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ABSTRACT

Context. The second Gaia data release (Gaia DR2) provides precise five-parameter astrometric data (positions, proper motions, and
parallaxes) for an unprecedented number of sources (more than 1.3 billion, mostly stars). This new wealth of data will enable the
undertaking of statistical analysis of many astrophysical problems that were previously infeasible for lack of reliable astrometry, and in
particular because of the lack of parallaxes. However, the use of this wealth of astrometric data comes with a specific challenge: how
can the astrophysical parameters of interest be properly inferred from these data?
Aims. The main focus of this paper, but not the only focus, is the issue of the estimation of distances from parallaxes, possibly com-
bined with other information. We start with a critical review of the methods traditionally used to obtain distances from parallaxes and
their shortcomings. Then we provide guidelines on how to use parallaxes more efficiently to estimate distances by using Bayesian
methods. In particular we also show that negative parallaxes, or parallaxes with relatively large uncertainties still contain valuable
information. Finally, we provide examples that show more generally how to use astrometric data for parameter estimation, including
the combination of proper motions and parallaxes and the handling of covariances in the uncertainties.
Methods. The paper contains examples based on simulated Gaia data to illustrate the problems and the solutions proposed. Further-
more, the developments and methods proposed in the paper are linked to a set of tutorials included in the Gaia archive documentation
that provide practical examples and a good starting point for the application of the recommendations to actual problems. In all cases
the source code for the analysis methods is provided.
Results. Our main recommendation is to always treat the derivation of (astro-)physical parameters from astrometric data, in particular
when parallaxes are involved, as an inference problem which should preferably be handled with a full Bayesian approach.
Conclusions. Gaia will provide fundamental data for many fields of astronomy. Further data releases will provide more data, and
more precise data. Nevertheless, to fully use the potential it will always be necessary to pay careful attention to the statistical treatment
of parallaxes and proper motions. The purpose of this paper is to help astronomers find the correct approach.
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1. Introduction

The Gaia Data Release 2 (Gaia DR2; Gaia Collaboration 2018)
provides precise positions, proper motions, and parallaxes for an
unprecedented number of objects (more than 1.3 billion). Like
HIPPARCOS ESA (1997) in its day, the availability of a large
amount of new astrometric data, and in particular parallaxes,
opens the way to revisit old astrophysical problems and to tackle
new ones. In many cases this will involve the inference of astro-
physical quantities from Gaia astrometry, a task that is less trivial
than it appears, especially when parallaxes are involved.

The naive use of the simple approach of inverting the paral-
lax to estimate a distance can provide an acceptable estimate in a

limited number of cases, in particular when a precise parallax for
an individual object is used. However, one of the important con-
tributions of Gaia DR2 will be the possibility of working with
large samples of objects, all of them with measured parallaxes.
In these cases a proper statistical treatment of the parallaxes in
order to derive distances, especially (but not only) when the rela-
tive uncertainties are large, is mandatory. Otherwise, the effects
of the observational errors in the parallaxes can lead to poten-
tially strong biases. More generally, the use of full astrometric
data to derive astrophysical parameters should follow a similar
approach. A proper statistical treatment of the data, its uncer-
tainties, and correlations is required to take full advantage of the
Gaia results.
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This paper is a complement for the Gaia consortium
Gaia DR2 papers. We analyse the problem of the inference of
distances (and other astrophysical parameters) from parallaxes.
In Sect. 2 we start with a short review of the properties of the
Gaia astrometric data. Then in Sect. 3 we review several of the
most popular approaches to using measured parallaxes in astron-
omy and highlight their intricacies, pitfalls, and problems. In
Sect. 4 we make recommendations on what we think is the appro-
priate way to use astrometric data. Finally, in Sect. 5 we link to
some worked examples, ranging from very basic demonstrations
to full Bayesian analysis, available as Python and R notebooks
and source code from the tutorial section on the Gaia archive1.

2. Gaia astrometric data

The Gaia astrometry, i.e. celestial coordinates, trigonomet-
ric parallaxes, and proper motions for more than one billion
objects, results from the observations coming from the space-
craft instruments and their subsequent processing by the Gaia
Data Processing and Analysis Consortium (DPAC). The astro-
metric processing is detailed in Lindegren et al. (2018) and
readers are strongly encouraged to familiarise themselves with
the contents of that paper in order to understand the strengths
and weaknesses of the published astrometry, and in particular
of the parallaxes. The processed data was submitted to exten-
sive validation prior to publication, as detailed in Arenou et al.
(2018). This paper is also highly recommended in order to gain a
proper understanding of how to use and how not to use the astro-
metric data. As a simple and striking example: a small number of
sources with unrealistic very large positive and very large neg-
ative parallaxes are present in the data. Advice on how to filter
these sources from the data analysis is provided in the Gaia DR2
documentation.

2.1. Uncertainties

The published parallaxes, and more generally all astrometric
parameters, are measured quantities and as such have an asso-
ciated measurement uncertainty. These uncertainties are pub-
lished, source per source, and depend mostly on position on
the sky as a result of the scanning law and on magnitude.
For parallaxes, uncertainties are typically around 0.04 mas for
sources brighter than ∼14 mag, around 0.1 mas for sources
with a G magnitude around 17, and around 0.7 mas at the faint
end, around 20 mag. The astrometric uncertainties provided in
Gaia DR2 have been derived from the formal errors computed
in the astrometric processing. Unlike for Gaia DR1, the paral-
lax uncertainties have not been calibrated externally, i.e. they
are known, as an ensemble, to be underestimated by ∼8–12%
for faint sources (G >∼ 16 mag) outside the Galactic plane and
by up to ∼30% for bright stars (G <∼ 12 mag). Based on an
assessment of the measured parallaxes of a set of about half a
million known quasars, which can be assumed in practice to have
zero parallax, the uncertainties are normally distributed with
impressive approximation (Fig. 1). However, as is common when
taking measurements and especially in such large samples like
the Gaia catalogue, there are small numbers of outliers, even up
to unrealistically high confidence levels (e.g. at the 100σ level).

2.2. Correlations

The parallaxes for each source published in Gaia DR2 have
not been derived in isolation, but result from a simultaneous
1 https://github.com/agabrown/astrometry-inference-
tutorials
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Fig. 1. Distribution of normalised, re-centred parallaxes of 556 849
quasars from the AllWISE catalogue present in Gaia DR2 (blue curve).
The grey curve denotes the subsample composed of 492 920 sources
with parallax errors σ$ < 1 mas. The centring adopted in this plot
reflects a global parallax zero-point shift of −0.029 mas. Ideally, both
curves should follow a normal distribution with zero mean and unit
variance. The red curve shows a Gaussian distribution with the same
standard deviation (1.081) as the normalised centred parallaxes for the
full sample. Figure from Lindegren et al. (2018).

five-parameter fit of an astrometric source model to the data. In
Gaia DR2 only one astrometric source model has been used, that
of a single star. This model assumes a uniform, rectilinear space
motion relative to the solar system barycentre. The astrometric
data in Gaia DR2 thus comprise five astrometric parameters2

with their associated uncertainties, but also ten correlation coef-
ficients between the estimated parameters. It is critical to use
the full (5 × 5) covariance matrix when propagating the uncer-
tainties on subsets and/or linear combinations of the astrometric
parameters.

As an example, consider the transformation of the measured
proper motions µα∗ and µδ in equatorial coordinates to equivalent
values µl∗ and µb in galactic coordinates. Following the notation
in ESA (1997, Sects. 1.2 and 1.5), we have(
µl∗
µb

)
=

(
c s
−s c

) (
µα∗
µδ

)
, (1)

where the 2 × 2 matrix is a rotation matrix that depends on the
object’s coordinates α and δ: c = c(α, δ) and s = s(α, δ). In order
to transform the proper-motion errors from the equatorial to the
galactic system, we have

Clb =

(
σ2
µl

ρ
µb
µl σµlσµb

ρ
µb
µl σµlσµb σ2

µb

)
(2)

= JCαδJ ′ (3)

=

(
c s
−s c

) (
σ2
µα∗

ρ
µδ
µα∗σµα∗σµδ

ρ
µδ
µα∗σµα∗σµδ σ2

µδ

) (
c −s
s c

)
, (4)

where the prime denotes matrix transposition, J denotes the
Jacobian matrix of the transformation (which for a rotation is
2 For a subset of the data, only two parameters (right ascension α and
declination δ) could be determined.
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the rotation matrix itself), and C denotes the variance-covariance
matrix. It immediately follows that σµl∗ and σµb depend on the
generally non-zero correlation coefficient ρµδµα∗ between the equa-
torial proper-motion measurements. Neglecting this correlation
term can give seriously incorrect results. Some further exam-
ples of how error propagation should be handled can be found
in, for instance, Brown et al. (1997) and Lindegren et al. (2000).
In addition to error propagation, the covariance matrix should
also be taken into account when estimating model parameters,
for example in chi-square fitting, maximum likelihood estimates,
Bayesian analysis, etc. For more details, see Vol. 1, Sect. 1.5 of
ESA (1997).

2.3. Systematic errors

Both the design of the spacecraft and the design and implemen-
tation of the data processing software and algorithms aim to
prevent biases or systematic effects in the astrometry. Systematic
errors at low levels nonetheless exist in Gaia DR2 (see Arenou
et al. 2018; Lindegren et al. 2018). Systematic effects are com-
plicated and largely unknown functions of position on the sky,
magnitude, and colour. Although systematic effects are not dealt
with in the remainder of this paper, it is important for users to be
aware of their presence.

The parallaxes and proper motions in Gaia DR2 may be
affected by systematic errors. Although the precise magnitude
and distribution of these errors is unknown, they are believed
to be limited, on global scales, to ±0.1 mas for parallaxes and
±0.1 mas yr−1 for proper motions. There is a significant aver-
age parallax zero-point shift of about −30 µas in the sense Gaia
minus external data. This shift has not been corrected for and
is present in the published data. Significant spatial correlations
between stars, up to 0.04 mas in parallax and 0.07 mas yr−1

in proper motion, exist on both small (<∼1◦) and intermediate
(<∼20◦) angular scales. As a result, averaging parallaxes over
small regions of the sky, for instance in an open cluster, in the
Magellanic Clouds, or in the Galactic Centre, will not reduce the
uncertainty on the mean below the ∼0.1 mas level.

Unfortunately, there is no simple recipe to account for the
systematic errors. The general advice is to proceed with the
analysis of the Gaia DR2 data using the uncertainties reported
in the catalogue, ideally while modelling systematic effects as
part of the analysis, and to keep the systematics in mind when
interpreting the results.

