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Abstract

This paper introduces a nonparametric scan method for multivariate data
indexed in space. Contrary to many other scan methods, it does not rely
on a generalized likelihood ratio but is completely distribution-free as it is
based on so-called multivariate ranks. This spatial scan test seems to be
more reliable for analysing data that are not Gaussian, such as environmental
measurements. We apply this method to a data set recording the levels of
metallic pollutants for two areas in the North of France.

Keywords: Spatial statistics, Scan Statistics, Cluster detection.

1. Introduction

The original scan statistic was defined [22] to be the maximum number of
events observed within a window with given shape and volume, known as the
scanning window, as it moves over the observation domain in a continuous
manner. The distribution of this statistic under the null hypothesis has
been widely studied [12]. However, its main drawback is that the length or
volume of the potential clusters must be fixed a priori. A second drawback is
that, when dealing with spatial data, it is only suitable when the underlying
population measure is uniform.

These issues were circumvented by Nagarwalla [23] and Kulldorff [16]
using a concentration indicator based on likelihood ratios, which is able to
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compare all possible windows, whatever their sizes and their population mea-
sures. These innovations gave birth to a very large number of application
papers in many different fields: astronomy, forestry, ecology, genetics, epi-
demiology, . . . [20, 11, 1]. These likelihood-based methods were also adapted
for random variables indexed in space: depending on the nature of the vari-
able, the proposed scan statistic is a generalized likelihood-ratio issued from
an adequate parametric model.

Sometimes, such as in environmental surveillance, numerous variables are
collected on the same locations. A natural question arises: how to detect a
spatial cluster in which the measurements of these variables are significantly
different? The multivariate scan statistic proposed by Kulldorff et al. [18]
combines the univariate scan statistics associated to each variable such as
if they were independent. Very recently, Cucala et al. [7] introduced a
multivariate Gaussian scan statistic which takes into account the covariances
between different variables. The test based on this statistic performs very
well against Gaussian alternatives but faces problems when the data are
not Gaussian, which is often the case when dealing with environmental data
exhibiting extreme values.

However, in the last few years, some alternatives to likelihood-ratio based
scan statistics arised [5]. In the univariate setting, a nonparametric scan
statistic, only relying on the ranks, has been introduced separately by Cucala
[4] and Jung and Cho [14], based on the Wilcoxon-Mann-Whitney test. Since
a multivariate extension of this test has been proposed by Oja and Randles
[26], a scan procedure based on this multivariate nonparametric test should
be investigated.

In this paper we develop a scan statistic for multivariate continuous data
that is based on the multivariate ranks and is thus completely nonparametric.
In Section 2, we explain how the statistic introduced by Oja and Randles
[26] can be maximised on a finite set of potential clusters, giving birth to
a spatial scan statistic. We also describe the permutation-based procedure
that provides the statistical significance associated to this statistic. The
behaviour of this method is investigated through a simulation procedure and
the analysis of real environmental data in Section 3. Finally, we consider
future development in the Conclusion.
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2. A nonparametric scan statistic for multivariate data

Consider p numerical variables, denoted by X1, · · · , Xp, which are mea-
sured in n different spatial locations s1, · · · , sn included in D ⊂ R2, the
observation domain. All these measurements are recorded in a n× p matrix

X = (xki ), 1 ≤ i ≤ n, 1 ≤ k ≤ p.

The 1× p vector containing all the measures in si, and corresponding to the
ith row of matrix X, is denoted by Xi: following the terminology of point
process theory, we will call Xi the mark associated to location si. Our goal
is to detect the spatial area Z ⊂ D in which the marks are significantly
different than elsewhere.

A scan statistic is nothing but the maximum of a concentration index
observed in a collection of potential clusters. It thus depends only on the set
of potential clusters and on the concentration index that should be used.

