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Revisiting Low-Frequency Susceptibility Data in Superconducting
Materials

Jacob Szeftel1, *, Michel Abou Ghantous2, and Nicolas Sandeau3

Abstract—Old susceptibility data, measured in superconducting materials at low-frequency, are shown
to be accounted for consistently within the framework of a recently published [1] analysis of the skin
effect. Their main merit is to emphasize the significance of the skin-depth measurements, performed
just beneath the critical temperature Tc, in order to disprove an assumption, which thwarted any
understanding of the skin-depth data, achieved so far by conventional high-frequency methods, so
that those data might, from now on, give access to the temperature dependence of the concentration of
superconducting electrons.

1. INTRODUCTION

Very low-frequency (ω < 40 Hz) measurements [2, 3], carried out in superconducting materials, exhibited
the absorption part of complex susceptibility rising to a maximum χ′′(TM ), located close to Tc (see
Fig. 1), which the authors then ascribed to the vortex lattice, typical of superconductors of type
II. However, as this feature was subsequently observed also in materials of type I, an alternative
explanation [4], relying heavily on the BCS gap [5, 6], was proposed. Anyhow, both interpretations [2–
4] turn out to be at best qualitative and partial, since the maximum of the absorption has also been
observed in high-Tc compounds [7, 8], all of which are gapless superconductors of type II, undergoing a
magnetic field H < Hc1, which warrants the absence of vortex. Noteworthy is that those susceptibility
measurements [7, 8] were interpreted solely with help of the skin effect theory, valid for normal
metals [9, 10]. Likewise, we shall confirm below this latter explanation, by showing quantitatively that
the low frequency behavior of the susceptibility can indeed be fully understood as a straightforward
by-product of the macroscopic skin effect [1], valid for superconductors of both kinds as well, regardless
of whether they display a BCS gap or not.

In every conductor, the real part of the dielectric constant being negative for ω < ωp, where
ωp ≈ 1016 Hz stands for the plasma frequency, causes the electromagnetic field to remain confined
within a thin layer of frequency dependent thickness δ(ω), called the skin depth [9, 10], and located at
the outer edge of the conductor. The first measurement of δ in superconductors was done, at a single
frequency ω ≈ 10 GHz, by Pippard [11], who assumed, without any proof, ω-independent δ. The current
state of affairs, regarding measurements of the skin-depth in superconductors, including both low- and
high-Tc materials, is muddled. On one hand, some authors [12, 13], in the wake of Pippard’s work,
tend to assume δ(ω) = λL,∀ω. London’s length λL is defined [14] as λL =

√
m

μ0cse2 , with μ0, e,m, cs

standing for the magnetic permeability of vacuum, the charge, effective mass and concentration of
superconducting electrons, respectively. Besides, it has long been believed [14] that λL = λM , with
λM being the penetration depth of a static magnetic field into a superconductor, characterizing the
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Meissner effect [15]. On the other hand, low-frequency susceptibility data have been convincingly
explained [7, 8] within the framework of the skin effect theory [9, 10], which predicts the well-known
behavior δ(ω) ∝ 1/

√
ω, observed in all normal metals. Finally both conjectures δ(ω) = λL,∀ω and

λL = λM , which have been questioned recently [1, 15], will be rebutted below, by taking advantage of
the low-frequency susceptibility data [2, 3, 7, 8].

This analysis will be led within the two-fluid model [6, 16], for which the conduction electrons make
up a homogeneous mixture, in thermal equilibrium at temperature T , of normal and superconducting
electrons of respective concentrations cn(T ), cs(T ), constrained for T ≤ Tc, by cn(T ) + cs(T ) = c0, with
c0 being the total concentration of conduction electrons. Consequently, as T decreases from Tc down to
T = 0, cn(T ) decreases from cn(Tc) = c0, while cs(T ) increases from cs(Tc) = 0.

The outline is as follows: the electrodynamics of the skin effect, developed elsewhere [1], will be
recalled in Section 2; this will then be used to reckon the complex susceptibility χ′(δ) + iχ′′(δ) in
Section 3; in Section 4, the calculated χ′′(δ) and the experimental data χ′′(T ), available in Fig. 1, will
be taken advantage of to achieve δ(T < Tc), but foremost, to rebut the surmise δ(ω) = λL,∀ω, widely
used for the interpretation of skin-depth data, obtained [12, 13] at high-frequency. The conclusions are
given in Section 5.