2.4. Completeness

As argued in the next sections, a correct estimation requires full
knowledge of the survey selection function. Conversely, neglect-
ing the selection function can causes severe biases. Derivation
of the selection function is far from trivial, yet estimates have
been made for Gaia DR1 (TGAS) by, for instance, Schönrich &
Aumer (2017) and Bovy (2017).

This paper does not intend to define the survey selection
function. We merely limit ourselves to mentioning a number of
features of the Gaia DR2 data that should be properly reflected
in the selection function. The Gaia DR2 catalogue is essentially
complete between G ≈ 12 and ∼17 mag. Although the complete-
ness at the bright end (G in the range ∼3–7 mag) has improved
compared to Gaia DR1, a fraction of bright stars in this range is
still missing in Gaia DR2. Most stars brighter than ∼3 mag are
missing. In addition, about one out of every five high-proper-
motion stars (µ >∼ 0.6 arcsec yr−1) is missing. Although the
onboard detection threshold at the faint end is equivalent to

G = 20.7 mag, onboard magnitude estimation errors allow Gaia
to see fainter stars, although not at each transit. Gaia DR2 hence
extends well beyond G = 20 mag. However, in dense areas on the
sky (above ∼400 000 stars deg−2), the effective magnitude limit
of the survey can be as bright as ∼18 mag. The somewhat fuzzy
faint-end limit depends on object density (and hence celestial
position) in combination with the scan-law coverage underly-
ing the 22 months of data of Gaia DR2 and the filtering on
data quality that has been applied prior to publication. This has
resulted in some regions on the sky showing artificial source-
density fluctuations, for instance reflecting the scan-law pattern.
In small, selected regions, gaps are present in the source distri-
bution. These are particularly noticeable near very bright stars.
In terms of effective angular resolution, the resolution limit of
Gaia DR2 is ∼0.4 arcsec.

Given the properties of Gaia DR2 summarised above, the
interpretation of the data is far from straightforward. This is par-
ticularly true when accounting for the incompleteness in any
sample drawn from the Gaia Archive. We therefore strongly
encourage the users of the data to read the papers and docu-
mentation accompanying Gaia DR2 and to carefully consider
the warnings given therein before drawing any conclusions from
the data.

3. Critical review of the traditional use of parallaxes

We start this section by briefly describing how parallaxes are
measured and how the presence of measurement noise leads
to the occurrence of zero and negative observed parallaxes. In
the rest of the section we review several of the most popular
approaches to using measured parallaxes ($) to estimate dis-
tances and other astrophysical parameters. In doing so we will
attempt to highlight the intricacies, pitfalls, and problems of
these “traditional” approaches.

3.1. Measurement of parallaxes

In simplified form, astrometric measurements (source positions,
proper motions, and parallaxes) are made by repeatedly deter-
mining the direction to a source on the sky and modelling the
change of direction to the source as a function of time as a com-
bination of its motion through space (as reflected in its proper
motion and radial velocity) and the motion of the observing
platform (Earth, Gaia , etc.) around the Sun (as reflected in the
parallax of the source). As explained in more detail in Lindegren
et al. (2016) and Lindegren et al. (2012), this basic model of the
source motion on the sky describes the time-dependent coordi-
nate direction from the observer towards an object outside the
solar system as the unit vector

u(t) = 〈r + (tB − tep)(pµα∗ + qµδ + rµr) −$bO(t)/Au〉 , (5)

where t is the time of observation and tep is a reference time, both
in units of Barycentric Coordinate Time (TCB); p, q, and r are
unit vectors pointing in the direction of increasing right ascen-
sion, increasing declination, and towards the position (α, δ) of
the source, respectively; tB is the time of observation corrected
for the Rømer delay; bO(t) is the barycentric position of the
observer at the time of observation; Au is the astronomical unit;
and 〈〉 denotes normalisation. The components of proper motion
along p and q are respectively µα∗ = µα cos δ and µδ, $ is the
parallax, and µr = vr$/Au is the “radial proper motion” which
accounts for the fact that the distance to the star changes as a
consequence of its radial motion, which in turn affects the proper
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Fig. 2. Example of a negative parallax arising from the astrometric data
processing. Solid blue lines, true path of the object; red dots, the indi-
vidual measurements of the source position on the sky; dashed orange
lines, the source path according to the least-squares astrometric solution,
which here features a negative parallax. Left: path on the sky showing
the effect of proper motion (linear trend) and parallax (loops). Right:
right ascension and declination of the source as a function of time. In
the fitted solution the negative parallax effect is equivalent to a yearly
motion of the star in the opposite direction of the true parallactic motion
(which gives a phase-shift of π in the sinusoidal curves in the right pan-
els). The error bars indicate a measurement uncertainty of 0.7 mas, the
uncertainties on ∆α∗ and ∆δ are assumed to be uncorrelated.

motion and parallax. The effect of the radial proper motion is
negligibly small in most cases and can be ignored in the present
discussion.

The above source model predicts the well-known helix or
wave-like pattern for the apparent motion of a typical source on
the sky. A fit of this model to noisy observations can lead to
negative parallaxes, as illustrated in Fig. 2. We note how in the
source model described in Eq. (5) the parallax appears as the
factor −$ in front of the barycentric position of the observer,
which means that for each source its parallactic motion on the
sky will have a sense which reflects the sense of the motion of
the observer around the Sun. In the presence of large measure-
ment noise (comparable to the size of the parallax) it is entirely
possible that the parallax value estimated for the source model
vanishes or becomes negative. This case can be interpreted as the
measurement being consistent with the source going ‘the wrong
way around’ on the sky, as shown in Fig. 2.

This example is intended to clarify why parallaxes can have
non-positive observed values and, more importantly, to convey
the message that the parallax is not a direct measurement of
the distance to a source. The distance (or any other quantity
depending on distance) has to be estimated from the observed
parallax (and other relevant information), taking into account the
uncertainty in the measurement. A simplified demonstration of
how negative parallaxes arise (allowing the reader to reproduce
Fig. 2) can be found in the online tutorials accompanying this
paper3.

3.2. Estimating distance by inverting the parallax

In the absence of measurement uncertainties, the distance to a
star can be obtained from its true parallax through r = 1/$True,
with$True indicating the true value of the parallax. Thus, naively
we could say that the distance to a star can be obtained by invert-
ing the observed parallax, ρ = 1/$, where now ρ is used to

3 https://github.com/agabrown/astrometry-inference-
tutorials/blob/master/luminosity-calibration/
DemoNegativeParallax.ipynb

Fig. 3. PDF of ρ = 1/$ in two extreme cases. The red vertical line indi-
cates the true distance r. Left: object at r = 100 pc with an uncertainty
on the observed parallax of σ$ = 0.3 mas. Right: object at r = 2000 pc
with an uncertainty on the observed parallax of σ$ = 0.3 mas.

indicate the distance derived from the observed value of the par-
allax. For this discussion the observed parallax is assumed to
be free of systematic measurement errors and to be distributed
normally around the true parallax

p($ | $True) =
1

σ$
√

2π
exp

(
−

($ −$True)2

2σ2
$

)
, (6)

where σ$ indicates the measurement uncertainty on $. Blind
use of 1/$ as an estimator of the distance will lead to unphysical
results in case the observed parallax is non-positive. Neverthe-
less, we could still consider the use of the 1/$ distance estimate
for positive values, for instance, a sample where most or all of
the observed values are positive or, in the limiting case, where
there is a single positive parallax value. In this case, it is crucial
to be aware of the statistical properties of the estimate ρ. Given
a true distance r = 1/$True, what will be the behaviour of ρ?
We can obtain the probability density function (PDF) of ρ from
Eq. (6) as

p(ρ | $True) = p($ = 1/ρ | $True) ·
∣∣∣∣∣d$dρ

∣∣∣∣∣
=

1

ρ2σ$
√

2π
exp

(
−

(1/ρ −$True)2

2σ2
$

)
(7)

In Fig. 3 we depict p(ρ | $True) for two extreme cases of very
low and very high relative uncertainty. The shape of p(ρ | $True)
describes what we can expect when using ρ as an estimate of the
true distance r. The distribution of the figure on the left cor-
responds to a case with a low fractional parallax uncertainty,
defined as f = σ$/$True. It looks unbiased and symmetrical.
Thus, using ρ = 1/$ to estimate the distance in a case like this
is relatively safe and would lead to more or less reliable results.
However, in spite of its appearance, the figure hides an intrinsic
non-Gaussianity that is made evident in the right-hand figure.
This second plot corresponds to the case of high fractional paral-
lax uncertainty and the distribution shows several features: first,
the mode (the most probable value) does not coincide with the
true distance value; second, the distribution is strongly asym-
metric; and finally, it presents a long tail towards large values of
ρ. For more extreme values of f there is a noticeable negative
tail to this distribution, corresponding to the negative tail of the
observed parallax distribution.
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In view of Fig. 3 it is tempting to apply corrections to the
ρ estimator based on the value of the fractional parallax uncer-
tainty f . Unfortunately, in order to do so we would need to know
the true value of the parallax and f . Using the apparent fractional
uncertainty fapp = σ$/$ is not feasible since the denominator in
f (the true parallax) can be very close to zero, so its distribution
has very extended wings and using fapp will often result in gross
errors.

Furthermore, reporting a ρ value should always be accompa-
nied by an uncertainty estimate, usually the standard deviation
of the estimator, but the standard deviation or the variance is
defined in terms of an unknown quantity: $True. In addition,
the long tail shown in the right panel of Fig. 3 makes the esti-
mates of the variance quickly become pathological, as discussed
below.

In order to clarify the previous assertions, we recall the
classical concept of bias because it plays a central role in the dis-
cussion that develops in this section. In statistics, an estimator is
said to be biased if its expected value differs from the true value.
In our case, we aim to infer the true value of the parallax $True
(or, alternatively, related quantities such as the true distance r,
absolute magnitude, luminosity, or 3D velocity components),
and we aim to infer it from the measured parallax. In the Gaia
case this measured parallax will be affected by quasi-Gaussian
uncertainties (see Sect. 2.1). In this case the expectation value of
the observed parallax coincides with the true value:

E[$] =

∫
$p($|$True) · d$

=

∫
$N($;$True, σ$) · d$ = $True, (8)

where N($;$True, σ$) represents the Gaussian probability dis-
tribution centred at the true parallax and with a standard devia-
tion σ$. Hence, the observed parallax is an unbiased estimator
of the true parallax (under the strong hypothesis that there are no
systematic biases associated with the survey and that the errors
are normally distributed).