There is abundant literature on the choice of variable-size potential clus-
ters [20] but two main possibilities can be identified. On the one hand, one
may focus on clusters having a constrained shape: circular [16], elliptic [17]
or any other shape. On the other hand, you may set up a procedure only
based on distances between spatial locations: for example, Duczmal and As-
suncão [9] investigate irregularly shaped windows via a simulated annealing
strategy, while Demattëı et al. [8] introduce an ordering from one location
to its closest neighbour.

In this article, for sake of simplicity, we consider the circular clusters
introduced by Kulldorff [16]. The set of potential clusters, denoted by D, is
the set of discs centered on a location and passing through another one:

D = {Di,j, 1 ≤ i ≤ n, 1 ≤ j ≤ n}

where Di,j is the disc centred on si and passing through sj. Since the disc
may have null radius (if i = j), the number of potential clusters is n2.

Most of the time, the concentration index which is maximized on this set
of potential clusters is nothing but a likelihood ratio. For example, as said in
the Introduction, Cucala et al. [7] introduced a multivariate Gaussian-based
scan statistic relying on the likelihood ratio between two hypotheses: the
multivariate marks are supposed to be normally-distributed and independent
but the null hypothesis considers equal mean vectors and covariance matrices
whereas the alternative hypothesis considers equal covariance matrices but
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different mean vectors inside and outside the potential cluster. As stated by
Cucala [5], likelihood ratios are not always the best tools to compare potential
clusters. Thus, a nonparametric concentration index could be more efficient.

In the univariate setting, one of the most popular nonparametric meth-
ods to test whether the distributions of two samples of continuous observa-
tions are equal, or more precisely whether their medians are equal, is the
Mann-Whitney test [21], also called Wilcoxon rank-sum test. It just relies
on the comparison between the sums of the ranks related to the two sam-
ples. Recently, a multivariate extension of this test has been proposed by Oja
and Randles [26]. The definition of multivariate ranks associated to marks
X1, · · · , Xn in Rp depends on the spatial sign function

S(x) =

{
||x||−1x if x 6= 0,
0 if x = 0,

for all x ∈ Rp, ||x|| being the L2 norm. The function value is just a direc-
tion (a point on the unit p sphere). The multivariate signs associated to
X1, · · · , Xn are

Si = S(AxXi), for i = 1, · · · , n
where the matrix Ax, called Tyler’s transformation, makes the covariance
matrix of the multivariate signs equal to 1

p
Ip, i.e. the covariance matrix

associated to the uniform distribution on the unit p sphere. Note that this
matrix can be easily computed using an iterative procedure. The multivariate
ranks can now be defined as

Ri =
1

n

n∑

j=1

Si,j

where Si,j = S
(
Ax(Xi − Xj)

)
, i, j = 1, · · · , n, are signs of transformed

differences, still using the Tyler’s transformation.
Now that the multivariate ranks are defined, we can go back to the cluster

detection problem. From now on, the marks X1, · · · , Xn are assumed to be
independent: this is a very classical assumption when introducing scan statis-
tics. The null hypothesis H0, corresponding to the absence of any cluster in
the data, is the following: ”the random marks X1, · · · , Xn are all identi-
cally distributed, whatever the associated locations”. Note that, contrary to
likelihood-based scan methods, we do not make any assumption concerning
the distribution of the marks. Let Z ∈ D be any potential cluster and Zc
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its complement. In order to test for a difference of distribution of the marks
between Z and Zc, Oja and Randles [26] propose to use the multivariate
extension of the Wilcoxon-Mann-Whitney statistic

U2(Z) =
p

c2
x

[nZ ||R̄Z ||2 + nZc||R̄Zc||2

where 



nZ =
n∑

i=1

1(si ∈ Z)

R̄Z =
1

nZ

∑

i:si∈Z
Ri

c2
x =

n∑

i=1

RT
i Ri

Under H0, the limiting distribution of U2(Z) is the chi-squared distribution
with p degrees of freedom. Since this does not depend on nZ , the number of
observations in Z, we believe the concentration index U2(Z) is relevant to
compare potential clusters having different population sizes.
This concentration index may now be maximised on the set of potential
clusters previously defined. The multivariate nonparametric (MNP) scan
statistic is

λMNP = max
Z∈D

U2(Z)

and the potential cluster for which this maximum is obtained,

Ĉ = arg max
Z∈D

U2(Z),

is called the most likely cluster. Note that, when p = 1, this scan statistic is
exactly similar to the Mann-Whitney scan statistic introduced separately by
Cucala [4] and Jung and Cho [14].

