounded-use and unbounded-use PoR schemes.

With practicality in mind, other features have been deployed on PoRs. For instance, Wang et
al. [WWR+11] presented a PoR construction based on Merkle hash trees, which allows efficient
file updates on the server. Their scheme is provably secure under cryptographic assumptions
(hardness of Diffie-Hellman in bilinear groups, unforgeable signatures, etc.), and has been im-
proved by Mo, Zhou and Chen [MZC12] in order to prevent unbalanced trees. More recently,
other features have been proposed for PoRs, such as multi-prover PoRs (see [PSU18]) or public
verifiability (for instance in [SR16]).

1.3 Our approach

As we remarked before, most PoR schemes rely on two techniques: (i) the client locally stores
secret data in order to check the integrity of the file and (ii) the client encodes the file in order to

2

repair a small number of erasures and errors that could have been missed during the verification
step.

In this work, we propose to build PoR schemes using codes that fulfil the two previous goals, when
equipped with a suitable family of efficiently computable random permutations. More precisely,
our idea is the following. Given a file F , a code C and a family of random permutations σK ,
the client sends to the server an encoded and scrambled version σK(C(F)) of his file. Then, the
verification step consists in checking “short” relations among descrambled symbols of w = C(F),
which come for instance from low-weight parity-check equations for C. Moreover, during the
extraction step, the code C provides the redundancy necessary to repair erasures and potential
unnoticed errors.

In the present work we develop a seminal idea that appeared in [LL16] where the authors proposed
a construction of PoRs based on lifted codes. We here provide a more generic construction, and
give a deeper analysis of its security.

While our scheme does not feature updatability nor public verifiability, we emphasize the gener-
icity of our construction, which is based on well-studied algebraic and combinatorial structures,
namely codes and their parity-check equations. Moreover, since the code C is public, the client
must only store the secret material associated to the random permutations σK , which consist in
a few bytes. Besides, an honest server simply needs to read pieces of w during the verification
step, and therefore has very low computational burden compared to many other PoR schemes.

1.4 Organisation

Section 2 is devoted to the definition and security model of proofs of retrievability. Despite
the great disparity of models in PoR literature, we try to keep close to the definitions given
in [JK07, PSU13], for the sake of uniformity.

Section 3 presents our construction of PoR. Precisely, in Subsection 3.1, we introduce objects
called verification structures for a code C that will be used in the definition of our PoR scheme
(Subsection 3.2). A rigorous analysis of our scheme is the purpose of the remainder of that
section.

The performance of our generic construction is given in Section 4. We then provide several
instances in Section 5, proving the practicality of our PoR schemes for some classes of codes.

2 Proofs of retrievability

2.1 Definition of underlying protocols

We recall that in proofs of retrievability, a user wants to estimate if a message m can be retrieved
from a encoded version w of the message stored on a server. In all what follows, the user will be
known as the Verifier (wants to verify the retrievability of the message) while the server is the
Prover (aims at proving the retrievability). The message space is denoted by M while W, the
(server) file space, is the set of encoded versions of the messages. We also denote by K the set
of secret values (or keys) kept by the Verifier, and by R the space of responses to challenges.

Throughout the paper, symbols ←R and ← respectively denote the output of randomised and
deterministic algorithms.

Definition 2.1. A keyed proof of retrievability (PoR) is a tuple of algorithms (KeyGen, Init,
Verify, Extract) running as follows:

3

1. The key generation algorithm KeyGen generates uniformly at random a key κ←R K. The
key κ is secretly kept by the Verifier.

2. The initialisation algorithm Init is a deterministic algorithm which takes as input a message
m ∈M and a key κ ∈ K, and outputs a file w ∈ W. Init is run by the Verifier which initially
holds the message m. After the process, the file w is sent to the Prover and the message
m is erased on Verifier’s side. Upon receipt of w, the Prover sets a deterministic algorithm
P(w) that will be run during the verification procedure.

3. The verification algorithm Verify is a randomised algorithm initiated by the Verifier which
needs a secret key κ ∈ K and interacts with the Prover. Verify is depicted in Figure 1 and
works as follows:

(i) the Verifier runs a random query generator that outputs a challenge u←R Q (the set
Q being the so-called query set);

(ii) the challenge u is sent to the Prover;
(iii) the Prover outputs a response ru ← P(w)(u) ∈ R;
(iv) the Verifier checks the validity of ru according to u and κ: the algorithm Verify finally

outputs the boolean value Check(u, ru, κ).
4. The extraction algorithm Extract is run by the Verifier. It takes as input κ and r = (ru :
u ∈ Q) ∈ RQ, and outputs either a message m′ ∈ M, or a failure symbol ⊥. We say that
extraction succeeds if Extract(r, κ) = m.

The vector r = (ru ← P(w)(u))u∈Q ∈ RQ is called the response word associated to P(w).

Verifier Prover

κ w

Pick u ←R Q at random

ru ← P(w)(u)

Output Check(u, ru, κ)

u

ru

Figure 1: Definition of algorithm Verify

Note that, in assuming that the response algorithm P(w) is deterministic and non-adaptive1

we follow the work of Paterson et al. [PSU13]. The authors justify determinism of response
algorithms by the fact that any probabilistic prover can be replaced by a deterministic prover
whose success probability is at least as good as the probabilistic one.

In Definition 2.1, we can see that a deterministic algorithm P(w) can be represented by the vector
of its outputs r = (P(w)(u))u∈Q, called the response word of P(w). Therefore, we can assume
that before the verification step, the Prover produces a word r(w) ∈ RQ related to the file w he
holds. In other words, we model provers as algorithms P which, given as input w, return a word
r ∈ RQ.

Following [PSU13], we also assume in this chapter that the extraction algorithm Extract is de-
terministic, though in general it can be randomised. Finally, notice that proofs of retrievability
aim at proving the extractability of a file. The extraction algorithm is therefore a tool to retrieve
the whole file. Hence, its computational efficiency is not a crucial feature.

1in the sense that its behaviour only depends on the values of challenges u, and not on previous calls to the
verification procedure

4

The following table summarises the information held by each entity after the initialisation step:

Verifier Prover

κ w

Let us also report the inputs and outputs of the algorithms involved in a PoR:

algorithm KeyGen Init Verify Check Extract

input 1λ m,κ r, κ u, ru, κ r, κ
output κ w True or False True or False m′ or ⊥

2.2 Security models

One should first notice that, despite many efforts, proofs of retrievability lack a general agreement
on the definition of their security model. Nevertheless, our definitions remain very close to the
ones given in the original work of Juels and Kaliski [JK07].

For a response word r ∈ RQ given by the Prover and a key κ ∈ K kept by the Verifier, we first
define the success of r according to κ as:

succ(r, κ) := Pru (Check(u, ru, κ) = True) ,

where the probability is taken over the internal randomness of Verify. A first security model can
be defined as follows.

Definition 2.2 (security model, strong version). Let ε, τ ∈ [0, 1]. A proof of retrievability
(KeyGen, Init,Verify,Extract) is strongly (ε, τ)-sound if, for every initial file m ∈ M, every up-
loaded file w ∈ W and every prover P :W → RQ we have:

Pr

 Extract(r, κ) 6= m
and

succ(r, κ) ≥ 1− ε

∣∣∣∣∣∣
κ←R KeyGen(1λ)
w ← Init(m,κ)
r ← P(w)

 ≤ τ , (1)

the probability being taken over the internal randomness of KeyGen under the constraint that
w = Init(m,κ).

A remark concerning parameters ε and τ . In proofs of retrievability, we aim at making the
extraction of the desired file m as sure as possible when the audit succeeds. Hence, it is desirable
to have τ small. On the other hand, the parameter ε measures the rate of unsuccessful audits
which leads the Verifier to believe the extraction will fail. Therefore, one does not necessarily
need to look for large values of ε, though in practice, large ε afford more flexibility, for instance if
communication errors occur between the Prover and the Verifier during the verification procedure.

Definition 2.2 provides a strong security model, in the sense that (i) it does not require any
bound on the response algorithms given by the Prover (ii) the probability in (1) is taken over
fixed messages m (informally, it means the Prover knows m).

However, keyed proofs of retrievability are usually insecure according to the security model given
in Definition 2.2. For instance, in [PSU13] Paterson et al. noticed that in the Shacham-Waters
scheme [SW13], given the knowledge of m and w, an unbounded Prover may be able to

1. compute (or at least randomly guess) a key κ such that Init(m,κ) = w,
2. build m′ 6= m such that Init(m′, κ) = w′, and
3. set P(w′) = r′ which (a) successfully passes every audit and (b) leads to the extraction of
m′ 6= m.

5

Hence, we choose to use a weaker but still realistic security model, where informally, the Prover
only knows what he stores (that is, w) and has no information on the initial message m. The
following security model thus remains conform with the one given by Paterson et al. [PSU13].

Definition 2.3 (security model, weak version). Let ε, τ ∈ [0, 1]. A proof of retrievabil-
ity (KeyGen, Init,Verify,Extract) is weakly (ε, τ)-sound (or simply (ε, τ)-sound) if, for every
polynomial-time prover P :W → RQ and every uploaded file w ∈ W, we have:

Pr

 Extract(r, κ) 6= m
and

succ(r, κ) ≥ 1− ε

∣∣∣∣∣∣∣∣
m←R M

κ←R KeyGen(1λ)
w ← Init(m,κ)
r ← P(w)

 ≤ τ . (2)

In Equation (2), the randomness comes from pairs (m,κ) ∈M×K picked uniformly at random
among those satisfying w = Init(m,κ).