Before proceeding below with the discussion of the χ′′(T ≤ Tc) data, it is worth noticing, in
Fig. 1, the dispersion χ′(T ) swinging abruptly at Tc from χ′(T > Tc) < 0 in the normal phase to
χ′(T < Tc) > 0 in the superconducting one. This property, which has been ascribed [15] to the
normal and superconducting states, being paramagnetic and diamagnetic, respectively, has furthermore
been argued to be responsible for the Meissner effect, observed in a field-cooled sample. Therefore,
the gratifying agreement with the experimental evidence, displayed in Fig. 1, should contribute to
ascertaining the validity of our conclusion [15] λL � λM , which opposes the mainstream claim [14]
λL = λM .

Figure 1. Plot of the complex susceptibility
χ′(T ) + iχ′′(T ) (χ′, χ′′ stand respectively for
dispersion and absorption), as measured by
Maxwell and Strongin [2] in superconducting tin
(Tc = 3.76 K) at 18.2 Hz; TM = 3.74 K is the
temperature associated with the maximum value
of χ′′; T0 = 3.72 K is the temperature, below
which χ′′(T ≤ T0) remains constant.

Figure 2. Cross-section of the superconducting
sample (dotted) and the coil (hatched); Eθ, jθ are
both normal to the unit vectors along the r and
z coordinates, whereas Bz,Hz are parallel to the
unit vector along the z axis.
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2. SKIN EFFECT

A paramount conclusion of the study of the skin effect [1] is that there is no difference in that respect
between normal and superconducting metals. Consequently, within the two-fluid model, all of the
electrodynamical properties of any superconducting material depend only on its conductivity [17]
σ = c0e2τ

m , with τ being the decay time of the current, due to its friction on the atomic lattice. σ

is calculated as some average [1] over the normal and superconducting conductivities σn = cne2τn
m ,

σs = cse2τs
m , respectively, to be discussed later in Section 4. Besides, the superconducting decay time

τs is finite, as recalled by Schrieffer [6] (see [6] p. 4, 2nd paragraph, lines 9, 10: at finite temperature,
there is a finite ac resistivity for all frequencies > 0). Moreover, this property of τs being finite will be
demonstrated in Section 4.

Consider as in Fig. 2 a superconducting material of cylindrical shape, characterized by its symmetry
axis z and radius r0 in a cylindrical frame with coordinates (r, θ, z), which has been inserted into a coil
of same radius r0. An oscillating current I(t) = I0e

iωt, with t referring to time, is fed into the coil. Then
I(t) induces [1], throughout the sample, i.e., for r ≤ r0, a magnetic field H(t, r) = Hz(r)eiωt, parallel
to the z axis, and an electric field E(t, r) = Eθ(r)eiωt, normal to the unit vectors along the r and z
coordinates. E in turn induces, inside the sample, a current j(t, r) = jθ(r)eiωt, parallel to Eθ, as given
by Newton’s law [1]

dj

dt
=

σ

τ
E − j

τ
, (1)

where σ
τ E and − j

τ are respectively proportional to the driving force accelerating the conduction electrons
and a friction term, responsible for Ohm’s law [1].

The electric field E and the magnetic induction B(t, r) = μ0H(t, r) = Bz(r)eiωt, parallel to the z
axis (the relationship between H,B reads in general B = μ0(1 + χ)H, which reduces here to B = μ0H,
because of |χ| � 1, as proved elsewhere [15]) are related [1] through the Faraday-Maxwell equation as

−∂B

∂t
=

E

r
+

∂E

∂r
. (2)

Finally, the magnetic field H and current j are related [1] through the Ampère-Maxwell equation as

−∂H

∂r
= 2j + ε0

∂E

∂t
, (3)

with ε0 referring to the electric permittivity of vacuum.
Replacing E(t, r), j(t, r), B(t, r),H(t, r) in Eqs. (1), (2), (3), by their time-Fourier transforms

Eθ(ω, r), jθ(ω, r), Bz(ω, r),Hz(ω, r) yields [1]

Eθ (ω, r) =
1 + iωτ

σ
jθ (ω, r)

iωBz (ω, r) = −
(

Eθ (ω, r)
r

+
∂Eθ (ω, r)

∂r

)
∂Bz (ω, r)

∂r
= −μ0 (2jθ (ω, r) + iωε0Eθ (ω, r))

. (4)

Eliminating Eθ(ω, r), jθ(ω, r) from Eq. (4) gives [1] finally

∂2Bz (ω, r)
∂r2

=
Bz (ω, r)