The most likely cluster Ĉ is the area in which the difference of marks is
the most significant. However, it is important to evaluate this significance,
i.e. to estimate the probability of such a difference under the null hypoth-
esis. Computing the null distribution of a variable-window scan statistic is
untractable since it is a maximum computed on intersecting areas, which
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implies multiple correlations. Therefore, the only way to estimate the signifi-
cance is via random simulations. Contrary to Kulldorff et al. [19], we decided
not to simulate new marks since the null hypothesis H0 is distribution-free.
Thus the only way to obtain simulated datasets satisfying H0 is by randomly
associating marks and locations: this method is called random labelling [3].
Note that the random labelling of the marks Xi’s is exactly similar to the
random labelling of their multivariate ranks Ri’s: we decided to perform the
permutation of the Ri’s since it allows to compute the multivariate ranks only
once and to reduce drastically the computation time. Once these datasets
have been simulated, the associated multivariate nonparametric scan statis-
tics λ

(1)
MNP , · · · , λ

(T )
MNP are computed and compared to λMNP , the multivariate

nonparametric scan statistic computed on the original dataset. As stated by
Dwass [10], the proportion of simulated statistics greater than the original
statistic, i.e. the p-value, is a consistent estimator for the significance.

3. Applications

3.1. A simulation study

A simulation study was conducted to compare the multivariate Gaus-
sian scan statistic (λMG) and the multivariate nonparametric scan statistic
(λMNP ). Artificial datasets were generated using the geographic locations of
the n = 94 French départements (administrative areas). One should notice
that each of the locations has been defined by the administrative center of
each département. Let denote by C the simulated cluster defined as a set
of départements according to three size configurations: 10, 15 and 20. As
an appendix (Figure A.4), we provide maps of these clusters. We consider
p = 5 variables distributed, in each location i = 1, . . . , 94, according to three
different multivariate distributions: Gaussian, Weibull and exponential. For
each model, let consider µ0 as the mean vector outside the cluster and the
parameter β denoting the difference of means inside and outside the clus-
ter. In what follows, we will refer to this parameter by using the expression
cluster intensity. Let define, for each model, the correlation matrix corr(X)
related to covariance matrix Σ as follows:

corr(X) =




1 ρ ρ 0 0
ρ 1 ρ 0 0
ρ ρ 1 0 0
0 0 0 1 ρ
0 0 0 ρ 1



,
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where ρ is the parameter that controls the correlation between the Xj’s.
For the Gaussian model, we considered Xi ∼ Np(µi,Σ) where

µi =





(
µj0 + β

)T
1≤j≤5

if si ∈ C,

(µ0)T otherwise.

For the Weibull model, we considered Xi ∼ Wp(λi, k,Σ) where

λi =





(
µj0+β

Γ(1+ 1
kj

)

)T

1≤j≤5

if si ∈ C,

(
µj0

Γ(1+ 1
kj

)

)T

1≤j≤5

otherwise,

and kj = 2 corresponds to jth element of the vector of shape parameters and
Γ(x) stands for the Gamma function at point x.
For the Exponential model, we considered Xi ∼ Ep(λi,Σ) where

λi =





(
1

µj0+β

)T
1≤j≤5

if si ∈ C,

(
1

µj0

)T
1≤j≤5

otherwise.