Since we deal with values of τ very close to 0, we also say that a strongly (ε, τ)-sound PoR admits
λ = − log2(τ) bits of security against ε-adversaries.

Informally, saying that a PoR is not weakly sound amounts to finding a polynomial-time deter-
ministic algorithm P which

• takes as input a file w ∈ W and outputs a response word r ∈ RQ,
• makes the extraction fail with non-negligible probability (over messages m and keys κ such

that the corresponding response words are successfully audited).

3 Our generic construction

Schematically, in the initialisation phase of our construction, the Verifier

(i) encodes his file according to a code C;
(ii) scrambles the resulting codeword using a tuple of permutations over the base field;
(iii) uploads the result to the Prover.

As we explained in the introduction, the verification step then consists in checking that the server
is still able to give answers that, once descrambled, satisfy low-weight parity-check equations for
C.

For this purpose, we next introduce objects called verification structures for codes, which will be
used in the definition of our generic PoR scheme.

3.1 Verification structures: a tool for our PoR scheme

We here consider Fq, the finite field with q elements. From well-known coding theory terminology,
the support of a word w ∈ Fnq is supp(w) := {i ∈ [1, n], wi 6= 0}, and its weight is wt(w) :=
| supp(w)|.

In this work, we need to consider codes whose alphabets are finite dimensional spaces R over
Fq, typically R = Fsq. Precisely, a code C of length n over R is a subset of Rn. A code C ⊆ Rn
is Fq-linear if C is a vector space over Fq. When R = Fq, we get the usual definition of linear
codes over finite fields. Unless stated otherwise, we only consider Fq-linear codes, that we will
refer to as codes.

We usually denote by k the dimension over Fq of a code C. Its minimum distance dmin(C) is
the smallest Hamming distance between two distinct codewords. If n is the length of C, then

6

dmin(C)/n ∈ [0, 1] is the relative minimum distance of the code C, while k/n represents its rate.
If C ⊆ Fnq , its dual code C⊥ is defined as {h ∈ Fnq ,

∑n
i=1 hici = 0,∀c ∈ C}. Codewords in C⊥ are

also called parity-check equations for C.

Definition 3.1 (Verification structure). Let 1 ≤ ` ≤ n and C ⊆ Fnq be a code. Let also Q be a
non-empty set of `-subsets of [1, n]. Set R = F`q. We define the restriction map R associated to
Q as:

R : Q× Fnq → R
(u,w) 7→ w|u

Given an integer s ≥ 1 and a map V : Q×R → Fsq, we say that (Q, V) is a verification structure
for C if the following holds:

1. for all i ∈ [1, n], there exists u ∈ Q such that i ∈ u;
2. for all u ∈ Q, the map Fnq → Fsq given by a 7→ V (u,R(u, a)) is surjective and vanishes on

the code C. Explicitly,
∀c ∈ C, V (u,R(u, c)) = 0 .

The map V is then called a verification map for C, and the set Q a query set for C. By convention,
for w ∈ Fnq and r ∈ RQ, we define

R(w) := (R(u,w) : u ∈ Q) ∈ RQ,
V (r) := (V (u, ru) : u ∈ Q) ∈ (Fsq)Q.

Finally, the code R(C) := {R(c), c ∈ C} is called the response code of C.

Example 3.2 (Fundamental example). Let C be a code, and let H be a set of parity-check
equations for C of Hamming weight `, whose supports are pairwise distinct. Define the query
set Q = {supp(h), h ∈ H}, and for any u ∈ Q, h(u) to be the unique parity-check equation in H
whose support is u. Finally, we define a map V by:

V : Q×R → Fq
(u, r) 7→

∑`
i=1 h(u)uiri

Notice that we set s = 1 here. By construction, it is clear that (Q, V) is a verification structure
for C.

Example 3.3 (toy example). Let C ⊆ F7
2 be a binary Hadamard code of length n = 7 and

dimension k = 3. In other words, C is defined by a parity-check matrix

H =

1 1 1 0 0 0 0
1 0 0 1 1 0 0
1 0 0 0 0 1 1
0 1 0 0 1 1 0
0 1 0 1 0 0 1
0 0 1 1 0 1 0
0 0 1 0 1 0 1

.

According to Example 3.2, we define Q to be the set of supports of rows of H. In other words,

Q = {{1, 2, 3}, {1, 4, 5}, {1, 6, 7}, {2, 5, 6}, {2, 4, 7}, {3, 4, 6}, {3, 5, 7}} .

Then, the verification map V : Q× F3
2 → F2 can be defined as follows. If u = {u1, u2, u3} ∈ Q

and b ∈ Fu2 is indexed according to u, then we define

V (u, b) =

3∑
i=1

bui .

7

Now, let m = (m1,m2,m3) ∈ F3
2. The message m can be encoded into

c = (m1, m2, m1 +m2, m3, m1 +m3, m1 +m2 +m3, m2 +m3) ∈ C .

Hence, the word r = R(c) ∈ (F3
2)7 is:

r =

c1

c2

c3

 ,

c1

c4

c5

 ,

c1

c6

c7

 ,

c2

c5

c6

 ,

c2

c4

c7

 ,

c3

c4

c6

 ,

c3

c5

c7

=

 m1

m2

m1 +m2

 ,

 m1

m3

m1 +m3

 ,

 m1

m1 +m2 +m3

m2 +m3

 ,

 m2

m1 +m3

m1 +m2 +m3

 ,

 m2

m3

m2 +m3

 ,

 m1 +m2

m3

m1 +m2 +m3

 ,

m1 +m2

m1 +m3

m2 +m3

For each vector-coordinate b ∈ F3

2 of r = R(c), one can now check that
∑

j bj = 0. Hence, we
get V (R(c)) = 0, as expected.

From now on, we denote by N = |Q| the length of the response code R(C) of a code C equipped
with a verification structure (Q, V).

3.2 Definition of our PoR scheme

Let (Q, V) be a verification structure for C ⊆ Fnq , and let σ ∈ S(Fq)n, where S(Fq) denotes the
set of permutations over Fq. Any n-tuple of permutations σ = (σ1, . . . , σn) ∈ S(Fq)n naturally
acts on c ∈ Fnq by:

σ(c) 7→ (σ1(c1), . . . , σn(cn)) ,

and we define σ(C) = {σ(c), c ∈ C}. Let finally

V σ : Q× F`q → Fsq
(u, y) 7→ V (u, σ−1

|u (y))

where σ−1
|u (y) = (σ−1

u1 (y1), . . . , σ−1
u`

(y`)). The map V σ has been defined in order to satisfy

V σ(u,R(u, σ(c))) = V (u,R(u, c))

for every (c, u) ∈ C ×Q.

Based on this, our PoR construction is given in Figure 2.

3.3 Analysis

3.3.1 Preliminary results

We first give results concerning verification structures and response codes. The following two
lemmata are straightforward to prove.

Lemma 3.4. Let (Q, V) be a verification structure for a code C ⊆ Fnq . Then (Q, V σ) is a
verification structure for σ(C).

Lemma 3.5. Let Q be any query-set for a code C ⊆ Fnq whose elements have cardinality ` ≥ 1.
Then its response code R(C) is an Fq-linear code over the alphabet R ' F`q.

8

The code C and the verification structure (Q, V) for C are public parameters. We assume
that C is linear, and set N = |Q|. We recall that R = F`q and W = Fnq .
• Key generation: The Verifier generates uniformly at random an n-tuple of permutations

(σ1, . . . , σn) = σ ←R S(Fq)n .

• Initialisation: The Verifier first encodes his file m ∈ Fkq into a codeword c ∈ C with a
systematic encoding algorithm for C. Then, the Verifier scrambles each coordinate ci using
the permutation σi:

wi = σi(ci), 1 ≤ i ≤ n .

Finally, w ∈ W is sent to the Prover, and m is erased by the Verifier. To sum up, the
deterministic algorithm Init is defined by

Init(m,σ) := w = σ(C(m)) ∈ W .

Based on his knowledge of w and public parameters, the Prover produces a word r ← P(w),
r ∈ RQ, which corresponds to the vector of outputs of the deterministic proving algorithm
P on input w.
• Verification:

1. The Verifier picks uniformly at random u = (u1, . . . , u`) ←R Q. Then, the Verifier
sends u to the Prover, meaning the Prover is asked to send back R(u,w) = w|u ∈ F`q
to the Verifier.

2. The Prover sends back the u-th coordinate ru ∈ R of his response word r to the
Verifier.

3. On input ru ∈ R, the Verifier runs V σ(u, ru) and outputs the result. Here we mean
that:

Check(u, ru, σ) :=

{
True if V σ(u, ru) = 0
False otherwise.

• Extraction: The Verifier first collects r = (P(w)u : u ∈ Q) ∈ RQ. Then, he runs the
extraction procedure given in Figure 3, on input σ and r, and he outputs his result.

Figure 2: Definition of our PoR scheme

Input: σ ∈ S(Fq)n and r ∈ RQ.
Output: m ∈ Fkq or a failure symbol ⊥.

1. Define r′ = σ−1(r).
2. On challenges u ∈ Q such that V (u, r′u) 6= 0, assign r′u ←⊥.
3. Run a bounded-distance error-and-erasure decoding algorithm for R(C) with input
r′ ∈ (R∪ {⊥})Q. It outputs either a word m′ ∈ Fkq , or the failure symbol ⊥.

4. Return this output.

Figure 3: Our extraction procedure Extract(r, σ).