δ2(ω)
− ∂Bz (ω, r)

r∂r
, δ(ω) =

λL√
2iωτ

1 + iωτ
− ω2

ω2
p

, (5)

with the plasma frequency defined [9, 10, 16] as ωp =
√

c0e2

ε0m . Eq. (5) yields [1] indeed both the usual

expression |δ| = 1√
2μ0σω

, valid in the low frequency limit ωτ � 1, and its lower bound δ = λL√
2
, reached

at high frequency such that ωτ � 1.
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3. LOW-FREQUENCY SUSCEPTIBILITY

Due to δ = 1√
2iμ0σω

, if ωτ � 1, as inferred from Eq. (5), the complex induction reads Bz(u) =
Br(u) + iBi(u), with u = r

|δ| , so that Eq. (5) can be recast into

∂2Br

∂u2
= −Bi − ∂Br

u∂u
,

∂2Bi

∂u2
= Br − ∂Bi

u∂u
. (6)

The system of linear differential equations in Eq. (6) has been integrated over u ∈
[
0, r0

|δ|
]

with the
following boundary conditions

dBr

du
(0) =

dBi

du
(0) = 0, Br

(
r0

|δ|
)

= Br(I0), Bi

(
r0

|δ|
)

= Bi(I0).

The complex induction B(I0) = Br(I0) + iBi(I0), induced at r0 by the current I flowing through the
coil, has been calculated elsewhere [1] to read B(I0)

I0
∝ 2 − iε0ρcω, with ρc being the resistivity of the

coil.
The complex self-inductance L of the system, made up of the coil and the superconducting sample,

reads as L ∝ χ′ + iχ′′. Due to the very definition of L = 2π
I0

∫ r0

0 Bz(r)rdr, the susceptibility reads finally

χ′ ∝ |δ|2
∫ r0

|δ|

0
Br(u)udu, χ′′ ∝ |δ|2

∫ r0
|δ|

0
Bi(u)udu.

χ′
(

r0
|δ|

)
, χ′′

(
r0
|δ|

)
have been plotted in Fig. 3(a). The characteristic features, mentioned

elsewhere [2, 3, 7, 8], can be seen conspicuously, namely χ′
(

r0
|δ|

)
decreases monotonically, whereas

χ′′
(

r0
|δ|

)
goes through a maximum χM at r0

|δ| = 2.53. The maximum was reported [2, 3] previously to show
up rather at r0

|δ| ≈ 1.8. This discrepancy is to be ascribed to a different definition of the susceptibility,
chosen there [2–4], which nevertheless does not correspond, unlike the definition used here, to what is
actually measured in the experimental procedure, i.e., the complex impedance of the circuit, comprising
the coil and the sample. The data in Fig. 3(a) are independent from ω because ω shows up only in the
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Figure 3. Plots of the complex susceptibility χ′ + iχ′′ versus r0
|δ| , calculated with help of the solution

of Eq. (5) and Eq. (7), in Fig. 3(a) and Fig. 3(b), respectively.
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expression of Bi(I0), which turns out to be negligible (
∣∣∣ Bi(I0)
Br(I0)

∣∣∣ ≈ 10−18 for ω = 100 Hz). However they
do depend on the sample shape, as illustrated by reckoning the susceptibility for the semi-infinite slab
considered by London [14]. In this latter case, Eq. (5) should be replaced by

∂2Bz

∂r2
=

Bz

δ2
⇒ Bz(u) ∝ 2e

1+i√
2

(
u− r0

|δ|
)
, (7)

which entails that χ′, χ′′ read now

χ′ ∝ |δ|√
2r0

− e
− r0√

2|δ| sin
(

r0√
2|δ|

)
(

r0√
2|δ|

)2 , χ′′ ∝ − |δ|√
2r0

+
1 − e

− r0√
2|δ| cos

(
r0√
2|δ|

)
(

r0√
2|δ|

)2 .

The corresponding χ′
(

r0
|δ|

)
, χ′′

(
r0
|δ|

)
data are depicted in Fig. 3(b). Note that the maximum value of

χ′′ shifts from r0
|δ| = 2.53 in Fig. 3(a) up to r0

|δ| = 2.77 in Fig. 3(b). Likewise the ratios χ′/χ′′ differ from
each other for any r0/|δ| in both figures. Those differences stem from the respective solutions Bz(u)
of Eqs. (5), (7) deviating from each other in the relevant domain, i.e., for u ≈ 1, even though they are
practically identical for u � 1, because the solution of Eq. (5) is a Bessel function, having the property
Bz(r) ≈ er/δ(ω) if r � |δ(ω)|.