Now, in order to assess the bias of ρ = 1/$ as an estimator
of the true distance we need to calculate its expected value:

E[ρ] = E[1/$]

=

∫
1
$
· p($|$True) · d$

=

∫
1
$
· N($True, σ$) · d$ (9)

This bias was approximated by Smith & Eichhorn (1996) (see
Sect. 3.4.1) as a function of the fractional parallax uncertainty
f using a series expansion of the term in the integral and sev-
eral approximations for the asymptotic regimes of small and
large values of f , and it indeed shows that the distance estimator
1/$ is unbiased for vanishingly small values of f , but it rapidly
becomes significantly biased for values of f beyond 0.1. But not
only is 1/$ a biased estimator of the true distance, it is also a
high-variance estimator. The reason for this variance explosion
is related to the long tail towards large distances illustrated in the
right panel of Figs. 3 and 4. Relatively large fractional uncertain-
ties inevitably imply noise excursions in the parallax that result
in vanishingly small observed parallaxes and disproportionate
distances (and hence an inflation of the variance).

The effects discussed above can be illustrated with the use
of simulated data. Figure 4 shows the results of a simulation

of objects located between 0.5 and 2 kpc where starting from
the true distances we have simulated observed parallaxes with a
Gaussian uncertainty of σ$ = 0.3 mas and then calculated for
each object ρ = 1/$.

The figure on the left shows that (by construction) the errors
in the observed parallaxes are well behaved and perfectly sym-
metrical (Gaussian), while in the centre figure the errors in the
estimation of distances using ρ show a strong asymmetry. The
characteristics of these residuals depend on the distribution of
true distances and uncertainties. This is more evident in the
figure on the right, where the true distance r is plotted against
ρ; there is a very prominent tail of overestimated distances and
the distribution is asymmetrical around the one-to-one line: the
more distant the objects, the more marked the asymmetry. These
features are very prominent because we have simulated objects
so that the relative errors in parallax are large, but they are
present (albeit at a smaller scale) even when the relative errors
are small.

The plots in Fig. 4 correspond to a simple simulation with
a mild uncertainty σ$ = 0.3 mas. Figure 5 shows the same
plots for a realistic simulation of the Gaia DR2 data set. The
simulation is described in Appendix A; in this case the errors
in parallax follow a realistic model of the Gaia DR2 errors,
depicted in Fig. A.2.

As a summary, we have seen in previous paragraphs that
the naive approach of inverting the observed parallax has sig-
nificant drawbacks: we are forced to dispose of valuable data
(non-positive parallaxes), and as an estimator ρ = 1/$ is biased
and has a very high variance.

3.3. Sample truncation

In addition to the potential sources of trouble described in
the previous sections, the traditional use of samples of paral-
laxes includes a practice that tends to aggravate these effects:
truncation of the used samples.

As discussed in Sect. 3.1, negative parallaxes are a natural
result of the Gaia measurement process (and of astrometry in
general). Since inverting negative parallaxes leads to physically
meaningless negative distances we are tempted to just get rid of
these values and form a “clean” sample. This results in a biased
sample, however.

On the one hand, removing the negative parallaxes biases
the distribution of this parameter. Consider for instance the case
illustrated in Fig. 1 for the quasars from the AllWISE catalogue.
These objects have a near zero true parallax, and the distribu-
tion of its observed values shown in the figure corresponds to
this, with a mean of −10 µas, close to zero. However, if we
remove the negative parallaxes from this sample, deeming them
“unphysical”, the mean of the observed values would be signif-
icantly positive, about 0.8 mas. This is completely unrealistic
for quasars; in removing the negative parallaxes we have signif-
icantly biased the observed parallax set for these objects. With
samples of other types of objects with non-zero parallaxes the
effect can be smaller, but it will be present.

On the other hand, when by removing negative parallaxes
the contents of the sample are no longer representative of the
base population from which it has been extracted since stars with
large parallaxes are over-represented and stars with small paral-
laxes are under-represented. This can be clearly illustrated using
a simulation. We have generated a sample of simulated stars
mimicking the contents of the full Gaia DR2 (see Appendix A)
and truncated it by removing the negative parallaxes. In Fig. 6
we can compare the distribution of the true distances of the
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Fig. 4. Behaviour of PDF of ρ = 1/$ as estimator of the true distance. Left: histogram of differences between true parallaxes and observed
parallaxes. Centre: histogram of differences between true distances and their estimation using ρ. Right: comparison of the true distances and their
estimations using ρ. The observed parallaxes $ have been simulated using an uncertainty of σ$ = 0.3 mas.

Fig. 5. Behaviour of PDF of ρ = 1/$ as estimator of the true distance for a simulation of the full Gaia DR2 data set. Left: histogram of differences
between true parallaxes and observed parallaxes. Centre: histogram of differences between true distances and their estimation using ρ. Right:
comparison of the true distances and their estimations using ρ. The observed parallaxes $ have been simulated using a realistic Gaia DR2 error
model described in the Appendix. The contour lines correspond to the distribution percentiles of 35%, 55%, 90%, and 98%.
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Fig. 6. Effect of removing the negative and zero parallaxes from a
simulation of Gaia DR2. Distribution of true distances: histogram of
distances for the complete sample (thick line), histogram of distances
for the sample truncated by removing $ ≤ 0 (thin line).

original (non-truncated) sample and the resulting (truncated)
sample; it is clear that after the removal of negative parallaxes
we have favoured the stars at short distances (large parallaxes)
with respect to the stars at large distances (small parallaxes). The
spatial distribution of the sample has thus been altered, and may
therefore bias any analysis based on it.

A stronger version of truncation that has traditionally been
applied is to remove not only negative parallaxes, but also all
the parallaxes with a relative error above a given threshold k,
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Fig. 7. Effect of removing the positive parallaxes with a relative error
above 50% as well as negative parallaxes. Thick line: histogram of dis-
tances for the complete sample. Thin line: histogram of distances for the
sample truncated by removing objects with (|σ$

$
| > 0.5).

selecting σ$
$
< k. This selection tends to favour the removal of

stars with small parallaxes. The effect is similar to the previ-
ous case, but more accentuated as can be seen in Fig. 7. Again,
stars at short distances are favoured in the sample with respect to
distant stars.

Even worse, as in the previous case the truncation not only
makes the distribution of true distances unrepresentative, but it
also biases the distribution of observed parallaxes: stars with
positive errors (making the observed parallax larger than the
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true one) tend to be less removed than stars with negative errors
(making the observed parallax smaller than the true one). By
favouring positive errors with respect to negative errors, we
are also biasing the overall distribution of parallaxes. Figure 8
depicts this effect. The plots show the difference $ −$True as a
function of $True. We can see in the middle and bottom figures
how the removal of objects is non-symmetrical around the zero
line, so that the overall distribution of$−$True becomes biased.
From an almost zero bias for the full sample (as expected from
Gaia in absence of systematics) we go to significant biases once
we introduce the truncation, and the bias is dependent of the cut
value we introduce.

Furthermore, in Gaia the parallax uncertainties vary with
the object magnitude, being larger for faint stars (see Fig. A.2).
Therefore, a threshold on the relative error will favour bright
stars over the faint ones, adding to the above described biases.

Another type of truncation that has been traditionally applied
is to introduce limits in the observed parallax. The effects of
such a limit are closely related to the Lutz–Kelker bias discussed
in Sect. 3.4.2. Suffice it here to illustrate the effect with a spe-
cific example on a Gaia DR2-like sample. If we take the full
sample and remove stars with $ < 0.2 mas we could imag-
ine that we are roughly removing objects further away than
5 kpc. However, the net result is depicted in Fig. 9 where we
can see that instead of the distribution of true distances of the
complete sample up to 5 kpc (solid line) we get a distribution
with a lack of closer stars and a long tail of stars with greater
distances. A larger limit in parallax (shorter limiting distance)
will produce a less prominent effect since the relative errors in
the parallax will be smaller, but the bias will be nonetheless
present.

In conclusion, our advice to readers is to avoid introducing
truncations when using Gaia data since, as illustrated above, they
can strongly affect the properties of the sample and therefore
affect the data analysis. If truncation is unavoidable it should
be included in the Bayesian modelling of the overall problem
(see Sect. 4.3).

3.4. Corrections and transformations

In this section, we review proposals in the literature for the use of
parallaxes to estimate distances. In general they take the form of
“remedies” to correct one or another problem on this use. Here
we explain why these remedies cannot be recommended.

3.4.1. The Smith–Eichhorn correction

Smith & Eichhorn (1996) attempt to compensate for the bias
introduced by the naive inversion of the observed parallax
(and the associated variance problem) in two different ways.
The first involves transforming the measured parallaxes into a
pseudo-parallax $∗ according to

$∗ ≡ β · σ$

 1
exp(φ) + exp(−1.6$

σ$
)

+ φ

 , (10)

where φ ≡ ln(1 + exp( 2$
σ$

))/2 and β is an adjustable constant.
The qualitative effect of the transformation is to map nega-
tive parallaxes into the positive semi-axis R+ and to increase
the value of small parallaxes until it asymptotically converges
to the measured value for large $. For $ = 0, φ = ln(2)/2
and the pseudo-parallax value $∗ = β · σ$

(
1

1+exp(ln(2)/2) +
ln(2)

2

)
has the undesirable property of depending on the choice of β and

Fig. 8. Differences between true and observed parallax: effect of remov-
ing observed negative parallaxes and those above a given relative error.
We start with a representative subsample of 1 million stars (top figure)
and truncate it according to the apparent relative parallax precision.
Top: complete sample. Mean difference $ −$True is 1.55 × 10−5 mas.
Middle: retaining only objects with positive parallaxes and |σ$

$
| < 0.5.

The mean difference $ − $True is 0.164 mas. Bottom: retaining only
objects with positive parallaxes and |σ$

$
| < 0.2. The mean difference

$ −$True is 0.026 mas.

on the parallax uncertainty. Thus, even in the case of a small
parallax measurement $ → 0 with a relatively small fractional
parallax uncertainty (e.g. f = 0.1), we substitute a perfectly
useful and valuable measurement by an arbitrary value of $∗.

The Smith–Eichhorn transformation is an arbitrary (and
rather convolved) choice amongst many such transformations
that can reduce the bias for certain particular situations. Both the
analytical expression and the choice of constants and β are the
result of an unspecified trial-and-error procedure, the applicabil-
ity of which is unclear. Furthermore, as stated by the authors,
they introduced a new bias because the transformed parallax is
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Fig. 9. Effect of introducing a limit on the observed parallax. Thick line:
histogram of distances up to 5 kpc for the complete sample. Thin line:
histogram of distances for the sample truncated by removing objects
with $ < 0.2 mas (distance estimated as 1/$ up to 5 kpc).

always larger than the measured parallax. This new bias has no
physical interpretation because it is the result of an ad hoc choice
for the analytical expression in Eq. (10). It is designed to reduce
the bias, but it does so by substituting perfectly reasonable direct
measurements (negative and small parallaxes) that we can inter-
pret and use for inference, by constructed values arising from the
choice.