Remark 3.6. By considering σ(C) instead of C, we loose the Fq-linearity, but one can check
that verification structures still make sense and provide the result claimed in Lemma 3.4.

The next result states that the map C 7→ σ(C) does not modify the distance between codewords.

Lemma 3.7. Let C ⊆ Fnq be a linear code, (Q, V) a verification structure for C, and σ ∈ S(Fq)n.
Then it holds that:

• the distribution of distances in C and σ(C) are the same,

9

• the distribution of distances in R(C) and R(σ(C)) are the same.

Proof. Since every σi is one-to-one, for any c, c′ ∈ C we get

d(c, c′) = |{i ∈ [1, n], ci 6= c′i}|
= |{i ∈ [1, n], σi(ci) 6= σi(c

′
i)}|

= d(σ(c), σ(c′)) .

The proof for response codes relies on the same argument.

Remark these results imply that, if C is linear, then the minimum distance of R(σ(C)) is the
minimum weight of R(C).

Definition 3.8. Let ε ∈ [0, 1] and (Q, V) be a verification structure for a code C ⊆ Fnq . We say
r ∈ RQ is ε-close to (Q, V) if:

wt(V (r)) := |{u ∈ Q, V (u, ru) 6= 0}| ≤ εN .

Let now c ∈ C and β ∈ [0, 1]. We say that r ∈ RQ is a β-liar for (Q, V, c) if:

|{u ∈ Q, V (u, ru) = 0 and ru 6= R(u, c)}| ≤ βN .

Bounded-distance error-and-erasure decoder. Let A ⊆ Fnq be any code of minimum
distance d, and let a ∈ A be corrupted with b errors and e erasures, resulting in a word r′ ∈
(Fq ∪ {⊥})n. Then, it is well-known that, as long as 2b+ e < d, it is possible to retrieve a from
r′ thanks to a so-called bounded-distance error-and-erasure decoding algorithm. This is precisely
the decoding algorithm that we employ in Figure 3 on the code A = R(C).

Our framework allows us to reformulate the extraction success in terms of a probability to decode
corrupted codewords. More precisely:

Proposition 3.9. Let σ ∈ S(Fq)n, m ∈ Fkq and denote by d the minimum distance of R(C),
of length N . Let also r ∈ RQ be the response word, output of a proving algorithm P taking as
input w = σ(C(m)). Finally, assume that r is ε-close to (Q, V σ) and a β-liar for (Q, V σ, w),
with (ε+ 2β)N < d. Then, Extract(r, σ) = m, where Extract(r, σ) is defined in Figure 3.

Proof. Recall that r′ ∈ (R ∪ {⊥})Q represents the word we get from r after the second step of
the algorithm given in Figure 3. Let us now translate our assumptions on r in coding-theoretic
terminology:

• r is ε-close to (Q, V σ) means that there are at most εN challenges u ∈ Q for which we
know that the coordinate r′u is not authentic. This justifies that we assign erasure symbols
to these coordinates.

• r is a β-liar for (Q, V, c) means that there are at most βN other corrupted values r′u, but
we cannot identify them. Therefore we can assimilate these coordinates to errors.

To sum up, we see r′ as a corruption of R(C(m)) with at most εN erasures and at most βN errors,
where N = |Q|. Since we assume that (ε + 2β)N < d, we know from the previous discussion
that the decoding succeeds to retrieve m.

10

3.3.2 Bounding the extraction failure

According to Definition 2.3, our PoR scheme is weakly (ε, τ)-sound if for every polynomial-time
algorithm P outputting a response word r(w) from a file w, we have

Prσ,m

 decoding r(w) into m fails
and

wt(V σ(r(w))) ≤ εN

∣∣∣∣∣∣
m←R Fkq

σ ←R S(Fq)n
w = σ(C(m))

 ≤ τ .
Using Proposition 3.9, the security analysis of our PoR scheme reduces to measuring the ability
of the Prover to produce a response word r which is ε-close to (Q, V σ) and a β-liar for (Q, V σ, w),
with (ε+ 2β)N ≥ d.

For fixed r ∈ RQ, σ ∈ S(Fq)n and w = σ(C(m)) the authentic file given to the prover, we define
three subsets of Q:

• D(r, w) := {u ∈ Q, ru 6= R(w)u} and D(r, w) := |D(r, w)| = wt(r−R(w)). This represents
challenges u on which the response word r differs from the authentic one R(w).

• E(r, σ) := {u ∈ Q, V σ(u, ru) 6= 0} and E(r, σ) := |E(r, σ)| = wt(V σ(r)). These are
challenges u on which the associated coordinate ru is not accepted by the verification map
(it corresponds to erasures in the decoding process).

• B(r, σ, w) := {u ∈ Q, ru 6= R(w)u and V σ(u, ru) = 0} and B(r, σ,m) := |B(r, σ,m)|. These
are the challenges u on which the associated coordinate ru is accepted by the verification
map, but differs from the authentic response su (it corresponds to errors in the decoding
process).

One can easily check that, for every σ, the sets E(r, σ) and B(r, σ, w) define a partition of D(r, w).
The probability of extraction failure can thus be written as:

Pr

 2D(r, w)− E(r, σ) ≥ dmin(R(C))
and

E(r, σ) ≤ εN

∣∣∣∣∣∣
m←R Fkq

σ ←R S(Fq)n
w = σ(C(m))

 . (3)

For w ∈ Fnq , let us define the set of admissible permutations and messages:

Φw := {(σ,m) ∈ S(Fq)n × Fkq , w = σ(C(m))} ,

so that Equation (3) rewrites:

Pr

(
2D(r, w)− E(r, σ) ≥ dmin(R(C))

E(r, σ) ≤ εN

∣∣∣∣ (σ,m)←R Φw

)
.

Later on, we will use the notation PrΦw to refer to the fact that (σ,m) is uniformly drawn from
Φw. Similarly we will use notation EΦw for the expectancy and VarΦw for the variance.

Given r ∈ RQ, we also define

α(r, w) := max
u∈D(r,w)

PrΦw(V σ(u, ru) = 0)

and α := max(r,w) α(r, w) where (r, w) are such that D(r, w) 6= 0. The parameter α ∈ (0, 1)
is called the bias of the verification structure (Q, V) for C. It corresponds to the maximum
probability that a response is accepted but not authentic.

Lemma 3.10. For all r ∈ RQ and w ∈ Fnq , we have:

EΦw(E(r, σ)) ≥ (1− α)D(r, w) .

11

Proof. A simple computation shows:

EΦw(E(r, σ)) = EΦw

(∑
u∈D(r,w)

1V σ(u,ru)6=0

)
=

∑
u∈D(r,w)

PrΦw(V σ(u, ru) 6= 0)

≥
∑

u∈D(r,w)

(1− α)

≥ (1− α)D(r, w) .

Lemma 3.10 essentially means that, if an adversary to our PoR scheme wants its response word to
be (in average) ε-close to the verification structure, then he should modify at most D(r, w) ≤ εN

1−α
responses. Below we take advantage of this result and we measure the probability of an extraction
failure.

First, for δ, ε ∈ (0, 1), let

p(r, w; ε, δ) := PrΦw(2D(r, w)− E(r, σ) ≥ δN and E(r, σ) ≤ εN)

= PrΦw(E(r, σ) ≤ min{εN, 2D(r, w)− δN}) .

The probability p(r, w; ε, δ) represents the probability that the extraction fails for a response
code of relative distance δ and an adversarial response word r associated to w, which is ε-close
to the verification structure. Let us bound p(r, w; ε, δ).

Proposition 3.11. Let δ, ε ∈ (0, 1) such that δ 1−α
1+α > ε. Let also r ∈ RQ and w ∈ Fnq . Then we

have:
p(r, w; ε, δ) ≤ VarΦw(E(r, σ))(

1+α
2

(
δ 1−α

1+α − ε
))2

N2

.

Proof. We distinguish three cases.

1. 2D(r, w)− δN < 0. The event E(r, σ) ≤ min{εN, 2D(r, w) − δN} never occurs since
E(r, σ) ≥ 0. Hence p(r, w; ε, δ) = 0.

2. εN ≤ 2D(r, w)− δN. The inequality E(r, σ) ≤ εN implies

E(r, σ)− EΦw(E) ≤ εN − (1− α)D(r, w)

≤ εN − (1− α)
ε+ δ

2
N

≤ −1 + α

2

(
δ

1− α
1 + α

− ε
)
N .

Hence, using Chebychev’s inequality,

p(r, w; ε, δ) = PrΦw(E(r, σ) ≤ εN)

≤ PrΦw

(
|E(r, σ)− EΦw(E)| ≥ 1 + α

2

(
δ

1− α
1 + α

− ε
)
N

)
≤ VarΦw(E(r, σ))(

1+α
2

(
δ 1−α

1+α − ε
))2

N2

.

12

3. 0 ≤ 2D(r, w)− δN < εN . In this case, E(r, σ) ≤ 2D(r, w)− δN implies

E(r, σ)− EΦw(E) ≤ (1 + α)D(r, w)− δN

≤ (1 + α)
ε+ δ

2
N − δN

≤ −1 + α

2

(
δ

1− α
1 + α

− ε
)
N.

Therefore, similarly to the previous case, we obtain the claimed result.

For any u ∈ D(r, w), denote by Xu the {0, 1}-random variable “1V σ(u,ru)=0” when σ is uniformly
drawn from Φw. It holds that E(r, σ) =

∑
u∈D(r,w)(1−Xu).