In this study, the values of µ0 have been set to 10. For different values
of the parameters, S = 1000 simulated data sets have been generated. The
comparison of the two methods was performed using three distinct criteria:
the power of the method, the true-positive rate (TP) and the false-positive
rate (FP).
The power of the method was defined as the proportion of data sets high-
lighting a significant cluster, considering the type I error equal to 0.05 and
T = 999 permuted samples. To calculate the TP, we considered for each
simulated data set s = 1, . . . , S, the number of départements included both
in the most likely cluster Ĉs and in the simulated cluster Cs divided by the
number of départements included in Cs. The TP was defined as the average
of these proportions over all simulated data sets:

TP =
1

S

S∑

s=1

card
(
Ĉs ∩ Cs

)

card(Cs)
.
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Similarly, to calculate the FP, we considered the number of départements
included in Ĉs but not in Cs divided by the number of départements not
included in Cs for each simulated data set s. The FP was defined as the
average of these proportions over all simulated data sets:

FP =
1

S

S∑

s=1

card
(
Ĉs ∩ Cc

s

)

card(Cc
s)

.

The results of the simulation study are presented in Figure 1 (see Appendix
(Table B.2) for more detailed results).

For Gaussian and Weibull models, both methods tend to have equiva-
lent powers when the size of the simulated cluster increases, regardless of
the value of the parameters. For the exponential model, the nonparametric
scan statistic shows a higher power, regardless of the size of the simulated
cluster and the values of the parameters. The power difference between the
two methods increases with the size of the simulated cluster. The true-
positive rate is consistently higher for λMNP and the difference between the
two methods increases with the skewness of the distribution. This implies
that the parametric method tends to exhibit significant clusters smaller than
the other one leading to a large number of false-negative départements. On
the other hand, the false-positive rate is often higher for λMNP : the method
tends to show significant clusters larger than the other one. However, for the
non-parametric method, the false-positive rate does not exceed 11%.

3.2. An application to environmental data

We applied the scan statistic model to the same real environmental biomon-
itoring data as those presented in the study of Cucala et al. [7]. Briefly, thalli
of the foliose lichen Xanthoria parietina were collected in respectively 128
and 59 point locations in the Lille European Metropole and the Dunkerque
agglomeration for the analysis of 14 trace elements (TE) concentrations:
aluminium (Al), antimony (Sb), arsenic (As), cadmium (Cd), cobalt (Co),
chrome (Cr), copper (Cu), lead (Pb), manganese (Mn), mercury (Hg), nickel
(Ni), titanium (Ti), zinc (Zn), and vanadium (V). Most of these TE are
highly correlated to the others, but some are slightly less correlated to the
others. All TE show heavy-tailed distributions characterized by very high
extreme values. Plots of these statistical distributions can be found in the
Appendix (Figures C.5 and C.6). We also calculated the Mean Impregna-
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Figure 1: Simulation study - Comparison of the multivariate Gaussian scan statistics
(λMG) and the multivariate nonparametric scan statistic (λMNP ) through three different
multivariate models (Gaussian, Weibull, Exponential) and according to 3 different size of
the simulated cluster : 10, 15 and 20 départements. For each combination of parameters,
power, true and false-positive rates are presented.
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tion Ratio (MIR) for each point location. This multimetallic index allows to
consider the general pollution status. See Occelli et al. [24] for more details.

In order to identify areas exhibiting an excessive level of pollutants,
the parametric (λMG) and the non-parametric (λMNP ) multivariate scan
statistics were applied to each dataset, considering T = 999 permutations.
Both methods detected a significant cluster on the Lille European Metropole
(p = 0.001 for λMG and p = 0.002 for λMNP ; Figure 2). Only one location,
situated on the North (the grey circle), was included in the λMG cluster. The
median [interquartile range : IQR] of each TE for locations inside/outside
the cluster are presented in Table 1. The location identified inside the cluster
presents the highest contamination for 12 of the 14 TE, and is amongst the
highest values for the two others. The latter is considered as an extreme data
which is between 4 and 48 times higher than the median observed outside the
cluster. MIR values are 16.35 inside and 1.32 [1.01-1.92] outside the cluster.
The λMNP cluster includes 42 locations centered on the city of Lille (the
red circle), and does not contain the one detected with λMG. MIR values
are 1.74 [1.28-2.46] inside and 1.18 [0.91-1.66] outside the cluster, and TE
concentrations are always higher inside than outside.