3.4.2. The Lutz–Kelker correction

Lutz & Kelker (1973) realised that the spatial distribution of
sources around the observer together with the unavoidable obser-
vational errors and a truncation of the sample on the value of
the observed parallax result in systematic biases in the aver-
age parallax of certain stellar samples. The bias described by
Lutz & Kelker (1973) is a manifestation of the truncation biases
described above and can be understood if we look at a few
very simple examples. First, let us imagine a density of sources
around the observer such that the distribution of true parallaxes
p($True) is constant in a given interval and zero outside. Let us
also imagine that the observation uncertainty σ$ is constant and
equal to 0.3 mas. The left panel of Fig. 10 shows the distribution
of true and observed parallaxes for a simulation of such a situ-
ation and 106 sources. We see that the observed parallaxes are
also approximately uniform and the departures from uniformity
appear near the edges. For a given bin of intermediate parallax
we have as many sources contaminating from neighbouring bins
as we have sources lost to other bins due to the observational
uncertainties, and the result is a negligible net flux.

In the middle panel we show the same histograms except
that instead of a constant parallax uncertainty, we use a con-
stant value of the fractional parallax uncertainty f . This is still an
unrealistic situation because the distribution of true parallaxes is
not uniform and also because a constant f implies that larger
parallaxes are characterised by larger uncertainties. However,
it helps us to illustrate that even in the case of uniform true
parallaxes we may have a non-zero net flux of sources between
different parallax bins depending on the distribution of paral-
lax uncertainties. In this case, noise shifts the value of large
parallaxes more than that of smaller parallaxes (because of the
constant value of f ), so larger parallaxes get more scattered, thus
suppressing the distribution more at large parallaxes.

Finally, the right panel shows the same plot for a realistic
distribution of distances from a Gaia Universe Model Snapshot
(GUMS) sample (see Appendix A for a full description). We

see that the effect of a realistic non-uniform distribution of par-
allaxes and parallax uncertainties results in a net flux in the
opposite direction (smaller true parallaxes become more sup-
pressed and larger parallax bins are enhanced; in both cases, the
bins of negative parallaxes become populated). This is the root
of the Lutz–Kelker bias. It is important to distinguish between
the Lutz–Kelker bias and the Lutz–Kelker correction. The
Lutz–Kelker bias is the negative difference for any realistic sam-
ple between the average true parallax and the average measured
parallax (i.e. the average true parallax is smaller than the aver-
age measured parallax). This bias has been known at least since
the work of Trumpler & Weaver (1953), although it was already
discussed in a context different from parallaxes as early as
Eddington (1913). The Lutz–Kelker correction presented in Lutz
& Kelker (1973) and discussed below is an attempt to remedy
this bias based on a series of assumptions.

In the case of Gaussian uncertainties such as those described
in Eq. (6) it is evident that the probability of measur-
ing a value of the parallax greater than the true parallax
p($ > $True|$True) = 0.5. The same value holds for the prob-
ability that $ < $True because the Gaussian distribution is
symmetrical with respect to the true value of the parallax. This
is also true for the joint probability of $ and $True,

p($ > $True) =

"
S

p($,$True) · d$ · d$True = 0.5, (11)

where S is the region of the ($,$True) plane where $ > $True.
However, the probability distribution of the true parallax

given the observed parallax p($True|$) does not fulfil this seem-
ingly desirable property of probability mass equipartition at the
$ = $True point. We can write the latter probability as

p($True|$) =
p($,$True)

p($)
=

p($|$True) · p($True)
p($)

(12)

using the product rule of probability. In the context of inferring
the true parallax from the observed one, Eq. (12) is the well-
known Bayes’ theorem, where the left-hand side is the posterior
probability, p($ | $True) is the likelihood, p($True) is the prior,
and p($) is the evidence. For most realistic prior distributions
p($True), neither the median nor the mode or the mean of the
posterior in Eq. (12) is at $ = $True. Let us take for example a
uniform volume density of sources out to a certain distance limit.
In such a distribution the number of sources in a spherical shell
of infinitesimal width at a distance r scales as r2, as does the
probability distribution of the distances. Since

p(r) · dr = p($True) · d$True, (13)

the probability distribution for the true parallax in such a trun-
cated constant volume density scenario is proportional to

p($True) ∝ $−4
True (14)

out to the truncation radius. Hence, for Gaussian distributed
uncertainties we can write p($True|$) as

p($True|$) ∝
1
σ$
· exp(

−($ −$True)2

2σ$
) ·$−4

True. (15)

The joint distribution p($,$True) (i.e. the non-normalised
posterior, plotted as a 2D function of data $ and parame-
ter $True) for this particular case of truncated uniform stel-
lar volume densities is depicted in Fig. 11 together with the
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Fig. 10. Histograms of true (grey) and observed (blue) parallaxes for three simulations: uniform distribution of parallaxes and constant σ$ = 0.3
mas (left); uniform distribution of parallaxes and constant f = 0.5 (centre); and the GUMS simulation described in Appendix A (right).
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Fig. 11. Lower left: joint probability distribution (in logarithmic scale to
improve visibility) for the random variables $ and $True in the scenario
of a truncated uniform volume density. The colour code is shown to the
right of the lower right panel, and white marks the region where the
probability is zero. Lower right: conditional probability distribution of
the observed parallax for $True = 0.5. Upper left: conditional probabil-
ity distribution for $True given an observed parallax $. The fractional
parallax uncertainty assumed for the computation of all probabilities is
f = 0.2.

conditional distributions for particular values of $ and $True.
It shows graphically the symmetry of the probability distribution
p($|$True) (with respect to $True) and the bias and asymmetry
of p($True|$).

Lutz & Kelker (1973) obtain Eq. (15) in their Sect. II under
the assumption of uniform stellar volume densities and constant
fractional parallax uncertainties (constant f ). They discuss
several distributions for different values of the ratio σ$/$True.
In their Sect. III they use the expected value of the true parallax
given by the distribution p($True|$) in Eq. (15) to infer the
expected value of the difference between the true absolute
magnitude MTrue and the value obtained with the naive inversion

of the observed parallax. The expected value of this absolute
magnitude error is derived and tabulated for the distribution
p($True|$) as a function of the fractional parallax uncertainty f .
This so-called Lutz–Kelker correction is often applied to stellar
samples that do not fulfil the assumptions under which it was
derived because the stellar volume density is far from uniform at
scales larger than a few tens of parsecs and the samples to which
the correction is applied are never characterised by a unique
value of f .

3.5. Astrometry-based luminosity

An obvious way to avoid the problems associated with the naive
inversion of observed parallaxes (see Sect. 3.4.1) is to remain in
the space of parallaxes (as opposed to that of distances) inso-
far as this is possible. One example of this approach is the
astrometry-based luminosity (ABL) method (Arenou & Luri
1999) originating from Malmquist (1920). The ABL method
consists in substituting the absolute magnitudes by a proxy that
is linearly dependent on the parallax. The original proposal was

aV ≡ 100.2MV = $10
mV +5

5 , (16)

and has been recently used to obtain maximum likelihood
estimates of the period-luminosity relation coefficients for
Cepheids and RR Lyrae stars (Gaia Collaboration 2017a), and
to improve the Gaia parallax uncertainties using deconvolved
colour-magnitude diagrams as prior (Anderson et al. 2017).
The new astrometry-based luminosity depends linearly on the
parallax, and thus its uncertainty can be expected to have an
approximately Gaussian distribution if the fractional uncertainty
of the apparent magnitude is negligible. This is more often the
case than for fractional parallax uncertainties and is in general a
good approximation.

Unfortunately, the astrometry-based luminosity can only be
applied to the study of the luminosity and can do nothing for
the analysis of spatial distributions where distances or tangential
velocities are inevitable ingredients.

4. Recommendations for using astrometric data

In this section we provide specific advice on the use of astromet-
ric data in astronomical data analysis. Although the focus is on
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the use of Gaia data, many of the recommendations hold for the
analysis of astrometric data in general. To illustrate the recom-
mendations we also provide a small number of worked examples,
ranging from very basic demonstrations of the issues mentioned
in Sect. 3 to full Bayesian analyses. Some of these examples are
available in the Gaia archive tutorial described in Sect. 5.

4.1. Using Gaia astrometric data: how to proceed?

The fundamental quantity sought when measuring a stellar par-
allax is the distance to the star in question. However, as discussed
in the previous sections the quantity of interest has a non-linear
relation to the measurement, r = 1/$True, and is constrained to
be positive, while the measured parallax can be zero or even
negative. Starting from a measured parallax which is normally
distributed about the true parallax, this leads to a probability den-
sity for the simple distance estimator ρ = 1/$ (see Sect. 3) for
which the moments are defined in terms of unknown quantities.
This means we cannot calculate the variance of the estimator or
the size of a possible bias, which renders the estimator useless
from the statistical point of view.

Our first and main recommendation is thus to always treat
the derivation of (astro-)physical parameters from astrometric
data, in particular when parallaxes are involved, as an inference
problem which should preferably be handled with a full Bayesian
approach.

4.1.1. Bayesian inference of distances from parallaxes

The Bayesian approach to inference involves estimating a PDF
over the quantity of interest given the observables. In this case
we want to estimate the distance, r, given the parallax, $. A
fuller treatment of this problem has been given in Bailer-Jones
(2015), so only a brief summary will be given here. Using Bayes’
theorem we can write the posterior as

P(r | $) =
1
Z

P($ | r)P(r) . (17)

Formally, everything is also conditioned on the parallax uncer-
tainty, σ$, and any relevant constraints or assumptions, but
symbols for these are omitted for brevity. The quantity P($ | r)
is the likelihood from Eq. (12). The prior, P(r), incorporates our
assumptions and Z is a normalisation constant.

In addition to the likelihood, there are two important choices
which must be made to estimate a distance: the choice of prior
and the choice of estimator. We will first focus on the former,
and start discussing the simplest prior: the uniform unbounded
prior. With a uniform boundless (and thus improper) prior on
distances the posterior is proportional to the likelihood, and if
we choose the mode of the posterior as our estimator, then the
solution is mathematically equivalent to maximising the like-
lihood. However, a boundless uniform prior permits negative
distances, which are non-physical, so we should at least truncate
it to exclude these values.