Recall that two real random variables Y,Z are uncorrelated if E(Y Z) = E(Y)E(Z). For instance,
two independent random variables are uncorrelated.

Lemma 3.12. Let r ∈ RQ and w ∈ Fnq . If the random variables {Xu}u∈D(r,w) are pairwise
uncorrelated, then:

VarΦw(E(r, σ)) ≤ D(r, w) .

Proof. By assumption, {Xu}u∈D(r,w) are pairwise uncorrelated, hence VarΦw(E(r, σ)) =∑
u∈D(r,w) VarΦw(1−Xu). The trivial bound VarΦw(1−Xu) ≤ 1 gives the result.

As a corollary of Proposition 3.11 and Lemma 3.12, under the same hypothesis and assuming
δ 1−α

1+α > ε, we get

p(r, w; ε, δ) ≤ 4

N ((1− α)δ − (1 + α)ε)2

since D(r, w) ≤ N . Moreover, if limN→∞ δ > 0 and limN→∞ α = 0, then p(r, w; ε, δ) = O(1/N).

Therefore, we end up with the following theorem.

Theorem 3.13. Let (Q, V) be a verification structure for C with bias α. Denote by N = |Q| and
δ = dmin(R(C))/N the relative distance of the associated response code. Finally, assume that,
for any r ∈ RQ and any w ∈ Fnq the variables {Xu}u∈D(r,w) are pairwise uncorrelated. Then, for
any ε < δ 1−α

1+α , the PoR scheme associated to C and (Q, V) is (ε, τ)-sound, where

τ =
4

N ((1− α)δ − (1 + α)ε)2 .

For asymptotically small α, a code C equipped with a verification structure satisfying the con-
ditions of Theorem 3.13 thus gives an (ε, τ)-sound PoR scheme for every ε < (1 + o(1))δ and
τ = O(1/N).

According to Theorem 3.13, we thus need to look for (sequences of) codes C and associated
verification structures (Q, V) such that:

1. the response code R(C) admits a good relative distance δ = dmin(R(C))/N
2. the bias α is small,
3. random variables {Xu}u∈D(r,w) are pairwise uncorrelated.

Subsections 3.4 and 3.5 characterize conditions under which the last two points are fulfilled.
Then, in Section 5 we discuss which response codes can achieve good relative distance.

13

3.4 Estimating α

In this section we prove that, assuming Φw approximates the uniform distribution over S(Fq)n
in a sense that we make precise later, the bias α can be bounded according to parameters of the
verification structure.

Let us fix r ∈ RQ, w ∈ Fnq and u ∈ Q. We recall that α is defined by:

α = max
r,w

max
u∈D(r,w)

PrΦw(V σ(u, ru) = 0)

where randomness comes from σ ←R Φw = {(σ,m) ∈ S(Fq)n × Fkq , w = σ(C(m))}. We notice
that this is equivalent to write σ ←R {σ ∈ S(Fq)n, σ−1(w) ∈ C}.

For convenience, we will view ru ∈ R = F`q as a vector indexed by u = (u1, . . . , u`), so that we can
easily denote by ru[uj] ∈ Fq its j-th coordinate, 1 ≤ j ≤ `. We define the codeKu := kerV (u, ·) ⊆
F`q, and up to re-indexing coordinates, C|u ⊆ Ku. This allows us to write that for every σ, we have
V σ(u, ru) = 0 if and only if σ−1

u (ru) ∈ Ku. Finally, we denote by Zu := {i ∈ u, ru[i] 6= R(w)u[i]}
the set of coordinates of ru that are not authentic.

Let Yu(σ) represent the event “σ−1
u (ru) ∈ Ku | supp(σ−1

u (ru)) = Zu”. Informally, the reason
why we consider an event Yu(σ) conditioned by supp(σ−1

u (ru)) = Zu is that the Prover is free to
choose any support Zu on which he can modify the original file. More formally, this constraint
will help us to bound the probability PrΦw(V σ(u, ru) = 0) in Lemma 3.14.

We say that Φw is sufficiently uniform if, for every u ∈ Q, we have:

γu :=
Pr
[
Yu(σ) |σ ←R Φw

]
− Pr

[
Yu(σ) |σ ←R S(Fq)n

]
Pr
[
Yu(σ) |σ ←R S(Fq)n

] = o(1)

when the file size n log q → ∞. In other words, Φw is sufficiently uniform if it is a good
approximation of the whole set of n-tuples of permutations, when considering the probability
that Yu(σ) happens.

Lemma 3.14. Let r, w, u and Zu be defined as above. Let also Au = |{x ∈ Ku, supp(x) = Zu}|.
Then

PrΦw(V σ(u, ru) = 0) ≤ (1 + γu)Au

(q − 1)|Zu|
.

Proof. For every σ such that (σ,m) ∈ Φw, we know that σ−1
u (R(w)u) ∈ Ku, and we recall

that V σ(u, ru) = 0 if and only if σ−1
u (ru) ∈ Ku. Since Ku is linear , and up to considering

σ−1
u (R(w)u − ru) instead, we can assume without loss of generality that σ−1

u (ru)[i] = 0 for every
i ∈ u \ Zu. In other words we assume that supp(σ−1

u (ru)) = Zu.

Remark that
Prσ←RS(Fq)n

[
σ−1
u (ru) ∈ Ku | supp(σ−1

u (ru)) = Zu
]

= Prx←RF`q

[
x ∈ Ku | supp(x) = Zu

]
= Prx←RF`q

[
x ∈ Ku | supp(x) = Zu

]
=

Au

(q − 1)|Zu|
,

since Au counts the number of codewords in Ku whose support is Zu.

14

Therefore we get

PrΦw(V σ(u, ru) = 0) ≤ PrΦw

[
V σ(u, ru) = 0 | supp(σ−1

u (ru)) = Zu
]

= (1 + γu) PrS(Fq)n
[
V σ(u, ru) = 0 | supp(σ−1

u (ru)) = Zu
]

= (1 + γu) Prx←RF`q

[
x ∈ Ku | supp(x) = Zu

]
=

(1 + γu)Au

(q − 1)|Zu|
.

Lemma 3.15. Let Su be the Fq-vector space 〈{x ∈ Ku, supp(x) = Zu}〉 and assume that Su 6=
{0}. We have:

Au ≤ q|Zu|−dmin(Su)+1 .

Proof. We prove that, if Au > qe for some integer e ≥ 0, then dmin(Su) ≤ |Zu| − e, which clearly
induces our result. If Au > qe, then dimSu > e since |Su| ≥ Au. The Singleton bound then
provides:

dmin(Su) ≤ |Zu| − dimSu + 1 ≤ |Zu| − e .

Finally, we get the following upper bound on α.

Proposition 3.16. Let ∆ = min{dmin(Ku), u ∈ Q}. Then

α ≤ (1 + γ)(1 + 1
q−1)`q−∆+1 ,

where γu = max γu.

Proof. Remark that Su, defined in previous lemma, is a subcode of Ku shortened on u \ Zu.
Hence dmin(Ku) ≤ dmin(Su), and we can apply previous results and obtain the desired bound:

α ≤ max
u,r

(1 + γu)

(
q

q − 1

)|Zu|
q−dmin(Ku)+1 ≤ (1 + γ)(1 + 1

q−1)`q−∆+1

where γ = maxu γu.

If every Φw is sufficiently uniform, then by definition we have γ = o(1) when the file size
n log q →∞. This assumption is significant since we desire to have a small bias α, which is deeply
linked to the soundness of PoRs (see Theorem 3.13). In Appendix A we present experimental
estimates of α, validating that the assumption that Φw is sufficiently uniform.

3.5 Pairwise uncorrelation of {Xu}u∈D

This section is devoted to proving that variables {Xu}u∈D(r,w) are pairwise uncorrelated if the
supports of challenges u ∈ D(r, w) have small pairwise intersection. For this purpose, let us
recall that for fixed r ∈ RQ, w and u ∈ D(r, w), the random variable Xu represents 1V σ(u,ru)=0,
when σ is uniformly picked in Φw.

We first state a technical lemma that will be useful to prove Proposition 3.18 below. For clarity
we denote by d⊥(C) the minimum distance of the dual code C⊥ of a linear code C.

Lemma 3.17. Let C ⊆ Fnq be a linear code and T ⊂ [1, n], |T | = t where t < d⊥(C). For a ∈ FTq ,
we define Va = {c ∈ C, c|T = a}, and Na = |Va|. Then,

1. V0 = {v ∈ C, v|T = 0} is a linear subcode of C;

15

2. for every non-zero a ∈ FTq , there exists a non-zero c(a) ∈ C such that

Va = V0 + {c(a)} ;

3. for every a ∈ FTq , Na = qk−t where k = dim C.

Proof.

1. The fact that V0 = {v ∈ FXq , v|T = 0} is actually the well-known definition of the shortening
of a code. It is easy to prove that it defines a linear code.

2. Let a ∈ FTq be non-zero, and let us first prove that there exists c(a) ∈ C such that c(a)
|T = a.

If it were not the case, then by definition we would have C|T 6= Ftq. But this is impossible
since C⊥ contains no non-zero codeword of weight less that t. It is then easy to check that
Va = V0 + {c(a)}.

3. First notice that Va ∩ Vb = ∅ if a 6= b. Since

C =
⋃
a∈Ftq

Va ,

we get the expected result.

Proposition 3.18. If max{|u ∩ v|, u 6= v ∈ Q} < min{d⊥(C|u), u ∈ Q}, then the random
variables {Xu}u∈Q are pairwise uncorrelated.