For the Dunkerque agglomeration, each method detected a significant
cluster (p = 0.001 for both; Figure 3). The λMG cluster includes only one
location (the grey circle), which presents the highest contamination for 7 of
the 14 TE, and is amongst the highest values for 4 others. Concentrations
are amongst the lowest for Ti, medium for As, and no data were available for
V, due to the laboratory analysis. The latter is also considered as an extreme
data which is between 1.5 and 128 times higher than the median observed
outside the cluster. MIR values are 49.26 inside and 2.16 [1.42-4.20] outside.
The λMNP cluster includes 3 locations (the red circle), which comprise the
one detected with λMG. MIR values are 10.16 [7.51-29.71] inside and 2.14
[1.39-4.04] outside the cluster, and TE concentrations are higher inside than
outside, expected for Ti. All these results are detailed in Table 1.

4. Discussion

The method introduced in this paper is an automatic tool for investigat-
ing multivariate data in a spatial context without choosing any distribution
and setting up any parameter. Such as any scan method, it can be used by
non-statisticians to highlight spatial areas in which things are different, lead-
ing to further investigation. The nonparametric multivariate scan statistic
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Table 1: Comparison of the multivariate gaussian scan statistic (λMG) and the multivariate
nonparametric scan statistic (λMNP ) on environmental data (Trace elements) considering
the Lille European Metropole and the Dunkerque agglomeration areas. For each area and
method, the trace elements are described (median [first quartile ; third quartile]) inside
and outside the significant detected cluster.

Lille European Metropole
λMG (p = 0.001) λMNP (p = 0.002)

Trace elements Out (n = 127) In (n = 1) Out (n = 84) In (n = 44)
Aluminium 690 [496;1162] 3057 648 [458;1119] 761 [576;1260]
Chrome 3.21 [2.26;5.17] 45.1 3.00 [2.06;5.03] 3.68 [2.76;6.54]
Copper 12.6 [8.83;19.2] 259 10.9 [7.69;17.4] 16.9 [11.8;21.8]
Arsenic 0.78 [0.61;1.21] 5.10 0.77 [0.56;1.18] 0.85 [0.67;1.41]
Mercury 0.11 [0.09;0.13] 0.81 0.10 [0.09;0.11] 0.12 [0.10;0.16]
Cadmium 0.46 [0.30;0.83] 10.6 0.35 [0.25;0.72] 0.80 [0.46;1.34]
Manganese 44.0 [33.0;55.9] 309 39.5 [30.8;52.5] 50.2 [39.0;58.0]
Cobalt 0.52 [0.36;0.76] 9.62 0.48 [0.31;0.74] 0.57 [0.45;0.84]
Antimony 1.09 [0.66;2.00] 14.0 0.87 [0.55;1.42] 1.54 [1.08;2.62]
Nickel 2.33 [1.58;3.21] 72.9 2.15 [1.44;2.98] 2.52 [1.97;3.71]
Vanadium 2.79 [2.00;4.29] 15.0 2.62 [1.90;4.29] 3.00 [2.14;4.41]
Lead 18.0 [9.89;33.0] 873 13.0 [8.00;24.5] 34.5 [18.0;46.5]
Titanium 13.0 [10.0;19.5] 76.0 12.0 [9.00;19.2] 14.5 [12.0;20.0]
Zinc 87.1 [59.5;124] 1583 72.7 [52.3;111] 113 [83.5;168]

Dunkerque agglomeration
λMG (p = 0.001) λMNP (p = 0.001)