4. EXPERIMENTAL DISCUSSION

We shall now take advantage of both χ′′(T ) data, taken from Fig. 1, and χ′′(δ) ones, pictured in Fig. 3(a),
to chart δ(T ≤ Tc). The one to one correspondence between χ′′(T ), χ′′(δ) is then expressed as

χ′′ (T > TM ) − χ′′ (TM )
χ′′ (Tc) − χ′′ (TM )

=
χ′′ (δ(T )) − χM

χ′′ (δ (Tc)) − χM
,

χ′′ (T < TM ) − χ′′ (TM )
χ′′ (T0) − χ′′ (TM )

=
χ′′ (δ(T )) − χM

χ′′ (δ (T0)) − χM
.

TM , T0 are defined in the caption of Fig. 1, and χM refers to the maximum value of χ′′(δ) (see Fig. 3(a)).
As the values of δ(Tc), δ(T0) are unknown, we have assumed arbitrarily r0

|δ(Tc)| = 0.5, r0
|δ(T0)| = 41, in

order to proceed with the detailed discussion of an illustrative example. Finally the resulting |δ(T ≤ Tc)|
curve has been plotted in Fig. 4. Its prominent feature is the large variation of |δ|, and thence of σ,

1

3.72 3.74 3.76

δ(T)

T

0.1

0.01

δ(T  )c

δ(T)

δ(T  )c

Figure 4. Semilogarithmic plot of |δ(T ∈ [T0, Tc])| with T0 = 3.72 K and Tc = 3.76 K; the discontinuity
of d|δ|

dT at TM = 3.74 K, which reflects that of dχ′′
dT (TM ) in Fig. 1, is a spurious effect, caused by the

experimental difficulty [2] in resolving the narrow temperature range [T0, Tc].
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over a narrow temperature range Tc − T0 = 0.04 K, resulting from the steep decrease of cs down to 0
for T → T−

c , as shown below.
In the two-fluid model, σ reads [1], at low frequency such that ωτs � 1, as

σ(T ) = σn + σs =
e2

m
((c0 − cs(T )) τn + cs(T )τs) , (8)

because of cn(T ≤ Tc) + cs(T ) = c0. Consequently, the average τ , showing up in Eq. (1), is defined
as c0τ = (c0 − cs)τn + csτs. At low T , the current decay is due to scattering by impurities and (or)
dislocations, so that τn, τs are T -independent. Although the value of τ is in general unknown, it could
be measured as indicated elsewhere [1]. Then the measurement of δ would provide with a rather unique
access to cs(T ). The steep increase of |δ| for T → T−

c , seen in Fig. 4, stems from the rapid decrease of
cs(T → T−

c ) → 0 with τn � τs [1], consistently with Eq. (8).
Besides, both the observed [3, 7, 8] downward shift of TM ↘ 0 with growing magnetic field H

or impurity concentration and, conversely, the upward one TM ↗ Tc, resulting from increasing the
frequency ω, are very well accounted for within the framework of this analysis:

• increasing H has been shown to cause cs (see arXiv: 1704.03729), and thence σ (see Eq. (8)) to
decrease. Due to |δ| = 1√

2μ0σω
, decreasing σ leads in turn to increasing |δ|. Because the maximum

of χ′′(δ) is pinned at r0
|δ| = 2.53 (see Fig. 3(a)), the maximum of χ′′(TM = Ti(H = 0)) will be

shifted down to TM = Tf (H �= 0) < Ti, owing to cs(Tf < Ti) > cs(Ti) ⇒ σ(Tf ) > σ(Ti), such
that |δ(H = 0, Ti)| = |δ(H �= 0, Tf )| ⇒ r0

|δ(H=0,Ti)| = r0
|δ(H �=0,Tf )| = 2.53. Likewise, as increasing the

impurity concentration causes both τ and thence σ to decrease, the same rationale implies that the
maximum of χ′′(T ) will be pushed towards lower T too;

• conversely, because of |δ(ω)| ∝ 1/
√

ω, growing ω from ωi up to ωf > ωi will shift the temperature
Ti of the maximum of χ′′(TM = Ti(ωi)) up to Tf (ωf > ωi) > Ti, so that r0

|δ(ωi,Ti)| = r0
|δ(ωf ,Tf )| = 2.53.

For low-frequency measurements of χ′′(T ) to be useful, the prerequisite |δ(ω, Tc)| > r0 must be
fulfilled. Such a condition requires, in very pure superconductors (⇒ large τ -value), to operate at
unpractical low frequency. This is the real reason why Maxwell and Strongin [2] failed to observe
any maximum of χ′′(T ) in very pure Sn. This drawback and the additional one that the values of
δ(ω, Tc), δ(ω, T0) are in general unknown, entail that the measurement of the low-frequency susceptibility
could not be regarded as a practical alternative method to conventional high-frequency ones [12, 13],
currently used to measure the skin-depth. However, due to a special circumstance to be discussed now,
it still turns out to be of great relevance.