Proof. Recall that Ku = kerV (u, ·), and that by definition of a verification structure, we have
C|u ⊆ Ku. For u 6= v ∈ Q, let us prove that E(XuXv) = E(Xu)E(Xv). First,

E(XuXv) = Pr (V σ(u, ru) = 0 and V σ(v, rv) = 0)

= Pr
(
σ−1(ru)|u ∈ Ku and σ−1(rv)|v ∈ Kv

)
.

Set t = |u ∩ v| and let (a,b) ∈ (Ftq)2. We denote by Z(σ,a,b) the event

σ−1(ru)|u∩v = a and σ−1(rv)|u∩v = b .

We first notice that {σ−1
|u∩v, σ ∈ Φw} = S(Fq)t. Indeed, we can here use an argument similar to

the proof of Lemma 3.17: the constraint σ−1(w) ∈ C is ineffective on σ−1
|u∩v, since |u ∩ v| ≤ t <

d⊥(C|z) for every z ∈ Q. Therefore, for every (a,b) ∈ (Ftq)2, we have

Pr(Z(σ,a,b)) = q−2t ,

and it follows that:

E(XuXv) =
1

q2t

∑
a,b∈(Ftq)2

Pr
(
σ−1(ru)|u ∈ Ku and σ−1(rv)|v ∈ Kv | Z(σ,a,b)

)
.

Recall now that t < min{d⊥(C|u), u ∈ Q} ≤ min{d⊥(Ku), u ∈ Q}. Hence, for fixed a and b,
the variables σ−1(ru)|u ∈ Ku | Z(σ,a,b) and σ−1(rv)|v ∈ Kv | Z(σ,a,b) are independent (once
again it is a consequence of the structure results of Lemma 3.17). Therefore:

E(XuXv) =
1

q2t

∑
a,b∈(Ftq)2

Pr
(
σ−1(ru)|u ∈ Ku | Z(σ,a,b)

)
× Pr

(
σ−1(rv)|v ∈ Kv | Z(σ,a,b)

)
.

16

Then,

E(XuXv) =
1

q2t

∑
a,b∈(Ftq)2

Pr(σ−1(ru)|u ∈ Ku | σ−1(ru)|u∩v = a)

× Pr(σ−1(rv)|v ∈ Kv | σ−1(rv)|u∩v = b) .

and we conclude since

E(Xu) = q−t
∑
a∈Ftq

Pr(σ−1(ru)|u ∈ Ku | σ−1(ru)|u∩v = a) .

4 Performance

4.1 Efficient scrambling of the encoded file

In the PoR scheme we propose, the storage cost of an n-tuple of permutations in S(Fq)n is
excessive, since it is superlinear in the original file size. In this subsection, we propose a storage-
efficient way to scramble the codeword c ∈ C produced by the Verifier.

Precisely we want to define a family of maps (σ(κ))κ, where σ(κ) : C → Fnq , c 7→ w ∈ Fnq , with the
following requirements:

• for every κ, the map σ(κ) is efficiently computable and requires a low storage,

• for every κ and every c ∈ C, if w = σ(κ)(c), then for every i ∈ [1, n] the local inverse map
wi 7→ ci is efficiently computable,

• if κ is randomly generated but unknown, then given the knowledge of w = σ(κ)(c) and C, it
is hard to produce a response word r ∈ RQ such that, for many u ∈ Q, both V σ(κ)

(u, ru) = 0
and ru 6= w|u hold. To be more specific, and in light of the security analysis of Section 3.3,
we require that it is hard to distinguish σ(κ)(c) from a random (z1, . . . , zn) ∈ Fnq , where
symbols zi are picked independently and uniformly at random.

We here propose to derive σ(κ) from a suitable block cipher, yielding the explicit construction
given below. Of course, other proposals can be envisioned.

The construction. Let IV denote a random initialisation vector for AES in CTR mode (IV
could be a nonce concatenated with a random value). Vector IV is kept secret by the Verifier,
as well as a randomly chosen key κ for the cipher. Let also f be a permutation polynomial over
Fq of degree d > 1. For instance one could choose f(x) = xd with gcd(d, q− 1) = 1. Notice that
polynomial f can be made public.

Let s =
⌊

256
dlog2 qe

⌋
be the number of Fq-symbols one can store in a 256-bit word2. Up to appending

a few random bits to c, we assume that s | n, and we define t = n/s. Let us fix a partition
of [1, n] into s-tuples i = (i1, . . . , is); it can be for instance (1, . . . , s), (s + 1, . . . , 2t), . . . , ((t −
1)s + 1, . . . , n). Notice that this partition does not need to be chosen at random. Given c =
(c1, . . . , cn) ∈ C and i an element of the above partition, we now define

bi =
(
f(ci1) | · · · | f(cis)

)
⊕AESκ(IV ⊕ i) ∈ {0, 1}256.

If log2 q - 256, trailing zeroes can be added to evaluations of f . Finally, the pseudo-random
permutation σ is defined by:

σ(c) := (b1, . . . , bt) .
2in the scheme we propose, we will always have log(q) < 256

17

Design rationale. AES is a natural choice when one needs a (secret)-keyed pseudo-random
permutation. Also notice that with this construction, one only needs to store the key κ and the
vector IV , since the other objects (the polynomial f , the partition) are made public. Hence our
objectives in terms of storage are met.

We now point out the necessity to use i as a part of the input of the AES cipher. Assume that we
do not. Then, the local permutation σj , 1 ≤ j ≤ n, would not depend on j. As a consequence,
for certain class of codes the local verification map ru 7→ V σ(u, ru) would not depend on u, and
a malicious Prover would then be able to produce accepted answers while storing only a small
piece of the file w (e.g. w|u for only one u ∈ Q).

Another mandatory feature is the non-linearity of the permutation polynomial f . Indeed, assume
for instance that f = id. Then, given the knowledge of w = σ(c), it would be very easy for a
malicious Prover to produce a word w′ 6= w, such that r′ = R(w′) is always accepted by the
Verifier. Simply, the Prover defines w′ = w + c′, where c′ is any non-zero codeword of C. Hence,
one sees that the polynomial f must be non-linear in order to prevent such kind of attacks.

4.2 Parameters

We here consider a PoR built upon a code C ⊆ Fnq , with verification structure (Q, V) satisfying
R = F`q and V (R) = Fsq. We also assume that we use an n-tuple of pseudo-random permutations
as described in the previous subsection.

Communication complexity. At each verification step, the client sends an `-tuple of coor-
dinates (u1, . . . , u`), ui ∈ [1, n]. The server then answers with corresponding symbols wui ∈ Fq.
Therefore the upload communication cost is ` log2 n bits, while the download communication
cost is ` log2 q, thus a total of `(log2 n+ log2 q) bits.

Computation complexity. In the initialisation phase, following the encryption described in
section 4.1, the client essentially has:

• to compute the codeword c ∈ C associated to its message,

• to make n evaluations of the permutation polynomial f over Fq, and

• to compute t = n log2 q
256 AES ciphertexts to produce the word w to be sent to the server.

Given a generator matrix of C, the codeword c can be computed in O(kn) operations over Fq
with a matrix-vector product. Notice that quasi-linear-time encoding algorithms exist for some
classes of codes. Besides, if a monomial or a sparse permutation polynomial is used, then the
cost of each evaluation is O((log2 q)

3). If we denote by c the bitcost of an AES encryption, we
get a total bitcost of O(nk(log2 q)

2 + n(log2 q)
3 + cn log2 q) for the initialisation phase. Recall

this is a worst-case scenario in which the encoding process is inefficient.

At each verification step, an honest server only needs to read ` symbols from the file it stores.
Hence its computation complexity is O(`). The client has to compute a matrix-vector product
over Fq, where the matrix has size s × ` and the vector has size `, thus a computation cost of
O(`s) operations over Fq.

Storage needs. The client stores 2 × 256 bits for secret material κ and IV to use in AES.
The server storage overhead exactly corresponds to the redundancy of the linear code C, that is
(n− dim C) log2 q bits.

18

Other features. Our PoR scheme is unbounded-use, since every challenge reveals nothing
about the secret data held by the client. It does not feature dynamic updates of files. Though,
we must emphasize that the file w the client produces can be split among several servers, and
the verification step remains possible even if the servers do not communicate with each other.
Indeed, computing a response to a challenge does not require to mix distinct symbols wi of
the uploaded file. Therefore, our scheme is well-suited for the storage of large static distributed
databases.

Client storage 512 bits
Server total storage n log2 q bits

Communication complexity (verif.) ` log2(nq) bits
Client computation complexity (verif.) ` decryptions, `s operations over Fq
Server computation complexity (verif.) ` reads, no computation

Figure 4: Summary of parameters of our PoR construction, for an original file of size
k log2 q bits, and a code C of dimension k over Fq equipped with a verification structure
(Q, V) such that |u| = `, and rankV (u, ·) ≤ s for all u ∈ Q.

5 Instantiations

In this section we present several instantiations of our PoR construction. We first recall basics
and notation from coding theory.

The code Rep(`) ⊆ F`q denotes the repetition code 〈(1, . . . , 1)〉. We recall that Rep(`)⊥ is the
parity code Par(`) := {c ∈ F`q,

∑`
i=1 ci = 0}. Let C, C′ be two linear codes over Fq of respective

parameters [n, k, d] and [n, k′, d′]. Their tensor product C ⊗C′ is the Fq-linear code generated by
words (cic

′
j : 1 ≤ i ≤ n, 1 ≤ j ≤ n′) ∈ Fnn′q . It has dimension kk′ and minimum distance dd′. We

also denote by
C⊗s := C ⊗ · · · ⊗ C︸ ︷︷ ︸

s times

⊆ Fn
s

q

the s-fold tensor product of C with itself.