Trace elements Out (n = 58) In (n = 1) Out (n = 56) In (n = 3)
Aluminium 1126 [806;1553] 3179 1105 [788;1523] 3179 [2379;3336]
Chrome 10.0 [5.78;18.8] 1172 9.60 [5.65;17.9] 194 [112;683]
Copper 11.5 [8.72;26.6] 95.5 11.1 [8.57;21.9] 31.6 [29.1;63.5]
Arsenic 1.58 [0.94;2.57] 2.33 1.58 [0.92;2.55] 2.33 [2.00;2.91]
Mercury 0.16 [0.12;0.21] 1.02 0.16 [0.12;0.21] 0.21 [0.20;0.62]
Cadmium 0.58 [0.40;0.98] 30.1 0.57 [0.40;0.95] 4.79 [3.45;17.4]
Manganese 273 [142;584] 1730 260 [140;568] 859 [700;1295]
Cobalt 0.80 [0.50;1.47] 13.1 0.77 [0.48;1.39] 3.58 [2.89;8.34]
Antimony 0.94 [0.52;1.87] 3.49 0.91 [0.52;1.61] 3.57 [3.53;3.79]
Nickel 6.17 [4.38;9.75] 795 6.15 [4.28;9.37] 107 [71.7;451]
Vanadium 8.52 [5.04;14.0] N.A. 7.77 [4.90;14.7] 12.0 [6.00;12.3]
Lead 17.0 [9.01;37.8] 372 16.0 [9.00;35.5] 53.0 [46.0;212]
Titanium 21.5 [9.50;40.0] 0.18 21.5 [10.5;41.2] 0.24 [0.21;19.1]
Zinc 97.9 [71.6;182] 2408 96.7 [71.3;160] 512 [379;1460]
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Figure 2: Application study - Mean Impregnation Ratios by Jenks classification and de-
tected clusters for the multivariate Gaussian scan statistics (MG) and the multivariate
nonparametric scan statistic (MNP), European Lille Metropole.
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Figure 3: Application study - Mean Impregnation Ratios by Jenks classification and de-
tected clusters for the multivariate Gaussian scan statistics (MG) and the multivariate
nonparametric scan statistic (MNP), Dunkerque agglomeration.
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mainly addresses a major environmental-health issue: detecting areas where
populations are multi-exposed to environmental pollutions.

We used simulation (artificial dataset) and real (environmental dataset)
applications to compare our nonparametric method to the multivariate Gaus-
sian scan statistic. As expected, the simulation study shows that both meth-
ods tend to have equivalent powers when the distribution of variables has a
low asymmetry, regardless of the correlation between variables and the size
of the cluster. Conversely, for heavy-tailed distribution, the non-parametric
method shows a higher power than the parametric one whatever the cor-
relation between variables and the size of the cluster. The non-parametric
method also shows a higher true-positive rate, which implies that the para-
metric method tends to identify smaller clusters characterized by the presence
of extreme values. This characteristic has also been observed on the environ-
mental dataset. In our two examples, extreme high values for most of the 14
pollutants considered were observed for one location, compared to the others,
leading the parametric method to the identification of a cluster containing
this unique location. Our non-parametric method is less sensitive to these
extreme individuals and thus can be considered as more robust.

As said previously, we only focused on circular potential clusters, which
is the simplest procedure. However, the detection of clusters with variable
shape should be considered when analysing the environmental dataset, as
TE contamination could be strongly influenced by road traffic, which has
not a circular pattern. A natural extension would be to consider also elliptic
clusters, as proposed by Kulldorff et al. [17].

We should notice that we computed the nonparametric scan statistic as-
sociated to our environmental dataset even if there was missing data. The
solution we adopted is the following: if xki is unobserved, the kth component
of the vector of differences Xi −Xj is set to 0, whatever the value of j.

Finally, we may wonder how to deal when observed variables are not all
continuous. For example, the observations could be count data for different
diseases in different administrative cells. Using the nonparametric multi-
variate scan statistic allows to take into account the correlations between
diseases, but not the different populations in the administrative cells. Using
the likelihood-based multivariate scan statistic introduced by Kulldorff et al.
[18] leads to the exact opposite. A solution might be a transformation of the
count data using the underlying population, before using the multivariate
nonparametric scan statistic.
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Appendix A. Maps of the simulated clusters

Figure A.4: Simulated clusters (10, 15 and 20 ”départements”)

Appendix B. Detailed results for the simulation study

Appendix C. Application: distributions of the observed variables
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Figure C.5: Application study - Distributions of metal pollutants, European Lille
Metropole.
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Figure C.6: Application study - Distributions of metal pollutants, Dunkerque agglomera-
tion.