The more measurements we have, or the more precise the
measurements are, the narrower the likelihood and the lower
the impact of the prior should be on the posterior. It turns out,
however, that with the unbounded uniform prior the posterior is
improper, i.e. it is not normalisable. Consequently, the mean and
median are not defined. The only point estimator is the mode,
i.e. rest = 1/$ (the standard deviation and the other quantiles
are likewise undefined), which is rather restrictive. Finally, this
Bayesian distance estimate defined for an unbounded uniform

prior reduces to the maximum likelihood estimate and coincides
with the naive inversion discussed in Sect. 3.2. The posterior
is ill-defined for the unbounded uniform prior for parallaxes.
This prior describes an unrealistic situation where the observer is
placed at the centre of a distribution of sources that is spherically
symmetric and the volume density of which decreases sharply
with distance.

The solution to these problems (non-physical distances,
improper posterior) is to use a more appropriate prior. The prop-
erties of various priors and estimators have been studied by
Bailer-Jones (2015) and Astraatmadja & Bailer-Jones (2016b).
The latter makes a detailed study using a Milky Way model for
a prior, and also investigates how the estimates change when
the Gaia photometric measurements are used in addition to the
parallax. One of the least informative priors we can use is the
exponentially decreasing space density prior:

P(r) =


1

2L3 r2e−r/L if r > 0

0 otherwise .
(18)

For distances r � L this corresponds to a constant space density
of stars, with the probability dropping exponentially at distances
much larger than the mode (which is at 2L). Examples of the
shape of the posterior for parallaxes of different precisions are
shown in Bailer-Jones (2015) and Astraatmadja & Bailer-Jones
(2016b).

The posterior obtained for the prior defined in Eq. (18) is nor-
malised and thus, we have a choice of point estimators (mean,
median, or mode). Also, the distribution is asymmetric, and
two quantiles (5% and 95%) rather than the standard devia-
tion are recommended to summarise the uncertainty in the point
estimate. The median, as a point estimate, is guaranteed to lie
between these quantiles. Astraatmadja & Bailer-Jones (2016b)
used this prior, as well as a Milky Way prior, to infer dis-
tances for the two million TGAS stars in the first Gaia data
release. The behaviour of the estimates derived from the expo-
nentially decreasing space density prior can be explored using
the interactive tool available in the tutorial described in Sect. 5.1.

In general, the introduction of reasonable prior probabili-
ties accounts for the Lutz–Kelker bias, although the inevitable
mismatch between the true distribution of parallaxes and the
prior used will result in less accurate inferences. In any case,
the advantage with respect to the methods discussed in Sect. 3
is clear: i) we do not need to tabulate corrections for each
prior assuming constant f ; ii) we do not need to dispose of
non-positive parallaxes; iii) we obtain a proper full posterior
distribution with well-defined moments and credible intervals;
iv) even simple priors such as the exponential decreasing
volume density will improve our estimates with respect to the
unrealistic prior underlying the maximum likelihood solution
rest = 1/$; and finally, v) we obtain estimators that degrade
gracefully as the data quality degrades, and with credible inter-
vals that grow with the observational uncertainties until they
reach the typical scales of the prior when the observations are
non-informative. These advantages come at the expense of an
inference that is more computationally demanding in general (as
it requires obtaining the posterior and its summary statistics if
needed), the need for a thoughtful choice of a prior distribution,
and the analysis of the influence of the prior on the inference
results.

Figure 12 shows the distribution of means (left), modes
(centre), and medians (right) of the posteriors inferred for
a simulation of 105 sources drawn from an exponentially
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Fig. 12. Probability distribution of the residuals of the Bayesian estimate of the true distance in parsecs for 100 000 simulated stars drawn from a
uniform density plus exponential decay distribution, and σ$ = 3 × 10−1 mas (orange), 3 mas (blue), and 30 mas (grey).

decreasing space density distribution. This simulation represents
the unlikely case where the prior is a perfect representation of the
true distribution.

From a Bayesian perspective the full posterior PDF is the
final result of our inference if we only use parallax measure-
ments to infer the distance (see below), and further analyses
should make use of it as a whole. This is our recommendation
in general: avoid expectations and summaries of the posterior.
However, it is often useful to compute summary statistics such
as the mean (expectation), median, mode, quantiles, etc., to have
an approximate idea of the distribution, but we should not use
these summaries for further inference, for example to estimate
absolute magnitudes, Cartesian velocities, etc. We recommend
inferring the full posterior distributions for these derived quan-
tities using the posterior of the true parallax or of the distance,
or using the same Bayesian scheme as for the true parallax as
explained in Sect. 4.2. In Fig. 13 we show the values of the mean
(left), mode (centre), and median (right) that we would obtain
from a set of 104 simulated observations of a star at 100 parsecs
with f = 0.2. We assume a Gaussian distribution of the obser-
vations around the true parallax. The posterior distribution is
inferred using Eq. (17) and two priors: a uniform volume density
of sources truncated at 1 kpc (results in grey) and a uniform den-
sity of sources multiplied by an exponential decay of length scale
200 pc as defined in Eq. (18) (in blue). The expectation values
of the histograms are shown as dashed lines of the same colour,
with the true value (100 pc) shown as a red dashed line. We see in
general that i) the truncation has the effect of increasing the num-
ber of overestimated distances; ii) the three estimators are biased
towards larger distances (smaller parallaxes), but the expectation
of the mode is significantly closer to the true value; and iii) the
abrupt truncation of the prior results in a spurious peak of modes
at the truncation distance as already discussed in Bailer-Jones
(2015).

Figure 14 and Table 1 show a comparison of the absolute
value of the empirical bias and standard deviation associated
with some distance estimators discussed in this paper as a func-
tion of the measured fractional uncertainty in the parallax. We
chose the measured value even though it is a very poor and
non-robust estimator because, as stated in Sect. 3.2, we never
have access to the true fractional parallax uncertainty. This fig-
ure shows the results obtained for 107 sources in the Gaia DR2
simulation described in Appendix A for the maximum likelihood

estimate ρ = 1
$

with and without the Smith–Eichhorn correction,
and for the mode estimates based on the posterior distribution
for two priors (a uniform distance prior, UD, with maximum
distance rlim = 100 kpc, and an exponentially decreasing space
density prior, EDSD, with L = 1.35 kpc), neither of which
matches the true distribution of sources in the simulation. Only
the mode of the posteriors is plotted (but not the mean or the
median) for the sake of clarity. The conclusions described next
are only valid under the conditions of the exercise and are pro-
vided as a demonstration of the caveats and problems described
in previous sections, not as a recommendation of the mode of
the posterior inferred under the EDSD prior as an estimator. At
the risk of repeating ourselves, we emphasise the need to adopt
priors adapted to the inference problem at hand. Also, the con-
clusions only hold for the used simulation (where we generate
the true distances and hence can calculate the bias and standard
deviation) and need not be representative of the true performance
for the real Gaia data set. They can be summarised as follows:

– the mode of the EDSD prior shows the smallest bias and
standard deviation in practically the entire range of estimated
fractional parallax uncertainties (in particular, everywhere
beyond the range of fapp represented in the plot);

– the Smith–Eichhorn estimate shows pathological biases and
standard deviations in the vicinity of the supposedly best-
quality measurements at fapp = 0. Away from this region, it
provides the next less biased estimates (averaged over bins
of fapp) after the mode of the EDSD posterior;

4.1.2. Bayesian inference of distances from parallaxes and
complementary information

The methodology recommended in the previous paragraphs is
useful when we only have observed parallaxes to infer dis-
tances. There are, however, common situations in astronomy
where the parallaxes are only one of many observables, and
distances are not the final goal of the inference problem but a
means to achieve it. In this context, we recommend an exten-
sion of the classical Bayesian inference methods described in
the previous section. These problems are characterised by a set
of observables and associated uncertainties (that include but
are not restricted to parallaxes) and a series of parameters (the
values of which are unknown a priori) with complex interde-
pendence relationships amongst them. Some of these parameters
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Fig. 13. Distributions of means (left), modes (centre), and medians (right) for a series of 104 posteriors calculated for a star at a true distance of
100 pc and f = 0.2, and observed parallaxes drawn at random from the corresponding Gaussian distribution. Posteriors are inferred with a uniform
density prior truncated at 1 kpc (grey) or with a uniform density with exponential decay prior and length scale 1.35 kpc (blue). The red vertical line
marks the true parallax; the grey and blue lines correspond to the expected value (mean) of each distribution (same colours as for the histograms).

Table 1. Average bias and standard deviation in three regimes of fapp for four distance estimators discussed in this paper:

Summary fapp Range EDSD UD SE ML

Bias
(–1,1) –0.2 9.7 34.2 –0.95
(–5,5) –0.3 10.7 –0.34 –1.2
(–50,50) –0.3 16.2 –0.4 –3.8

Std. Deviation
(–1,1) 0.4 8.0 685.8 0.5
(–5,5) 0.4 8.4 0.5 1.95
(–50,50) 0.4 10.6 0.4 17.1

Notes. From left to right: the mode of the posterior based on the exponentially decreasing space density (EDSD) prior; the mode of the posterior
of the uniform distance (UD) distribution; the maximum likelihood estimate corrected according to Smith & Eichhorn (1996) abbreviated as SE;
and the maximum likelihood (ML) estimate. The wider ranges of fapp exclude narrower ranges shown in previous rows of the table.

will be the ultimate goal of the inference process. Other param-
eters do play an important role, but we are not interested in
their particular values, and we call them nuisance parameters,
following the literature. For example, in determining the shape
of a stellar association, the individual stellar distances are not
relevant by themselves, but only insomuch as we need them to
achieve our objective. We show below how we deal with the
nuisance parameters. The interested reader can find applications
of the methodology described in this section to inferring the
coefficients of period-luminosity relations in Gaia Collaboration
(2017a) and Sesar et al. (2017). Also, the same methodology
(a hierarchical Bayesian model) is applied in Hawkins et al.
(2017) where the constraint on the distances comes not from
a period-luminosity relation, but from the relatively small dis-
persion of the absolute magnitudes and colour indices of red
clump stars. A last example of this methodology can be found in
Leistedt & Hogg (2017b) where the constraint comes from
modelling the colour-magnitude diagram.