5.1 Tensor-product codes

The upcoming subsection illustrates our construction with a non practical but simple instance.
The next ones lead to practical PoR instances.

5.1.1 A simple but non-practical instance

Let n = N`, and Q = {ui = {i` + 1, i` + 2, . . . , (i + 1)`}, i ∈ [0, N − 1]}. The set Q defines a
partition of [1, n]. We define the code

C = {c ∈ Fnq ,
∑
j∈u

cj = 0, ∀u ∈ Q} ⊆ Fnq

In other words, C = Par(`)⊗ FNq , and a parity-check matrix H for C is given by:

H =

1 · · · 1 0 · · · · · · · · · · · · · · · 0

0 · · · 0 1 · · · 1
. . .

...
...

...
...

. 0
0 · · · · · · · · · · · · · · · 0 1 · · · 1

 .

19

The verification map V : Q×F`q → Fq is defined by V (u, b) :=
∑`

j=1 buj , for all (u, b) ∈ Q×F`q. By
construction (see the fundamental Example 3.2), the pair (Q, V) defines a verification structure
for C.

Lemma 5.1. Let C = Par(`)⊗FNq as above. Then the response code R(C) has minimum distance
1.

Proof. We see that the restriction map R sends the codeword (1,−1, 0, 0, . . . , 0) ∈ C to a word
of weight 1. Besides, R is injective so dmin(R(C)) > 0.

Since δ = dmin(R(C))/N = 1/N → 0 when N goes to infinity, an attempt to build a PoR scheme
from C cannot be practical.

5.1.2 Higher order tensor-product codes

Let A ⊆ F`q be a non-degenerate [`, kA, dA]q-linear code, and define C = A⊗s ⊆ Fnq where n = `s.
Notice it will be more convenient to see coordinates of words w ∈ Fnq as elements of [1, `]s.

For a ∈ [1, `]s and 1 ≤ i ≤ s, we define Li,a ⊂ [1, `]s, the “i-th axis-parallel line with basis a”, as

Li,a := {x ∈ [1, `]s such that xj = aj , ∀j 6= i} .

By definition of C, a word c lies in C if and only if, for every L = Li,a, the restriction c|L ∈ A.
This means that we can define:

• a set of queries Q = {Li,a, i ∈ [1, s],a ∈ [1, `]s};
• a verification map

V : Q×R → F`−kAq

(L, r) 7→ Hr

where H is a parity-check matrix for A whose columns are ordered according to the line L.

By the previous discussion, it is clear that c ∈ C implies that V (L, c|L) = 0 for every L ∈ Q
(in fact these two assertions are equivalent). Hence, (Q, V) defines a verification structure for C,
and we have N = |Q| = s`s−1.

Lemma 5.2. Let C = A⊗s as above. Then, R(C) has minimum distance s · ds−1
A .

Proof. Let us first prove that the minimum distance of R(C) is larger than s · ds−1
A . Let r =

R(c) ∈ R(C), and assume r 6= 0. Then, there exists L ∈ Q such that 0 6= rL = c|L ∈ A. Therefore
cx 6= 0 for some x ∈ L ⊂ [1, `]s. Consider the set

Si,x = {y ∈ [1, `]s, yi = xi} .

Very informally, the set Si,x corresponds to the hyperplane passing through x and “orthogonal”
to the i-th axis. By definition of C = A⊗s, we know that c|Si,x ∈ A⊗(s−1)\{0} for every 1 ≤ i ≤ s.
Denote by Ui = supp(c|Si,x) = {u(i,1), . . . ,u(i,ti)}, with ti ≥ dmin(A⊗(s−1)) = (dA)s−1. Every
u(i,j) ∈ Ui defines a line Li,u(i,j) on which c|L

i,u(i,j)
is a non-zero codeword of A. Equivalently, r

is non-zero on index Li,u(i,j) ∈ Q. Therefore,

wt(r) = |{L ∈ Q, rL 6= 0}| ≥

∣∣∣∣∣
s⋃
i=1

{
Li,u(i,j) , 1 ≤ j ≤ ti

}∣∣∣∣∣ ≥
s∑
i=1

ti ≥ s(dA)s−1 .

20

Let us now build a word r ∈ R(C) of weight s(dA)s−1. Let w ∈ A \ {0} be a minimum-weight
codeword of A, and define W := supp(w) ⊆ A. Define c = w⊗s ∈ C; then supp(c) = W s. Let
finally r = R(c). We see that rLi,x 6= 0 if and only if x ∈W s. Hence we get

wt(r) = |{L ∈ Q, rL 6= 0}| =

∣∣∣∣∣
s⋃
i=1

{Li,x,x ∈W s}

∣∣∣∣∣ = s · ds−1
A .

since each line Li,x is counted dA times when x runs over W s.

Proposition 5.3. Let δ > 0 and A be an [`, `(1 − δ) + 1, `δ]q MDS code. Define C = A⊗s and
(Q, V) as above. If every Φw is sufficiently uniform, then the PoR scheme associated to C and
(Q, V) is (ε, τ)-sound for τ = O(1

(δ`)ss) and every ε < ε0 where ε0 = (1 + O(q−δ`+1))δs, when
`→∞.

Proof. First, the relative distance of R(C) is δs according to Lemma 5.2. Then, the random
variables {Xu}u∈D are pairwise uncorrelated because the inequality

max
u6=v∈Q2

|u ∩ v| = 1 < `(1− δ) + 2 = min
u∈Q

dmin((C|u)⊥)

allows us to apply Proposition 3.18. Besides, if every Φw is sufficiently uniform, then the bias α
satisfies α = O(q−δ`+1); hence 1−α

1+α = 1 + O(q−δ`+1). Therefore we can use Theorem 3.13 and
we get the desired result.

Parameters. We mainly focus on the download communication complexity in the verification
step and on the server storage overhead, since these are the most crucial parameters which
depend on the family of codes C we use. Besides, we consider that it is more relevant to analyse
the ratio between these quantities and the file size than their absolute values.

Here, for an initial file of size |F | = ((1− δ)q + 1)s log2 q bits, we get

• a redundancy rate n log2 q
|F | =

(
q

(1−δ)q+1

)s
≤ 1

(1−δ)s ;

• a communication complexity rate ` log2 q
|F | = q

((1−δ)q+1)s ≤
1

(1−δ)s q
1−s.

Example 5.4. We present various parameters of PoR instances admitting 0.10 ≤ ε0 ≤ 0.16, for
files of size approaching 104, 106 and 109 bits. Here A is a [q, (1− δ)q + 1, δq]q MDS code (e.g.
a Reed-Solomon code), and C = A⊗s.

q δq s file size (bits) comm. rate redundancy rate ε0
16 10 4 9, 604 6.664× 10−3 27.3 0.153
25 13 3 10, 985 1.138× 10−2 7.112 0.141
64 24 2 10, 086 3.807× 10−2 2.437 0.141
32 21 5 1, 244, 160 1.286× 10−4 134.8 0.122
47 28 4 960, 000 2.938× 10−4 30.5 0.126
101 47 3 1, 164, 625 6.071× 10−4 6.193 0.101
512 180 2 998, 001 4.617× 10−3 2.364 0.124
128 85 5 1, 154, 413, 568 7.762× 10−7 208.3 0.129
256 150 4 1, 048, 636, 808 1.953× 10−6 32.77 0.118
1024 550 3 1, 071, 718, 750 9.555× 10−6 10.02 0.155
12167 3900 2 957, 037, 536 1.78× 10−4 2.166 0.103
16384 5500 2 1, 658, 765, 150 1.383× 10−4 2.266 0.113

The previous example shows that, while the communication rate is reasonable for these PoR
instances over large files, the storage needs remain large.

21

5.2 Reed-Muller and related codes

Low-degree Reed-Muller codes are known to admit many distinct low-weight parity-check equa-
tions, whose supports correspond to affine subspaces of the ambient space. Therefore they seem
naturally adapted to our construction. Let us first consider the plane (or bivariate) Reed-Muller
code case.

5.2.1 The plane Reed-Muller code RMq(2, q − 2)

Let C be the Reed-Muller code

C = RMq(2, q − 2) := {(f(x, y))(x,y)∈F2
q
, f ∈ Fq[X,Y],deg f ≤ q − 2} .

It is well known that C has length q2 and dimension (q − 1)(q − 2)/2. Besides, for every line
L = {x = (at+ b, ct+ d), t ∈ Fq} ⊂ F2

q and every c ∈ C, we can check that
∑

x∈L cx = 0. Indeed,
let f ∈ Fq[X,Y], deg f = a ≤ q − 2. The restriction of f on an affine line L can be interpolated
as a univariate polynomial f|L of degree at most a. Our claim follows since

∑
z∈Fq z

i = 0 for
every i ≤ q − 2.

Therefore, we can define Q as the set of affine lines L of F2
q , and V (L, r) =

∑`
j=1 rj ∈ Fq. From

the previous discussion we see that (Q, V) is a verification structure for C. Also notice there are
q(q + 1) distinct affine lines in F2

q , hence N = q(q + 1).

Lemma 5.5. Let C = RMq(2, q − 2) equipped with its verification structure defined as above.
Then, the response code R(C) has minimum distance q2 + 2.