17
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Table B.2: Simulation study - Comparison of the multivariate Gaussian scan statistics
(λMG) and the multivariate nonparametric scan statistic (λMNP ) through three different
multivariate models (Gaussian, Weibull, Exponential). The bold values are the best results
obtained in each procedure.

Gaussian model Weibull model Exponential model
Nb. Dep. ρ β λMG λMNP β λMG λMNP β λMG λMNP

10 0.0 1.0 Power 0.924 0.888 7 Power 0.953 0.881 12 Power 0.428 0.551
%TP 0.853 0.935 7 %TP 0.757 0.926 12 %TP 0.519 0.874
%FP 0.033 0.040 7 %FP 0.019 0.037 12 %FP 0.013 0.065

0.2 Power 0.784 0.718 7 Power 0.866 0.745 12 Power 0.332 0.397
%TP 0.858 0.928 7 %TP 0.713 0.897 12 %TP 0.444 0.840
%FP 0.049 0.064 7 %FP 0.018 0.051 12 %FP 0.007 0.075

0.5 Power 0.561 0.513 7 Power 0.757 0.520 12 Power 0.266 0.314
%TP 0.867 0.915 7 %TP 0.661 0.877 12 %TP 0.404 0.810
%FP 0.068 0.098 7 %FP 0.017 0.070 12 %FP 0.017 0.094

0.8 Power 0.444 0.380 7 Power 0.631 0.416 12 Power 0.228 0.212
%TP 0.837 0.884 7 %TP 0.610 0.847 12 %TP 0.329 0.726
%FP 0.076 0.104 7 %FP 0.015 0.095 12 %FP 0.008 0.111

0.0 1.5 Power 1.000 1.000 9 Power 0.985 0.972 14 Power 0.479 0.657
%TP 0.858 0.961 9 %TP 0.772 0.940 14 %TP 0.540 0.884
%FP 0.022 0.015 9 %FP 0.016 0.025 14 %FP 0.010 0.044

0.2 Power 0.998 0.998 9 Power 0.951 0.900 14 Power 0.403 0.500
%TP 0.858 0.961 9 %TP 0.738 0.925 14 %TP 0.485 0.872
%FP 0.025 0.022 9 %FP 0.017 0.034 14 %FP 0.009 0.060

0.5 Power 0.980 0.965 9 Power 0.856 0.736 14 Power 0.305 0.375
%TP 0.858 0.954 9 %TP 0.680 0.896 14 %TP 0.415 0.834
%FP 0.027 0.028 9 %FP 0.016 0.045 14 %FP 0.006 0.073

0.8 Power 0.935 0.892 9 Power 0.789 0.617 14 Power 0.262 0.267
%TP 0.863 0.945 9 %TP 0.649 0.899 14 %TP 0.366 0.792
%FP 0.037 0.042 9 %FP 0.016 0.052 14 %FP 0.005 0.081

15 0.0 1.0 Power 0.991 0.986 7 Power 0.969 0.975 12 Power 0.425 0.751
%TP 0.774 0.955 7 %TP 0.705 0.926 12 %TP 0.431 0.864
%FP 0.070 0.047 7 %FP 0.052 0.045 12 %FP 0.022 0.057

0.2 Power 0.913 0.913 7 Power 0.905 0.885 12 Power 0.344 0.589
%TP 0.778 0.928 7 %TP 0.655 0.892 12 %TP 0.376 0.823
%FP 0.082 0.069 7 %FP 0.046 0.052 12 %FP 0.019 0.078

0.5 Power 0.760 0.768 7 Power 0.797 0.760 12 Power 0.269 0.416
%TP 0.775 0.901 7 %TP 0.603 0.850 12 %TP 0.276 0.795
%FP 0.084 0.085 7 %FP 0.041 0.071 12 %FP 0.012 0.083