Just as in the previous section where we aimed at estimat-
ing distances from parallaxes alone, the two key elements in this
case are the definitions of a likelihood and a prior. The likelihood
represents the probability distribution of the observables given
the model parameters. Typically, the likelihood is based on a
generative or forward model for the data. Such models predict
the data from our assumptions about the physical process that
generates the true values (i.e. the distribution of stars in space)
and our knowledge of the measurement process (e.g. justifying

the assumption of a normal distribution of the observed parallax
around its true value). Forward models can be used to generate
arbitrarily large synthetic data sets for a given set of the parame-
ters. In this case, however, where we are concerned with several
types of measurements that depend on parameters other than the
distance, the likelihood term will be in general more complex
than in Sect. 4.1.1 and may include probabilistic dependencies
between the parameters. The term hierarchical or multi-level
model is often used to refer to this kind of model.

Let us illustrate the concept of hierarchical models with a
simple extension of the Bayesian model described in Sect. 4.1.1,
where instead of assuming a fixed value of the prior length scale
L in Eq. (18), we make it another parameter of the model and try
to infer it. Let us further assume that we have a set of N parallax
measurements {$k}, one for each of a sample of N stars. In this
case, the likelihood can be written as

p({$k}|{rk}, L) = p({$k} | {rk}) · p({rk} | L)

= p({$k} | {rk}) ·
N∏

k=1

p(rk | L), (19)

where rk is the true unknown distance to the kth star. We note that
very often the measured parallaxes are assumed independent,
and thus p({$k} | {rk}) is written as the product

∏N
k=1 p($k | rk).

This is incorrect in general for Gaia parallaxes because the
parallax measurements are not independent. As described in
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Fig. 14. Bias (top) and standard deviation (bottom) averaged over bins of
the estimated fractional parallax uncertainty fapp for four estimators of
the distance: the maximum likelihood (ML) estimator rest = 1

$
(orange),

the ML estimator corrected as described in Smith & Eichhorn (1996)
(light blue), the mode of the posterior obtained with an exponentially
decreasing space density (EDSD) prior and L = 1.35 kpc (dark green),
and the mode of the posterior obtained with a uniform distance (UD)
prior truncated at 100 kpc (red).

Lindegren et al. (2018) and Sect. 2 of this paper, there are
regional correlations amongst them (see Sect. 4.3), but for the
sake of simplicity let us assume the sample of N measurements
is spread all over the celestial sphere such that the correlations
average out and can be neglected. Hence, we write

p({$k}|{rk}, L) =

N∏
k=1

p($k | rk) · p(rk | L). (20)

Under the assumption of Gaussian uncertainties, the first term
in the product is given by Eq. (6), while the second is given by
Eq. (18).

This likelihood can be represented by a simple directed
graph (see Fig. 15) that provides information about the condi-
tional dependencies amongst the parameters. The shaded nodes
represent the observations, the open circles represent model
parameters, and the small black circles at the origin of the arrows
represent model constants. The arrows denote conditional depen-
dence relations, and the plate notation indicates repetition over
the measurements k.

The next key element is, as in Sect. 4.1.1, the prior. According
to Fig. 15, the only parameter that needs a prior specification is
the one without a parent node: L. The rest of the arcs in the graph
are defined in the likelihood term (Eq. (20)). If the sample of N

L

rk

$ σ$

µL

σL

k = 1, 2, ...,N

Fig. 15. Directed acyclic graph that represents a hierarchical Bayesian
model of a set of N parallax measurements characterised by uncer-
tainties σ$ and true distances drawn from an exponentially decreasing
density distribution of distances (see Eq. (18)). The scale length of the
exponential decrease, L, is itself a model parameter that we can infer
from the sample. Its prior is defined in this case for the sake of sim-
plicity as a Gaussian distribution of mean µL and standard deviation
σL.

stars were representative of the inner Galactic halo for example,
we could use a Gaussian prior centred at ≈30 kpc (see e.g. Iorio
et al. 2018, and references therein). Such a hierarchical model
can potentially shrink the individual parallax uncertainties by
incorporating the constraint on the distribution of distances.

If we are only interested in the individual distances rk, we
can consider L as a nuisance parameter:

p($True;k | {$k}) =

∫
p($True;k, L | {$k}) · dL (21)

=

∫
p($True;k | {$k}, L) · p(L | {$k}) · dL.

This integral (known as the marginalisation integral) allows us to
write the posterior we are interested in without having to fix the
value of L to any particular value. Depending on the objective of
the inference, we could have alternatively determined the poste-
rior distribution of L by marginalising the individual distances
with an N-dimensional integral over the {rk} parameters.

In parameter spaces of dimensionality greater than 3–4 the
computation of the possibly marginalised posteriors and/or evi-
dence requires efficient sampling schemes like those inspired
in Markov chain Monte Carlo (MCMC) methods to avoid large
numbers of calculations in regions of parameter space with neg-
ligible contributions to the posterior. This adds to the higher
computational burden of the Bayesian inference method men-
tioned in the previous section.

The previous simple example can be extended to include
more levels in the hierarchy and, more importantly, more param-
eters and measurement types. Sections 5.5 and 5.6 develop in
greater detail two examples of hierarchical models of direct
applicability in the Gaia context.
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4.2. Absolute magnitudes, tangential velocities, and other
derived quantities.

The approaches described in the previous sections can be applied
to any quantity we want to estimate using the parallax. For exam-
ple, if we want to infer the absolute magnitude MG, then given
the measured apparent magnitude G and line-of-sight extinction
AG, the true parallax $True is related to MG via the conservation
of flux

5 log$True = MG + AG −G − 5 . (22)

Assuming for simplicity that G and AG are known, Bayes’
theorem gives the posterior on MG as

P(MG | $,G, AG) =
1
Z

P($ | MG, AG,G)P(MG), (23)

where the likelihood is still the usual Gaussian distribution for
the parallax (Eq. (6)) in which the true parallax is given by
Eq. (22). As this expression is non-linear, we again obtain an
asymmetric posterior PDF over MG, the exact shape of which
also depends on the prior.

The inference of other quantities can be approached in the
same way. In general we need to consider a multi-dimensional
likelihood to accommodate the measurement uncertainties (and
correlations) in all observed quantities. For instance, the set of
parameters θ = {r, v, φ} (distance, tangential speed, and direc-
tion measured anticlockwise from north) can be inferred from
the Gaia astrometric measurements o = {$, µα∗ , µδ} (where µα∗
and µδ are the measured proper motions) using the likelihood

p(o | θ) = N(θ,Σ) =
1

(2π)3/2|Σ|1/2
exp

(
−

1
2

(o − x)T Σ−1(o − x)
)
,

(24)

where N denotes the Gaussian distribution, Σ is the full (non-
diagonal) covariance matrix provided as part of the Gaia Data
Release, and

x =

(
1
r
,
v sin(φ)

r
,
v cos(φ)

r

)
(25)

is the vector of model parameters geometrically transformed into
the space of observables in noise-free conditions. Equation (24)
assumes correlated Gaussian uncertainties in the measurements.

The posterior distribution can then be obtained by multiply-
ing the likelihood by a suitable prior. The simplest assumption
would be a separable prior such that p(θ) = p(r) × p(v) ×
p(φ), where p(v) and p(φ) should reflect our knowledge about
the dynamical properties of the population from where the
source or sources were drawn (e.g. thin disk, thick disk, bulge,
halo). Again, hierarchical models can be used in the analysis
of samples in order to infer the population properties (prior
hyper-parameters) themselves.

Similar procedures can be followed to infer kinematic ener-
gies or full 3D velocities when the forward model is extended
with radial velocity measurements.

4.3. Further recommendations

In this subsection we provide some further recommendations and
guidance in the context of the Bayesian approach outlined above.
Although powerful, inference with Bayesian methods usually
comes at a large computational cost. Some of the recommenda-
tions below can also be seen in the light of taking data analysis
approaches that approximate the Bayesian methodology and can
be much faster.

Where possible, formulate the problem in the data space. The
problems caused by the ill-defined uncertainties on quantities
derived from parallaxes can be avoided by carrying out the anal-
ysis in the data space where the behaviour of the uncertainties
is well understood. This means that the quantities to be inferred
are treated as parameters in a forward or generative model that is
used to predict the data. Some adjustment process then leads to
estimates of the parameters. A very simple forward modelling
example can be found in Schröder et al. (2004) who studied
the luminosity calibrations of O-stars by predicting the expected
HIPPARCOS parallaxes from the assumed luminosity calibration
and comparing those to the measured parallaxes. A more com-
plex example can be found in Lindegren et al. (2000) who present
a kinematic model for clusters which describes the velocity field
of the cluster members and predicts the proper motions, account-
ing for the astrometric uncertainties and covariances. As shown
in previous sections, the Bayesian approach naturally lends itself
to (and in fact requires) forward modelling of the data.

Forward modelling has the added advantage that it forces
us to consider the proper formulation of the questions asked
from the astrometric data. This naturally leads to the insight
that often the explicit knowledge of the distances to sources is
not of interest. For example, in the Schröder et al. (2004) case
an assumed luminosity of the O-stars and their known appar-
ent magnitude is sufficient to predict the observed parallaxes.
In more complex analyses the distances to sources can often be
treated as nuisance parameters, which in a Bayesian setting can
be marginalised out of the posterior.

Use all relevant information. Although the parallax has a direct
relation to the distance of a star, it is not the only measurement
that contains distance information. The apparent magnitude and
the colour of a star carry significant information on the plausi-
ble distances at which it can be located as the colour provides
information on plausible absolute magnitude values for the star.
This is used in two papers (Leistedt & Hogg 2017a; Anderson
et al. 2017) in which the information contained in the photome-
try of stars is combined with Gaia DR1 parallax information to
arrive at more precise representations of the colour-magnitude
diagram than can be obtained through the parallaxes alone. Sim-
ilarly, proper motions contain distance information which can be
used to good effect to derive more precise distances or luminosi-
ties for open cluster members (e.g. de Bruijne et al. 2001; Gaia
Collaboration 2017b). The Bayesian approach naturally allows
for the combination of different types of data in the modelling
of the problem at hand. It should be emphasised, however, that
adding additional data necessitates increasing the model com-
plexity (e.g. to include the relation among apparent magnitude,
absolute magnitude, extinction, and parallax) which leads to the
need to make more assumptions.

Incorporate a proper prior. Bailer-Jones (2015) discussed the
simplest case of inferring the distance to a source from a sin-
gle observed parallax. He showed that if the minimal prior
that r should be positive is used, the resulting posterior
is notnormalisable and hence has no mean, variance, other
moments, or percentiles. This behaviour of the posterior is not
limited to inference of distance. Examples of other quantities
that are non-linearly related to parallax are absolute magnitude
(M ∝ log10 $), tangential velocity (vT ∝ 1/$), kinetic energy,
and angular momentum (both proportional to 1/$2 when deter-
mined relative to the observer). In all these cases it can be shown
that the posterior for an improper uniform prior is not normalis-
able and has no moments. The conclusion is that a proper prior
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on the parameters to be estimated should be included to ensure
that the posterior represents a normalised probability distribu-
tion. In general using unconstrained non-informative priors in
Bayesian data analysis (such as the one on r above) is bad prac-
tice. Inevitably, there is always a mismatch between the prior and
the true distribution (if there were not, there would be no need
to do the inference). This will unavoidably lead to some biases,
although the better the data, the smaller these will be. We can-
not expect to do much better than our prior knowledge in case
we only have access to poor data. The Bayesian approach guar-
antees a graceful transition of the posterior into the prior as the
data quality degrades.