Proof. Any non-zero codeword c ∈ C consists in the evaluation of a non-zero polynomial
f(X,Y) ∈ Fq[X,Y] of degree at most q − 2. Denote by L1, . . . , La ⊂ F2

q , the affine lines on
which f vanishes; i.e. f(P) = 0 for every P ∈ Li, 1 ≤ i ≤ a. We claim that a ≤ q − 2. Indeed,
since f has total degree < q − 1, it also vanishes on closed lines L1, . . . , La, considered as affine
lines in Fq

2, where Fq denotes the algebraic closure of Fq. Denote by gi ∈ Fq[X,Y] the monic
polynomial of degree 1 which defines Li. From Hilbert’s Nullstellensatz, there exists r > 0 such
that (

∏a
i=1 gi)|f r. Since the gi’s have degree 1 and are distinct, we get a ≤ deg f ≤ q−2. Hence,

the affine lines different from L1, . . . , La correspond to non-zero coordinates of R(c). There are
q(q + 1)− a ≥ q2 + 2 such lines so dmin(R(C)) ≥ q2 + 2.

Now we claim there exists a word r ∈ R(C) of weight N − q + 2 = q2 + 2. Let L(0) and L(1) be
two distinct parallel affine lines respectively defined by X = 0 and X = 1. We build the word c
which is −1 on coordinates corresponding to points in L(0), 1 on those corresponding to points
in L(1) and 0 elsewhere. One can check that c ∈ C; indeed c corresponds to the evaluation of∏
z∈Fq\{0,1}(z −X). Now, if we want to compute wt(R(c)), we only need to count the number

of lines which do not intersect L(0) nor L(1). Clearly there are only q − 2 such lines. Hence
wt(R(c)) = q(q + 1)− (q − 2) and this concludes the proof.

Proposition 5.6. Let C = RM(2, q−2), and let (Q, V) be its associated verification structure. If
every Φw is sufficiently uniform, then the PoR scheme associated to C and (Q, V) is (ε, τ)-sound
for ε = 1− o(1) and τ = O(1

(1−ε)q2), when q →∞.

Proof. One can check that the random variables {Xu}u∈D are pairwise uncorrelated since

max
u6=v∈Q2

|u ∩ v| = 1 < `(1− δ) + 2 = min
u∈Q

dmin((C|u)⊥) .

22

Besides, the relative distance of R(C) is q2+2
q(q+1) → 1 according to Lemma 5.5. If every Φw is

sufficiently uniform, the bias α satisfies α ∈ O(1/q); hence 1−α
1+α = 1 +O(1/q). Therefore we can

use Theorem 3.13 and we get the desired result.

Parameters. For an initial file of size |F | = 1
2(q − 1)(q − 2) log2 q bits, we get

• a redundancy rate q2 log2 q
|F | = 2

(1−1/q)(1−2/q) → 2;

• a communication complexity rate q log2 q
|F | = 2

q
1

(1−1/q)(1−2/q) = O(1/q).

5.2.2 Storage improvements via lifted codes

The redundancy rate of Reed-Muller codes presented above stays stuck above 2. Affine lifted
codes, introduced by Guo, Kopparty and Sudan [GKS13], allow to break this barrier while
keeping the same verification structure. Generically, they are defined as follows:

Lift(m, d) := {(f(P))P∈Fmq , f ∈ Fq[X1, . . . , Xm],

∀ affine line L ⊂ Fmq , (f(Q))Q∈L ∈ RSq(d+ 1)} .

We refer to [GKS13] for more details about the construction. Here we focus on Lift(2, q − 2),
since it can be compared to RM(2, q − 2). Indeed, one sees that

RM(2, q − 2) ⊆ Lift(2, q − 2) (4)

and Equation (4) turns into a proper inclusion as long as q is not a prime. Besides, by definition
of lifted codes, Lift(2, q−2) admits the same verification structure as the one presented previously
for RM(2, q − 2).

Lemma 5.7. The response code of Lift(2, q − 2) has minimum distance at least q2 − q + 2.

Proof. The rationale is similar to the proof of Lemma 5.5. Let 0 6= c ∈ C, c = (f(P))P∈F2
q
,

f ∈ Fq[X,Y], and denote by L1, . . . , La ⊂ F2
q the lines on which f vanishes. The restriction of

f along Li can be interpolated as a univariate polynomial f|Li(T) of degree at most q − 2, since
(f(Q))Q∈Li lies in the Reed-Solomon code RSq(q − 1), by definition of lifted codes. Therefore
f|Li(T) = 0, and f vanishes on Li. Repeating arguments in the proof of Lemma 5.5, we get
a ≤ deg f ≤ 2q − 2, and dmin(R(Lift(2, q − 2))) ≥ q2 + q − 2q + 2 = q2 − q + 2.

We believe the bound given in Lemma 5.7 is not tight, but it is sufficient to have dmin(R(Lift(2, q−
2)))/N → 1. Similarly to Proposition 5.6, we can then prove that practical PoRs can be con-
structed with the family of lifted codes Lift(2, q − 2).

Proposition 5.8. Let C = Lift(2, q−2), and (Q, V) its associated verification structure. If every
Φw is sufficiently uniform, then the PoR scheme associated to C and (Q, V) is (ε, τ)-sound for
every ε < 1 and τ = O(1

(1−ε)q2), when q →∞

The crucial improvement is that lifted codes potentially have much higher dimension than Reed-
Muller codes. For q = 2e, the dimension of Lift(2, q− 2) can be proved to equal 4e− 3e [GKS13].

23

Example 5.9. We present parameters of PoRs based on Reed-Muller codes and lifted codes,
using files of size approaching 104, 106 and 109 bits.

code q file size comm. rate redundancy rate
Lift 32 3, 905 4.097× 10−2 1.311
RM 64 11, 718 3.277× 10−2 2.097
Lift 64 20, 202 1.901× 10−2 1.217
Lift 256 471, 800 4.341× 10−3 1.111
RM 512 1172745 3.929× 10−3 2.012
Lift 512 2, 182, 149 2.112× 10−3 1.081
Lift 8192 851, 689, 033 1.25× 10−4 1.024
RM 16384 1, 878, 704, 142 1.221× 10−4 2.000
Lift 16384 3, 691, 134, 818 6.214× 10−5 1.018

Note that this family of codes has been used in the PoR proposal of [LL16].

5.2.3 On more generic families of codes

We have presented two rather small families of codes producing practical instances of PoR. Let
us give a short summary of approximate lower bounds on crucial PoR parameters that have been
shown in previous sections.

Family of codes over Fq redundancy rate communication complexity rate
s-fold tensor product (Sec. 5.1.2) (1− δ)−s q−(s−1)(1− δ)−s

plane RM (Sec. 5.2.1) 2 2q−1

plane lifted code (Sec. 5.2.2) 1 + qlog2(3)−2 q−1 + qlog2(3)−3

Now we quickly mention other families of codes that could be interesting to consider.

Multi-variate generalisation. We have only presented Reed-Muller and lifted codes embed-
ded into the affine plane F2

q . One could of course consider a broader ambient space Fmq , m > 2.
Lines would have smaller relative weight compared to the ambient space, and thus we would
decrease the communication complexity of our PoR schemes. We must however care about the
storage overhead which can drastically increase if m gets large: for instance, any Reed-Muller
code RMq(m, q − 2) has rate ≤ 1/m!.

Lower degree generalisation. In order to increase the soundness of our PoR schemes, one
could consider Reed-Muller codes RMq(2, d) (as well as related lifted codes) with a lower de-
gree d < q − 2. The communication complexity remains unchanged; however we could observe
overwhelming storage overhead if d is too small.

Combinatorial generalisation. Codes Lift(2, q − 2) can be viewed as codes from designs
(see [AK92] for more details), where the underlying block design is the classical affine plane.
Considering designs with smaller block size would lead to PoRs with smaller communication
complexity. But once again, this could be expensive in terms of storage, since only a few designs
produce high dimensional codes.

6 Conclusion

We have proposed a security model for PoRs in line of previous work, together with a generic code-
based framework. We have then sharply quantified the extraction failure of our PoR construction

24

as a function of code parameters. Specialising this construction for particular families of codes,
we provided instances with practical parameters. We hope our work will be an incentive for
further proposals of code instances, aiming at better PoR parameters.

Acknowledgements

This work is partially funded by French ANR-15-CE39-0013-01 “Manta”. The authors would like
to thank Daniel Augot who shared fruitful discussions on the definition of proofs-of-retrievability,
as well as Alain Couvreur for his suggestion leading to the proof of Lemma 5.7.

References

[ABC+11] Giuseppe Ateniese, Randal C. Burns, Reza Curtmola, Joseph Herring, Osama Khan,
Lea Kissner, Zachary N. J. Peterson, and Dawn Song. Remote Data Checking using
Provable Data Possession. ACM Trans. Inf. Syst. Secur., 14(1):12:1–12:34, 2011.

[AK92] Edward F. Assmus and Jennifer D. Key. Designs and Their Codes. Cambridge
Tracts in Mathematics. Cambridge University Press, 1992.

[BJO09] Kevin D. Bowers, Ari Juels, and Alina Oprea. Proofs of Retrievability: Theory
and Implementation. In Radu Sion and Dawn Song, editors, Proceedings of the
first ACM Cloud Computing Security Workshop, CCSW 2009, Chicago, IL, USA,
November 13, 2009, pages 43–54. ACM, 2009.