At high enough a frequency, such that r0 � |δ(ω)|, it has been shown [1] that |δ| = C(ω)χ′(ω, T ),
for which C(ω) is an unknown experimental coefficient. Therefore, assessing the accurate value of δ(T )
requires to perform the measurement of χ′(T ) up to Tc, because the value of σ(Tc) = σn(Tc) and thence
that of |δ(Tc)| = 1√

2μ0σn(Tc)ω
are well known. However, an accurate assignment of δ(ω) is still lacking,

because all published δ(ω) data have so far been obtained from T = 0 up to T0 < Tc, by consistently
refraining from publishing χ′(T ∈ [T0, Tc]), whereas χ′′(T ∈ [T0, Tc]) data, albeit of little usefulness,
are conversely available in the literature. This harmful state of affairs results from a long standing
contradiction between the assumption δ(ω) = λL,∀ω, used in the interpretation of all experimental
δ(T < Tc)-data and the experimental evidence itself. It is thus in order to resolve this contradiction.

The expression of the average δ in the two-fluid model has been shown [1] to read

δ−2 = 2iμ0ω

(
σn

1 + iωτn
+

σs

1 + iωτs

)
. (9)

As a consequence of the mainstream assumption [16] τs → ∞, Eqs. (1), (9) lead indeed to the complex
impedance of the sample, reading as Z = σn(T ) − iωμ0λ

2
L, and to δ(ω) = λL/

√
2,∀ω, respectively.

Thence the average conductivity σ, equal to the real part of Z, is inferred to read, at low frequency
such that ωτn � 1, as σ(T < Tc) = σn(T ) = cn(T )e2τn

m ⇒ σ(T < Tc) < σn(Tc) = c0e2τn
m , because

of c0 > cn(T < Tc) = c0 − cs(T ). As a matter of fact, both mainstream claims δ(ω) = λL√
2
,∀ω and

σ(T < Tc) < σn(Tc) are seen to run afoul at experimental evidence:
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• the data, pictured in Fig. 3(a), show that δ(ω = 18Hz) ≈ r0 > 10−4 m, whereas λL =
√

m
μ0cse2 <

10−7 m, so that δ(ω = 18Hz) � λL, which disproves the mainstream claim δ(ω) = λL,∀ω;
• the measured, average ac conductivity for the superconducting phase of YBa2Cu307 has been

reported [7, 8] to be σ(T < Tc) ≈ 105σn(Tc) ⇒ σ(T < Tc) � σn(Tc), which rebuts the opposite
claim σ(T < Tc) < σn(Tc), inferred above from the mainstream view.

In summary, the only way to extract useful information from the χ′-data, obtained at high frequency
ω ∈ [10MHz, 10GHz], is to measure χ′(T ) up to T = Tc at two frequencies, distant from each other, as
advised elsewhere [1].

5. CONCLUSION

The measured low-frequency susceptibility data in superconducting materials have been comprehen-
sively explained within a recent account of the skin effect [1]. The prominent maximum of the absorption
χ′′(T ) has been associated with the steep decrease of the concentration of superconducting electrons
cs(T ) → 0 for T → T−

c with the prerequisite |δ(ω, Tc)| > r0, whereas the dispersion χ′ changing its
sign at Tc has been identified to be the driving force of the Meissner effect, observed in a field-cooled
sample [15].

Two remarks are of interest:

• by contrast with a normal metal, for which the temperature behavior of σ = c0e2τn
m is completely

determined by τn(T ), as c0 remains constant, σ(T < Tc) in a superconductor is closely related to
the variation of cs(T ), because τs is almost T -independent;

• the high frequency δ assignments are obtained through the measurement of the dispersion χ′, while
the low frequency ones are obtained through that of the absorption χ′′.
Both assumptions δ(ω) = λL,∀ω and λL = λM have been rebutted. Therefore the determination

of δ paves the way for cs(T < Tc) and the cs dependence on the persistent current during the reversible
superconducting-normal transition (see arXiv: 1704.03729). Accordingly, it is advised to carry out
the δ-measurement in the IR range [1], because the high frequency, such that ωτs � 1, ensures
δ(ω) = λL/

√
2,∀ω, independent from τs, which provides thereby direct access to cs.
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