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Line Tension Effect upon Static Wetting
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1 Université de Toulon et du Var, BP 132, 83957 La Garde Cedex - France
e-mail: seppecher@univ-n.fr

Résumé — Effet de la tension de ligne sur le mouillage statique — La prise en compte d’une densité
constante d’énergie le long de la ligne de contact conduit a des problemes d’équilibre mal posés. Dans ce
cas, I’énergie minimisée par les configurations d’équilibre est une énergie « relaxée » qui nécessite la
prise en considération de phases de surface (i.e. de films infinitésimaux) sur les parois du récipient. Cette
formulation permet de décrire les modifications de la loi de Young et donc d’équilibre entrainées par la
présence de la tension de ligne.

Mots-clés : tension de ligne, mouillage statique, relaxation.

Abstract — Line Tension Effect upon Static Wetting — Adding simply, in the classical capillary model,
a constant line density of energy along the contact line leads to ill-posed equilibrium problems. Then,
when line tension is present, the equilibrium configuration minimizes a different energy: the “relaxed”
energy, which explicitly depends on the presence of surface phases (i.e. infinitesimal films) on the
boundary of the container. This formulation enables us to describe the modifications of the Young’s law

and then of equilibrium configurations which are due to line tension.

Keywords: line tension, static wetting, relaxation.

INTRODUCTION

In the simplest model for capillarity, one consider two phases
A and B lying in a rigid container Q. One, at least, of the
phases is incompressible and a constant surface energy v, , is
concentrated on the interface S,, which divides the two
phases. The wetting properties of the wall dQ of the
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Figure 1

Notations.

container are taken into account by considering constant
surface energies Y, and Y, concentrated on the contact
surfaces S,q, Sp, of the phases A and B on the wall. The
contact line L, defined as the intersection of the interface
and the wall of the container, plays an important role for
describing equilibrium conditions. The associated contact
angle O is defined as the angle made by the interface and the
wall, more precisely made by the normal vector of the
interface S, external with respect to A and the normal vector
of the wall 0Q external with respect to Q (Fig. 1).

The equilibrium state is determined by the position of one
of the phases, say A, and is given by the minimization of the
capillary energy:

EA) =Y S+ Yao | Saa ! +¥pa 1 Spa |

where | §,,1, 15,51, | Spi, | denote the areas of the different
interfaces. The total volume | A | of the phase A is fixed in
this minimization procedure.

An interesting extension of this model is obtained by
considering the possibility of a concentration of energy along
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the contact line [1-4]. Denoting ¢ the (constant) line tension,
the equilibrium state is given by the minimization of the
energy:

FA) =Y S5+ Yua ! Sao ! + Yo | Spa I 1L

where | L. | denotes the length of the line L.

What are the equilibrium conditions in that case? And
before all, is this minimization problem a well-posed
problem? These are the questions we will discuss in the
sequel. We will show that the problem is, in general, ill-
posed. The associated well-posed problem (the minimization
of the “relaxed” energy) cannot be formulated without
considering surface phases on the wall. This notion of surface
phases is connected with the notion of wetting (or dewetting)
films. Rigorous proofs will not be given here: interested
readers can refer to [5].

1 BACK TO THE NO LINE TENSION CASE

Let us first consider the classical case when no line tension is

present. The equilibrium conditions are well known [6]:

— the interface has a constant mean curvature;

— the contact angle 0 is constant along the contact line and is
given by the Young’s law:

Cos(e) — YAQ - YBQ
Y aB

Clearly, when | Y, — Y0 | > V45 the Young’s law cannot
be satisfied. Different attitudes are possible in this situation:

— one can first consider that the wetting inequality v,, >

[ Y40 — Ypq ! holds in every physical case;

— one can assume that there is no contact between the phase

A and the wall if this inequality is not satisfied.

Both attitudes cannot be entirely correct: many cases have
been described in which the wetting inequality is not satisfied
and, when the volume of the phase A is sufficiently large, the
contact between A and the wall cannot be avoided.

Assume, for instance, that Y, > ¥,z + V50- In that case the
minimization of the energy E is an ill-posed problem. Indeed,
let us consider a minimizing sequence (one can imagine
either a slow motion of the phases toward the equilibrium
state or a numerical descent method for searching the
minimum of the functional). In some geometric cases as the
one represented in Figure 2, the limit of the minimizing
sequence may not be a minimizer.

From a microscopic (infinitesimal) point of view S, is
empty and the second attitude is correct.

From a macroscopic point of view, the equilibrium
configuration is the limit of the minimizing sequence and S,
is not empty: A does not minimize the original energy E but a
“relaxed” energy E given by:

EA) = Y51 S+ (U + Y30 ) 1S40 1+ Yagy | S|

Initial state

Minimization procedure

State with an almost minimal energy: S, is empty

Limit state: Sy, is not empty, energy is high

Figure 2

A minimizing sequence.

Then the energy E one has to consider from a macroscopic
point of view satisfies the wetting inequality and the first
attitude is correct.

The difference between the original energy E and the
relaxed one E takes into account the existence of a
microscopic (infinitesimal) film of phase B between phase A
and the wall. Of course, extra physical arguments may bound
the thinness of this film and modify its energy (which is
simply here the sum of the energies v,, + V). Such
arguments are not necessary at this point and do not change
fundamentally our conclusions.

The remarkable fact we much emphasize is that the
relaxed energy E has the same form as the original one E.
Owing to this “miracle” one can ignore in this model the
presence of films along the wall by considering only, from
the very beginning, energies which satisfy the wetting
condition. The relaxation of the model when line tension is
present is not so simple.