[DVW09] Yevgeniy Dodis, Salil P. Vadhan, and Daniel Wichs. Proofs of Retrievability via
Hardness Amplification. In Omer Reingold, editor, Theory of Cryptography, 6th
Theory of Cryptography Conference, TCC 2009, San Francisco, CA, USA, March
15-17, 2009. Proceedings, volume 5444 of Lecture Notes in Computer Science, pages
109–127. Springer, 2009.

[GKS13] Alan Guo, Swastik Kopparty, and Madhu Sudan. New Affine-Invariant Codes from
Lifting. In Robert D. Kleinberg, editor, Innovations in Theoretical Computer Sci-
ence, ITCS ’13, Berkeley, CA, USA, January 9-12, 2013, pages 529–540. ACM,
2013.

[JK07] Ari Juels and Burton S. Kaliski, Jr. PORs: Proofs of Retrievability for Large
Files. In Peng Ning, Sabrina De Capitani di Vimercati, and Paul F. Syverson,
editors, Proceedings of the 2007 ACM Conference on Computer and Communications
Security, CCS 2007, Alexandria, Virginia, USA, October 28-31, 2007, pages 584–
597. ACM, 2007.

[LEB+03] Mark Lillibridge, Sameh Elnikety, Andrew Birrell, Michael Burrows, and Michael
Isard. A Cooperative Internet Backup Scheme. In USENIX Annual Technical Con-
ference, General Track, pages 29–41. USENIX, 2003.

[LL16] Julien Lavauzelle and Françoise Levy-dit-Vehel. New Proofs of Retrievability us-
ing Locally Decodable Codes. In IEEE International Symposium on Information
Theory, ISIT 2016, Barcelona, Spain, July 10-15, 2016, pages 1809–1813. IEEE,
2016.

[MZC12] Zhen Mo, Yian Zhou, and Shigang Chen. A Dynamic Proof of Retrievability (PoR)
Scheme with O(log n) Complexity. In Proceedings of IEEE International Conference

25

on Communications, ICC 2012, Ottawa, ON, Canada, June 10-15, 2012, pages 912–
916. IEEE, 2012.

[NR09] Moni Naor and Guy N. Rothblum. The Complexity of Online Memory Checking.
J. ACM, 56(1):2:1–2:46, 2009.

[PSU13] Maura B. Paterson, Douglas R. Stinson, and Jalaj Upadhyay. A Coding The-
ory Foundation for the Analysis of General Unconditionally Secure Proof-of-
Retrievability Schemes for Cloud Storage. J. Mathematical Cryptology, 7(3):183–
216, 2013.

[PSU18] Maura B. Paterson, Douglas R. Stinson, and Jalaj Upadhyay. J. Mathematical
Cryptology, 12(4):203–220, 2018.

[SR16] Binanda Sengupta and Sushmita Ruj. Efficient Proofs of Retrievability with Public
Verifiability for Dynamic Cloud Storage. CoRR, abs/1611.03982, 2016.

[SW13] Hovav Shacham and Brent Waters. Compact Proofs of Retrievability. J. Cryptology,
26(3):442–483, 2013.

[WWR+11] Qian Wang, Cong Wang, Kui Ren, Wenjing Lou, and Jin Li. Enabling Public
Auditability and Data Dynamics for Storage Security in Cloud Computing. IEEE
Trans. Parallel Distrib. Syst., 22(5):847–859, 2011.

A Experimental estimate of the bias α

We here confirm our heuristic on the fact that Φw is sufficiently uniform, by providing experi-
mental estimates of α.

Setup. We consider PoR schemes using Reed-Muller codes C = RMq(2, q − 2), as presented in
Section 5.2.1. We also fix the word w ∈ Fnq uploaded on the server during the initialisation step.
Remark that, for varying w, all Φw are equivalently distributed. Indeed, if ψ ∈ S(Fq)n satisfies
ψ(w) = w′, then the distribution of permutations picked from Φw′ can be obtained by applying
ψ to permutations picked from Φw. Hence, without loss of generality we assume that w = 0.
Proposition 3.16 claims that in this context, α should be O(1/q) since ∆ = 2 and ` ≤ q. For
convenience, we denote by pΦ := PΦw(V σ(u, ru) = 0), and we recall that α is an upper bound on
pΦ (for varying u and r).

We proceed to three kinds of tests in order to estimate α:

• Test 1. We sample N challenges u, and for each sample, we fix t ≤ ` and ru in {x ∈
F`q, |Zu| = t}. Then, we estimate pΦ by running M trials and computing the average
number of times V σ(u, ru) = 0 occurs. We denote by ξM (pΦ) this estimator. We then
collect the maximum value of ξM (pΦ) among the N samples of u.

• Test 2. A challenge u is fixed, and for several values of t, we pick N responses ru randomly
in {x ∈ F`q, |Zu| = t}. For every ru, we estimate pΦ with M samples. We collect the
maximum value of ξM (pΦ) among the N values of ru that have been picked.

• Test 3. A challenge u is fixed, as well as a response ru to this challenge which satisfies
|Zu| = t for several values of t ∈ [2, `]. We then run M trials and collect ξM (pΦ).

Influence of M and the chosen test on the estimator. At the end of the document,
Figures 5, 6 and 7 confirm that, for fixed N and q, and for any Test i we use, i ∈ {1, 2, 3}, our
estimator ξM (pΦ) converges to a value close to 1/(q − 1).

26

Influence of N on the estimator. Table 1 shows experimentally that, for M large enough
and fixed q, the number N has few influence on the estimator (N being respectively the number

103 104 105 106
M10-2

10-1

ξM(pΦ)

t= 2
expected 1/(q-1), q=8
expected 1/(q-1), q=64
q=8, Test 1
q=8, Test 3
q=8, Test 2
q=64, Test 1
q=64, Test 3
q=64, Test 2

Figure 5: Estimators for various values of M ∈ [103, 106], of q ∈ {8, 64}, and of Test i,
i ∈ {1, 2, 3}. Support size t = 2 is fixed. For Tests 1 and 2, the parameter N is set to 10.
Black horizontal lines represent the expected value of α.

103 104 105 106
M10-2

10-1

ξM(pΦ)

t= 3
expected 1/(q-1), q=8
expected 1/(q-1), q=64
q=8, Test 1
q=8, Test 3
q=8, Test 2
q=64, Test 1
q=64, Test 3
q=64, Test 2

Figure 6: Estimators for various values of M ∈ [103, 106], of q ∈ {8, 64}, and of Test i,
i ∈ {1, 2, 3}. Support size t = 3 is fixed. For Tests 1 and 2, the parameter N is set to 10.
Black horizontal lines represent the expected value of α.

27

of responses ru sampled in Test 2, and the number of challenges u sampled in Test 1). The minor
increase of the values can be thought as a standard deviation due to the fact that the number of
samples M = 100, 000 is finite.

N q = 8 q = 64

1 0.1418 0.0152
5 0.1433 0.0163
10 0.1443 0.0165
50 0.1455 0.0169
100 0.1452 0.0167
500 0.1464 0.0169

1/(q − 1) = 0.1429 0.01587

N q = 8 q = 64

1 0.1414 0.0158
5 0.1431 0.0162
10 0.1452 0.0166
50 0.1450 0.0168
100 0.1458 0.0168
500 0.1470 0.0168

1/(q − 1) = 0.1429 0.01587

Table 1: Estimators using Test 1 (on the left) and Test 2 (on the right) with M = 100, 000
and t = 2, for q ∈ {8, 64} and various values of N . The quantity 1/(q − 1) represents an
estimated upper bound on α that ξM (pΦ) should approximate.

Influence of q on the estimator. In Table 2, we show that estimator ξM (pΦ) converges to
an expected value 1/(q − 1), for any value of q.

103 104 105 106
M10-2

10-1

ξM(pΦ)

t= `
expected 1/(q-1), q=8
expected 1/(q-1), q=64
q=8, Test 2
q=8, Test 3
q=8, Test 1
q=64, Test 2
q=64, Test 3
q=64, Test 1

Figure 7: Estimators for various values of M ∈ [103, 106], of q ∈ {8, 64}, and of Test i,
i ∈ {1, 2, 3}. Support size t = ` is fixed. For Tests 1 and 2, the parameter N is set to 10.
Black horizontal lines represent the expected value of α.

28

q ξM (pΦ) 1/(q − 1)

4 0.333 0.3333
8 0.143 0.1429
16 0.0665 0.06667
32 0.032 0.03226
64 0.0161 0.01587
128 0.00791 0.007874
256 0.00382 0.003922

q ξM (pΦ) 1/(q − 1)

7 0.166 0.1667
17 0.0627 0.0625
31 0.0335 0.03333
257 0.00398 0.004000

Table 2: Estimators using Test 3 with M = 1, 000, 000 and t = 2, for various values of
prime powers q. The quantity 1/(q − 1) represents an estimated upper bound on α that
ξM (pΦ) should approximate.

29

	Introduction
	Motivation
	Previous work
	Our approach
	Organisation

	Proofs of retrievability
	Definition of underlying protocols
	Security models

	Our generic construction
	Verification structures: a tool for our PoR scheme
	Definition of our PoR scheme
	Analysis
	Preliminary results
	Bounding the extraction failure

	Estimating
	Pairwise uncorrelation of { Xu }u D

	Performance
	Efficient scrambling of the encoded file
	Parameters

	Instantiations
	Tensor-product codes
	A simple but non-practical instance
	Higher order tensor-product codes

	Reed-Muller and related codes
	The plane Reed-Muller code RMq(2, q-2)
	Storage improvements via lifted codes
	On more generic families of codes

	Conclusion
	Experimental estimate of the bias