The above discussion raises the question of what priors to
include for a specific inference problem. Simple recipes cannot
be given as the prior to be used depends on the problem at
hand and the information already available. When deciding
on a prior we should keep in mind that some information is
always available. Even if a parallax is only available for a single
star, we know that it cannot be located at arbitrary distances.
It is unlikely to be much closer that 1 pc (although we cannot
fully exclude the presence of faint stars closer than Proxima
Centauri) and it must be located at a finite distance (we can
observe the star). This would suggest a non-informative uniform
prior on r with liberal lower and upper bounds (such that the
prior is normalised). However, as pointed out in Bailer-Jones
(2015) a uniform distribution in r implies a space density of
stars that falls of as 1/r2 from the position of the Sun, which is
of course physically implausible. Hence one should assume a
reasonable distribution of stars in space and construct the prior
on r accordingly. Bailer-Jones (2015) presents a prior derived
from a uniform space density with an exponential cut-off which
was used in Astraatmadja & Bailer-Jones (2016b) to derive
distances to stars for which parallaxes are listed in Gaia DR1.
This prior should not be used indiscriminately, at the very least
we should carefully consider the choice of the scale length L
(or leave that as a parameter to be estimated, as described in
Sect. 4.1.2) and in most cases a more tailored prior based on our
broad knowledge of the distribution of a given stellar population
in the Milky Way would be better. The tutorial cases introduced
in the next section contain some more examples of priors on
distance and other astrophysical parameters.

The next two items discuss simplifications to the Bayesian
approach that nevertheless need to be justified carefully.

Maximum likelihood modelling. We have seen that priors are the
bridges that allow us to go from the probability of the observa-
tions given the unknown parameters to the desired probability of
the parameters given the observations. It is only based on this
probability distribution that we can make statements about cred-
ible intervals (uncertainties) for the inferred quantities, or select
amongst competing models (a topic that is beyond the scope of
this paper). However, if making prior-free inferences is preferred,
then maximising the likelihood is the only alternative. The kine-
matic modelling presented in Lindegren et al. (2000) is a non-
trivial example of this. A more complex example can be found
in Palmer et al. (2014). The ML approach, just as the Bayesian
framework described above, allows the combination of different
types of data, and accounts for selection functions or missing
data. We have seen in Sect. 4.1.1 that the maximum likelihood
estimate of the distance given a single parallax measurement is
ρ = 1

$
and this is a poor estimator of the distance except for sub-

sets of very accurate measurements. In general, the Bayesian and
the maximum likelihood estimates coincide in the limit of very
small uncertainties or infinite numbers of measurements. In such

limits, the maximum likelihood estimate is simpler to obtain,
although its computational cost may still be large as the ML
method is often equivalent to a complex optimisation problem
involving a multi-dimensional function of many parameters.

Selecting the “best” data. Analyses that use parallax data are
often restricted to positive parallaxes with relative uncertain-
ties below some limit (typically 20%). This allows working in
a regime where the uncertainties of derived quantities such as
distance, tangential velocities, luminosity, etc., are thought to be
manageable, which allows working in the space of astrophysi-
cal variables rather than the data. Truncation on relative parallax
error might be justified in an exploratory phase of the data anal-
ysis; however, there are a number of reasons why this approach
is almost never advisable. Even at relative uncertainties below
0.2 the quantities calculated from the parallax can be biased
and suffer from a large variance (see Bailer-Jones 2015). More
importantly, however, the selection of “good” parallaxes will bias
the sample studied to nearby and/or bright representatives of any
stellar population, and the selection may lead to discarding a
very large fraction of the potential sample. Hence any inferences
based on such data will be severely biased. This is clearly illus-
trated in Fig. 7 where for an even less strict truncation of stars
with a relative uncertainties below 50% the distribution of dis-
tances of the resulting sample is clearly biased with respect the
original sample.

Accounting for data selection and incompleteness. Although the
Gaia survey is designed such that the only selection of sources is
that they are brighter than the survey limit at G = 20.7, the com-
bination of the onboard detection algorithm, the Gaia scanning
law, and the filtering of results of insufficient quality prior to a
data release, lead to a complex selection function, especially in
the early data releases. This selection function should be taken
into account in any data analysis and this is most naturally done
as part of a Bayesian analysis where the selection function is
part of the forward model that predicts the data given the model
parameters. Precise prescriptions of the selection functions are
not foreseen to be part of the data release documentation. Hence,
selection function parameters need to be included as part of the
parameters inferred by the Bayesian analysis or, if this is not
possible, the selection functions have to be borne in mind when
interpreting the results.

Covariances in the uncertainties. All the uncertainties on the
astrometric data quoted in the Gaia catalogue are presented as
full covariance matrices, where the diagonal elements represent
the standard uncertainties on the astrometric parameters, and the
off-diagonal elements the covariances or correlations between
the uncertainties. This amounts to treating the astrometric data
vector as having been drawn from a multivariate normal distri-
bution with a covariance matrix as given in the Gaia catalogue.
The covariances are most easily handled in the data space as part
of the likelihood (see Lindegren et al. 2000, for an example in
the context of kinematic modelling). If the covariances in the
astrometric uncertainties are not accounted for, we can easily be
misled, for example, by spurious features in the inferred velocity
field of an open cluster (Brown et al. 1997).

The uncertainties are also correlated from one source to the
next, especially over small distances on the sky. A study of the
star-to-star correlations in the parallax uncertainties in Gaia DR1
was done for the Kepler field (Zinn et al. 2017) where indepen-
dent and precise asteroseismic distances to the stars are available,
enabling the authors to derive an expression for the correlation
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strength and spatial scale. This expression can be used for studies
of the Kepler field, but care should be taken when extrapolating
to other fields on the sky. The functional form for the star-to-star
correlations used by Zinn et al. (2017) could be introduced as
part of the forward model, with the Zinn et al. (2017) parameters
as a good first guess.

For Gaia DR1 the length scale for the star-to-star correlations
was estimated to vary from subdegree scales to tens of degrees
on the sky, where Zinn et al. (2017) derived the correlation func-
tion over length scales of ∼0.2 to ∼10 degrees. For Gaia DR2
Lindegren et al. (2018) estimate that the spatial correlations
extend over scales of below 1 degree to 10–20 degrees.

Accounting for non-Gaussian and/or systematic uncertainties. Al-
though the bulk of the sources in the Gaia catalogue have
normally distributed uncertainties, there is a significant fraction
for which the uncertainties exhibit non-Gaussian behaviour (e.g.
when uncertainties are over- or underestimated). This can be
accounted for in the data analysis by including the uncertainties
as part of the forward model (e.g. Sesar et al. 2017) or by
explicitly modelling an outlier population. Similarly, systematic
uncertainties can be included as part of the forward model. For
example, Sesar et al. (2017) include a global parallax zero-point
as part of their probabilistic model used to analyse the period-
luminosity relation of RR Lyrae stars with Gaia DR1 data. An
alternative approach to the investigation of systematics in the
parallaxes (or distance estimates obtained from photometry or
spectroscopy, for example) is presented in Schönrich et al. (2012)
and is applied to Gaia DR1 in Schönrich & Aumer (2017). In this
case we can consider that for samples covering a significant frac-
tion of the sky, any systematic error in the estimated distances to
the stars will show up as correlations in their 3D velocity com-
ponents. The presence of such correlations can be used to make
inferences about systematic errors, for example, in the parallaxes.

Systematic uncertainties are more difficult to handle as they
may show variations as a function of source brightness or
celestial position, they may be correlated across neighbouring
sources, and they may not be well understood for a given early
Gaia data release. In general the information needed to accu-
rately model systematic uncertainties or uncertainty correlations
between sources may not be readily available. This informa-
tion can be obtained from a comparison between Gaia and
other high-precision data (e.g. Zinn et al. 2017; Arenou et al.
2017, 2018) or by examining, for example, plots of the parallax
or proper motion averaged over sky regions for samples where
the true parallax or proper motion values can be assumed to
be known, such as zero parallax and proper motion for quasars
(see Lindegren et al. 2018 for examples).

Two special cases should be mentioned: when the sample
is well distributed over the sky, we can safely assume that the
local systematics vanish and that only the global parallax zero-
point need to be subtracted; locally, we may be interested not by
the absolute value of the parallaxes, but by the relative ones, in
which case the difference between parallaxes and their average
removes part of the systematics.

There is no general recipe for dealing with non-Gaussian
uncertainties or correlated systematic uncertainties. The main
advice we can give here is to proceed with the analysis of the
astrometric data as they are, but to keep in mind the system-
atics and correlations discussed in Sect. 2 when interpreting
the results. Alternatively, the forward model can be extended
to include systematic and correlation terms for which parame-
ters are also to be estimated. Such models can be guided by the
studies of systematic uncertainties mentioned above.

Testing with simulations. Finally, we strongly advise that the
inference problem at hand should be investigated through sim-
ulated data, and that the simulations performed should be as
close as possible to the real data (in particular correctly mod-
elling the uncertainties and selection effects). The simulations
allow the analysis method to be developed and tested for accu-
racy. However, the performance of the analysis method should
be interpreted strictly in terms of how well the assumed model
explains the simulated observed data. That is, we should not
fall into the trap of trying to tune the analysis method to get an
answer that is as close to the “truth” as possible. In real problems
we can only judge the adequacy of a model and its parameter
values by how well they predict the observed data (to within the
observational uncertainties, it should be stressed, as we should
avoid “over-fitting” the data).

5. Using astrometric data: practical examples

We introduce here a few worked examples to illustrate the points
that were made in the previous section. These examples are avail-
able in full detail as online tutorials in the form of source code,
accompanied by much more extensive explanation than can be
provided here. The source code and corresponding Python and
R Notebooks can be found online4. In all cases the reader is
strongly encouraged to download the source code and experi-
ment with modifications of the simulated input data and/or the
parameter choices in the inference methods.