2 INTUITIVE EQUILIBRIUM CONDITIONS

The equilibrium conditions can be written in an intuitive way
by considering the equilibrium of forces at the contact line
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Figure 3

Intuitive equilibrium of the contact line.

(Fig. 3). As previously, the mean curvature of the interface is
constant but the Young’s law is modified:

cos (0) = Yao — Vo __“k
Y aB Y aB

where K denotes the geodesic curvature of the contact line on
the wall.

The existence of a contact angle 0 satisfying the Young’s
law needs the inequality y,, 2 | v, — V3o — cK I. This
condition cannot replace the classical wetting condition as it
depends now on the solution (through the curvature K of the
contact line). Is there any condition which assures that the
equilibrium problem is well-posed?

3 RELAXED FORMULATION

Let us compute the relaxed energy by considering again a
minimizing sequence (Fig. 4).

The point is that the limits (denoted A’, B’ and L,.,.) of
S0 Spq and of the contact line L. do not coincide with the
apparent contact surfaces S, , Sp(, and contact line L. The
surfaces A’ and B’ can be considered as surface phases on the
wall, the line L,.,. dividing these phases. The energy of the
limit configuration depends on the position of the volume
phase A and of the surface phase A’ (indeed every quantity
can be expressed in terms of A and A’):

SAA) =7, 1S5+ Vs Sypl + Ypp! S|
+ V5! Sap |+ Vo Spa 1+ € 1L,

where S, ,. (respectively Sy, S5, Sp,.) denotes the contact
surface between the volume phase A (resp. B, A, B) and the

™
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Initial state

Minimization procedure

SAA’

Sag
Limit of the contact line f

(dividing line) L, Apparent
contact line Lg
Limit state

Figure 4

Minimization with line tension.

surface phase A’ (resp. B’, B’, A’). Here the energies are
simply given by:

Tan =Taq
Yo' = Vo
Yag =Yap+ Tpa
Ypa = Yap+ Taq
but, as previously, extra physical arguments can modify the
value of these energies.

Theoretically, the “relaxed” energy F should be expressed
in terms of A only:

F(A)=inf, §(A,A)

but this formulation is useless: F is non-local and non-
explicit. On the other hand, privileging the volume phase in
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the formulation of the energy is now somehow arbitrary. The
surface phase plays a symmetric role and even, from an
experimental point of view, may be the most accessible
quantity.

Thus the only way to study capillary equilibrium with line
tension is to consider the energy J): surface phases (wetting
films) cannot be ignored.

4 ASSOCIATED EQUILIBRIUM CONDITIONS

Let us write the equilibrium conditions for the energy (T) in
the general case. Note that the contact line and the dividing
lines can partially coincide (see Figure 5 where a drop of
phase A is lying on a non-flat surface and submitted to some
extra external force like gravity). The equilibrium conditions
depend on the different possible situations (corresponding to
the points M, N, P, Q, R in Figure 5).

Let us define the dimensionless parameters 6,, 6,, T and
the characteristic length A as follows:

COS(GI) — YAA' — YBA'
Y aB

cos(8,) = Yap — Vpp
AB

c= VBB *¥ap ~ Yan ~ Tpa

Y aB
and assume that 0, = 0,, the other case being similar.
Where the two lines coincide (at point M) we have:
0e(0,,0,]

and:
—2AK =1 —cos (8,) —cos (8,) + 2 cos (0)

Figure 5

A possible equilibrium state with line tension.

Otherwise:
— on the dividing line L. .:
« in A (at point N): -2AK =T —cos (8,) + cos (8,)
« in B (at point P): -2AK =T + cos (8,) — cos (6,)
— on the contact line L.:
+ inA’ (at point 0): 6 =90,
- inB’ (at point R): 6 =0,

5 CONSEQUENCES UPON EQUILIBRIUM

Consequences of these conditions upon equilibrium are
straightforward but the possibility for the dividing line and
the contact line to separate may lead to hysteresis and
instability [7].

For sake of simplicity, assume that y,,. = Yz = 0 and
Yag = Year = Yap and consider a small drop of phase A
growing in a capillary tube of radius r (Fig. 6). There are two

B’ A B’

Figure 6
A drop growing in a capillary tube.
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Figure 7

Contact angle of a drop lying on a plane substrate.
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critical volumes for the drop, V, =4 m r3/3 and V, = &t r?
(r/3+2)\): when| A<V, Aisasphere and A’ is empty;
when V| <l A1<V,, Ais the union of two half-spheres and a
cylinder, A’ is still empty; when | A 1>V,, A is a cylinder and
A’ coincides with the interface S ,,.

Note the sudden change of the contact angle (from O to
7t/2) when the volume reaches the critical volume V. This
result can be extended to a drop growing on a plane surface
with v,,. = Yz = 0 and 0 < ¥,, = V5, < V4 The
computation of the critical volume is less simple [7]: Figure 7
shows the contact angle versus the volume of the drop.

CONCLUSION

The notion of surface phases (films) is crucial when taking
into account line tension. The macroscopic energy ® must be
written in terms of both volume and surface phases which
play a symmetrical role. Searching equilibrium config-
urations with this formulation is straightforward: an
instability can occur which is due to the possibility for the
dividing line (the line where energy is concentrated) to
coincide for a moment with the contact line and then to jump
to a lower-energy position.

The capillary equilibrium with line tension appears to be a
coupled problem of volume and surface phase transition.
This makes clear the impossibility to deal with negative line

tension (in the same way as for negative surface tension in
the classical model of capillarity): with negative line tension,
the minimization problem would be again ill-posed and any
configuration would be fundamentally unstable. Negative
line tension, invoked for instance in [1, 3, 4], needs a more
sophisticated model: it cannot be taken into account without
adding some extra stabilizing energy.
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