0.8 Power 0.631 0.628 7 Power 0.669 0.590 12 Power 0.205 0.285
%TP 0.774 0.880 7 %TP 0.553 0.820 12 %TP 0.246 0.732
%FP 0.098 0.109 7 %FP 0.035 0.092 12 %FP 0.006 0.087

0.0 1.5 Power 1.000 1.000 9 Power 0.988 0.998 14 Power 0.452 0.856
%TP 0.788 0.987 9 %TP 0.722 0.954 14 %TP 0.455 0.890
%FP 0.066 0.033 9 %FP 0.053 0.037 14 %FP 0.024 0.052

0.2 Power 1.000 1.000 9 Power 0.963 0.985 14 Power 0.385 0.734
%TP 0.782 0.978 9 %TP 0.688 0.929 14 %TP 0.389 0.832
%FP 0.066 0.036 9 %FP 0.049 0.040 14 %FP 0.017 0.059

0.5 Power 0.999 0.997 9 Power 0.894 0.913 14 Power 0.284 0.541
%TP 0.780 0.973 9 %TP 0.624 0.892 14 %TP 0.319 0.787
%FP 0.069 0.040 9 %FP 0.041 0.051 14 %FP 0.011 0.080

0.8 Power 0.987 0.986 9 Power 0.814 0.795 14 Power 0.234 0.387
%TP 0.779 0.954 9 %TP 0.589 0.865 14 %TP 0.260 0.759
%FP 0.072 0.048 9 %FP 0.038 0.061 14 %FP 0.007 0.096

20 0.0 1.0 Power 1.000 1.000 7 Power 0.981 0.995 12 Power 0.403 0.882
%TP 0.744 0.933 7 %TP 0.680 0.917 12 %TP 0.428 0.875
%FP 0.091 0.047 7 %FP 0.079 0.048 12 %FP 0.041 0.064

0.2 Power 0.980 0.980 7 Power 0.940 0.965 12 Power 0.305 0.746
%TP 0.750 0.924 7 %TP 0.633 0.896 12 %TP 0.377 0.837
%FP 0.093 0.058 7 %FP 0.072 0.053 12 %FP 0.033 0.066

0.5 Power 0.905 0.910 7 Power 0.845 0.880 12 Power 0.228 0.549
%TP 0.749 0.902 7 %TP 0.597 0.864 12 %TP 0.267 0.785
%FP 0.105 0.074 7 %FP 0.065 0.063 12 %FP 0.018 0.085

0.8 Power 0.779 0.789 7 Power 0.703 0.736 12 Power 0.175 0.425
%TP 0.768 0.895 7 %TP 0.548 0.851 12 %TP 0.225 0.743
%FP 0.109 0.090 7 %FP 0.058 0.074 12 %FP 0.013 0.087

0.0 1.5 Power 1.000 1.000 9 Power 0.995 1.000 14 Power 0.464 0.948
%TP 0.741 0.956 9 %TP 0.693 0.933 14 %TP 0.481 0.889
%FP 0.089 0.034 9 %FP 0.082 0.037 14 %FP 0.049 0.052

0.2 Power 1.000 1.000 9 Power 0.988 0.998 14 Power 0.379 0.868
%TP 0.737 0.947 9 %TP 0.667 0.920 14 %TP 0.407 0.856
%FP 0.089 0.037 9 %FP 0.077 0.041 14 %FP 0.037 0.062

0.5 Power 1.000 1.000 9 Power 0.934 0.973 14 Power 0.259 0.685
%TP 0.744 0.943 9 %TP 0.638 0.891 14 %TP 0.311 0.816
%FP 0.090 0.043 9 %FP 0.072 0.050 14 %FP 0.023 0.072

0.8 Power 0.997 0.998 9 Power 0.846 0.908 14 Power 0.193 0.494
%TP 0.746 0.937 9 %TP 0.582 0.866 14 %TP 0.226 0.773
%FP 0.091 0.047 9 %FP 0.063 0.056 14 %FP 0.018 0.07820
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