5.1. Comparison of distance and distance modulus estimators

The use of the Bayesian inference with non-informative pri-
ors described in Sect. 4.1.1 is illustrated and implemented in
an online tutorial5. The tutorial compares the performance of
Bayesian distance estimation methods with the Smith–Eichhorn
transformation (Smith & Eichhorn 1996; Sect. 3.4.1) and the
naive parallax inversion.

The tutorial contains a Graphical User Interface that easily
visualises and compares the behaviour of all these estimators for
a given parallax and uncertainty. For the Bayesian inference, esti-
mations using the mode and the median are provided together
with a 90% confidence interval. The tutorial also provides a
library, pyrallaxes, with the implementation of all these estima-
tors. The library can easily be customised to implement other
priors for the Bayesian inference.

Additionally, an implementation of the Bayesian distance
estimator using the Exponentially Decreasing Space Density
prior introduced in Bailer-Jones (2015) will be available in
TopCat6 and Stilts7 from respectively versions 4.6 and 3.1–3
onwards.

5.2. Inferring the distance to a single source using just the
parallax

The issues surrounding the use of a parallax to infer a distance
were explored in Bailer-Jones (2015) and applied to simulated
Gaia data in Astraatmadja & Bailer-Jones (2016a) and to TGAS
(Gaia DR1) in Astraatmadja & Bailer-Jones (2016b). A tutorial
4 https://github.com/agabrown/astrometry-inference-
tutorials
5 https://github.com/agabrown/astrometry-inference-
tutorials/tree/master/single-source/GraphicalUser
Interface
6 http://www.starlink.ac.uk/topcat/
7 http://www.starlink.ac.uk/stilts/
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exploring this is provided online8. This can be used to inves-
tigate how the posterior depends on the prior and the data. It
also includes a simple example of a hierarchical model to avoid
specifying the exact length scale of a distance prior.

5.3. Inferring the distance to and size of a cluster using just
the parallaxes

In many applications we are more interested in the average dis-
tance to a cluster (or a group of stars) rather than to the individual
stars. In this case a basic mistake to be avoided is estimating the
individual distances (whatever the method) and then averaging
these individual values. A more correct approach is to average
the individual parallaxes and then to obtain a distance from this
average value. However, a much better solution is to set up a
model for the cluster, which would use as parameters the distance
to its centre, for example, and some measure of its size, and to
infer its parameters. This is explored in the tutorial9. This intro-
duces the overall problem and derives a general solution. Code
is implemented for the specific case of a model which assumes a
random isotropic distribution of the true stars from the centre of
the cluster. This model has two parameters, the cluster distance
and the cluster size. The solution uses a small angle approxima-
tion to make the problem simpler, although it is easily extended
to the case of clusters with a significant angular extent. It is
applied to the Pleiades selection from the Gaia DR1 main release
paper (Gaia Collaboration 2016). The tutorial also considers the
problem of how to accommodate correlations in the measured
parallaxes of different stars. Finally, it also shows the results
from a classical and a naive combination of stellar parallaxes
to estimate the cluster distance. The combination of parallaxes
and proper motions of individual stars in a cluster into a single
solution for the mean parallax and proper motion is treated as an
iterative least squares problem in Gaia Collaboration (2017b, see
their Appendix A for details).

5.4. Inferring the distance and velocity of a source using the
parallax and proper motions

The velocity (speed and direction) of a source in the plane of the
sky can be inferred from measurements of its parallax and two
proper motions. The uncertainties in all three affect the inferred
velocity and its uncertainty. Moreover, as the Gaia parallaxes and
proper motions generally have non-zero correlations, these must
also be taken into account. This can be done in a straightforward
manner in the Bayesian approach, as is shown in the tutorial10.
This sets up a three-parameter model (distance, speed, angle) for
a source. Using the three measurements (parallax, two proper
motions) in a multivariate Gaussian likelihood, and suitable pri-
ors on the parameters, we can compute the trivariate posterior.
This is sampled in the posterior using an MCMC algorithm for a
set of stars.

5.5. Luminosity calibration

In this tutorial11 the problem of inferring (or calibrating) the
mean absolute magnitude of a specific class of stars is treated.
8 https://github.com/agabrown/astrometry-inference-
tutorials/tree/master/single-source/tutorial
9 https://github.com/agabrown/astrometry-inference-
tutorials/tree/master/multiple-source
10 https://github.com/agabrown/astrometry-inference-
tutorials/tree/master/3d-distance
11 https://github.com/agabrown/astrometry-inference-
tutorials/tree/master/luminosity-calibration

The measurements at hand are the parallax and apparent magni-
tude for each of the stars in the sample and the task is to infer
their mean absolute magnitude µM and the spread σM around
this mean. This is very similar to the problem that Lutz &
Kelker (1973) and Turon Lacarrieu & Crézé (1977) treated, and
a Bayesian approach to solving this problem was presented by
Brown (2012) (albeit with the use of improper priors, which we
again note is bad practice). A more complex version of this prob-
lem (accounting for extinction and a contaminating population of
stars) and its Bayesian solution was presented in Hawkins et al.
(2017). In this tutorial three important points are illustrated:

– Often the explicit computation of the distances to stars is not
of interest. In this example only the mean absolute magni-
tude of the stars is to be estimated, and the forward modelling
approach as part of the Bayesian inference avoids the need to
calculate or estimate distances.

– The data for all the stars carry information on the mean
absolute magnitude, including the negative parallaxes or
parallaxes with large relative errors. This information can
naturally be incorporated in a forward modelling approach
(in this example as part of a Bayesian inference method),
thus avoiding the introduction of truncation biases caused
by the selection of stars with “good” parallaxes.

– If the selection function is known (in this example the survey
is magnitude limited), it can and should be included in the
forward modelling. This accounts for sample selection biases
that would otherwise occur.

5.6. Period-luminosity relation

In this tutorial12 we include a hierarchical model to infer period-
luminosity-metallicity relations for classical pulsating stars. The
full model can be applied to fundamental mode RR Lyrae stars
and the abridged version (without the metallicity dependence) is
suitable for samples of classical Cepheids. We include the data
set for the RR Lyrae stars described and used for inference in
Gaia Collaboration (2017a) and Delgado et al. (2018). It contains
a sample of 200 stars (including fundamental radial pulsators
but also fundamentalised first overtone pulsators) with measured
periods, apparent magnitudes in the K-band, metallicities, and
parallaxes from the TGAS catalogue. In the tutorial, we describe
the hierarchical model and discuss potential biases in the data
set. Finally, we analyse the sensitivity of the results to different
choices of the priors and related parameters.

6. Conclusions

Gaia data releases will provide a huge increase of astrometric
data available for the scientific community. More than a billion
parallaxes and proper motions allow new openings into many
astronomical topics. In most cases astronomers are exploiting the
Gaia catalogues to obtain physical quantities such as distance
and velocity. Although it is easy to extract from the Gaia data, it
is well known that direct inversion of parallax will lead to biases,
which become more and more significant the larger the rela-
tive parallax uncertainty. While Gaia will provide high-quality
astrometric measurements, hundreds of millions of stars have
precisions which require proper statistical treatment in order to
avoid biased conclusions. The aim of this paper is to guide the
users of Gaia data to handle astrometric data correctly.

12 https://github.com/agabrown/astrometry-inference-
tutorials/tree/master/period-luminosity-relation
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In this study we summarise methods used to avoid biases
when converting astrometric data into physical quantities. Start-
ing from simple, non-recommended, sample truncation to more
complex methods, the biases associated with the methods are
presented. The basic recommendation is to treat derivation of
physical quantities from astrometric measurements as an infer-
ence problem, which should be preferably handled with Bayesian
approach. The recommended methods are described in Sect. 4
with a summary in Sect. 4.3. To aid the users further, Sect. 5
contains practical examples with links to Python and R code.

Gaia will provide fundamental data for many fields of astron-
omy. Further data releases will provide more data, and more
precise data. Nevertheless, for full use of the potential it will
always be necessary to pay careful attention to the statistical
treatment of parallaxes and proper motions. The purpose of this
paper is to help astronomers find the correct approach.
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Appendix A: Description of the simulated samples
used in this paper

Fig. A.1. Histogram of the stars’ G magnitude. The total number of
sources is 1 069 138 714, which are distributed in bins of size ∆G = 0.2;
the sample is limited to G < 20.

The data used in this paper is from a Gaia Universe Model
Snapshot (GUMS) simulation (Robin et al. 2012), together with
the Gaia-like uncertainties and an estimation of the observable
data. The uncertainties were computed from an implementation
of the recipes described in the Gaia Science performance web
page13, provided by the python PyGaia toolkit14, which then have
to be re-scaled to fit the Gaia DR2 expectations.

The simulation contains around 109 sources including only
single stars, i.e. stars not belonging to multiple systems, up to
G < 20 magnitude, distributed as shown in Fig. A.1.

To compute the Gaia potential observables, standard uncer-
tainties must be added to the simulation. Because astrometric
quantities (positions, parallaxes, and proper motions) are related,
a single formalism to derive its standard errors is needed. PyGaia
implements a simple performance model depending on the V–IC
colour term and the G magnitude to estimate the end-of-mission
errors for the parallax uncertainty:

σ$[µas] =
√
−1.631 + 680.766 z + 32.732 z2

× [0.986 + (1 − 0.986) (V-IC)], (A.1)

13 https://www.cosmos.esa.int/web/gaia/
science-performance
14 https://pypi.python.org/pypi/PyGaia/

Fig. A.2. Average estimated errors as function of G. The dash-dotted
line represents the uncertainty at Gaia DR2, while the dashed line
represents the end-of-mission uncertainties. The solid line represents
Gaia DR2 errors, including systematics.

with

z = max(100.4(12.09−15),100.4(G−15)) (A.2)

(see the Gaia science performance web for more details). It also
takes into account the variation of the uncertainties over the
sky because of the scanning law, tabulated as a function of the
ecliptic latitude15 β.

However, these are end-of-mission uncertainties, so they
have to be scaled by the fraction of mission time completed in
order to get an estimation of them for Gaia DR2. In the case

of the parallax, only the factor
√

5
L , being L the mission time

(years) included in Gaia DR2, need to be applied; this error
model is further described in Arenou et al. (2017). In our case
we have also updated the calibration floor to take into account
the properties of the Gaia DR2 formal errors, as shown in
Fig. A.2. This calibration floor introduces a minimum formal
error stemming from the fact that the calibrations used in the data
processing (models and parameters) are at this stage still being
refined. This floor affects mainly bright stars, while for faint stars
the photon noise dominates. Figure A.2 shows the model used
in the simulation for the Gaia DR2 parallax uncertainties as a
function of the G magnitude.

15 https://www.cosmos.esa.int/web/gaia/
table-2-with-ascii
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