
HAL Id: hal-02053504
https://hal.science/hal-02053504v1

Submitted on 1 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Simple Object that Spans the Whole Consensus
Hierarchy

Achour Mostefaoui, Matthieu Perrin, Michel Raynal

To cite this version:
Achour Mostefaoui, Matthieu Perrin, Michel Raynal. A Simple Object that Spans the Whole Consen-
sus Hierarchy. Parallel Processing Letters, 2018, 28 (02), pp.1850006. �10.1142/S0129626418500068�.
�hal-02053504�

https://hal.science/hal-02053504v1
https://hal.archives-ouvertes.fr


A Simple Object that Spans the Whole Consensus Hierarchy

Achour Mostéfaoui†, Matthieu Perrin†, Michel Raynal?,‡

†LINA, Université de Nantes, 44322 Nantes, France
?Univ Rennes IRISA, 35042 Rennes, France

‡Department of Computing, Polytechnic University, Hong Kong

Abstract

This paper presents a simple generalization of the basic atomic read/write register object, whose
genericity parameter spans the whole set of integers and is such that its k-parameterized instance has
exactly consensus number k. This object, whose definition is natural, is a sliding window register
of size k. Its interest lies in its simplicity and its genericity dimension which provides a global
view capturing the whole consensus hierarchy. Hence, this short article should be seen as a simple
pedagogical introduction to Herlihy’s consensus hierarchy.
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1 Wait-free Computing Model and the Consensus Hierarchy

Crash-prone asynchronous read/write-based systems This paper considers the classical distributed
computing model called read/write wait-free model [6]. It is composed of a set of n sequential processes
denoted p1, ..., pn, which communicate through atomic read/write registers [7, 8, 11, 14].

Each process is asynchronous, which means that it proceeds at its own speed, which can be arbitrary
and remains always unknown to the other processes, and executes its local algorithm until it possibly
crashes, where a crash is a premature halt. Any number of processes may crash in a run, and after
crashing a process does not recover. A process that crashes in a run is said to be faulty. Otherwise, it is
correct or non-faulty. Let us notice that, due to process crashes and asynchrony, no process can know if
another process crashed or is only very slow.

Consensus object The notion of a universal object with respect to fault-tolerance was introduced by
M. Herlihy [6]. An object type T is universal if it is possible to implement any object (defined by a
sequential specification) in the read/write wait-free model enriched with any number of objects of type
T . An algorithm providing such an implementation is called a universal construction. It is shown in [6]
that consensus objects are universal. These objects allow the processes to propose values and agree on
one of them. More precisely, such an object provides the processes with a single operation, denoted
propose(), that a process can invoke only once, and returns it a value. When pi invokes propose(vi),we
say that it “proposes the value vi”, and if v is the returned value we say that it “decides v”. The consensus
object is defined by the three following properties:

• Validity. If a process decides a value, this value was proposed by a process.

• Agreement. No two processes decide different values.
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• Termination. If a correct process invokes propose(), it decides a value.

Termination states that if a correct process invokes propose(), it decides a value whatever the behav-
ior of the other processes (wait-freedom progress condition). Validity connects the output to the inputs,
while Agreement states that the processes cannot decide differently. A sequence of consensus objects is
used in the following way in a universal construction. According to its current view of the operations
invoked on, and not yet applied to, the object O of type T that is built, each process proposes to the next
consensus instance a sequence of operations to be applied to O, and the winning sequence is actually
applied. An helping mechanism [3] is used to ensure that all the operations on O by any correct process
are eventually applied to O.

Consensus numbers and consensus hierarchy The notion of a consensus number associated with
an object type T (denoted CN(T ) in the following) was introduced by Herlihy in [6]. It is the greatest
positive integer n such that consensus can be implemented in a system of n processes with atomic
read/write registers and objects of type T . If there is no such finite n, the consensus number of T is
+∞. Hence, a type T such that CN(T ) ≥ n is universal in a system of n (or less) processes.

It appears that the consensus numbers define an infinite hierarchy (Herlihy’s hierarchy) in which
atomic read/write registers have consensus number 1, object types such as Test&Set, Fetch&Add, and
Swap, have consensus number 2, etc., until object types such as Compare&Swap, Linked Load/Store
Conditional (and a few others) that have consensus number +∞. In between, read/write registers pro-
vided with m-assignment1 with m > 1, have consensus number (2m − 2). (Recent developments on
synchronization objects and consensus numbers can be found in [1, 3, 9].)

Content of the paper This paper addresses the following question: Does it exist a simple object fam-
ily, parameterized by a positive integer k, that covers the whole consensus hierarchy (i.e., whose object
instantiated with number k has exactly consensus number k)? The paper answers positively this question
by presenting a simple object family, and shows that, for any k ≥ 1, its k-parameterized instance has
consensus number k. This object is a very simple and natural generalization of the most basic shared
object, namely the atomic read/write register, extended to become a sliding window register of size k.
This object family has two noteworthy properties. One is its simplicity. The other one lies in the fact
that (to our knowledge) it is the only generic object spanning all consensus numbers. This has several
advantages, among which, its pedagogical dimension (easy to understand and teach to students), its uni-
versality dimension (no need to introduce a specific object at each level of the consensus hierarchy to
capture it), and its definition itself (a simple and natural generalization of an atomic read/write register).
As an immediate consequence of this result, a short Appendix shows that the consensus number of the
ledger object (such as the one used in cryptocurrencies) is +∞.

2 The Atomic k-Sliding Read/Write Register (RWk)

Definition As previously indicated, a k-sliding read/write register (in short RWk) is a natural gener-
alization of an atomic read/write register, which corresponds to the case k = 1. Let KREG be such an
object. It can be seen as a sequence of values, accessed by two atomic operations denoted KREG .write()
and KREG .read(). “Atomic” means that these operations appear as if they have been executed in some
sequential order, and this total order is such that, if operation op1 terminates before operation op2 starts,
then op1 appears before op2 [8, 11, 14].

1Such an assignment updates atomically m read/write registers. It is sometimes written X1, X2, · · · , Xm ← v1, · · · , vm
where the Xi are the registers, and each vi the value assigned to Xi.
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The invocation of KREG .write(v) by a process adds the value v at the end of the sequence KREG ,
while an invocation of KREG .read() returns the ordered sequence of the last k written values (if only
x < k values have been written, the default value ⊥ replaces each of the (k − x) missing values).

Hence, an RWk object is a sequence containing all the values that have been written (in their
atomicity-defined writing order), and whose each read operation returns the k values that have been
written just before it, according to the atomicity order. As already indicated, it is easy to see that, for
k = 1, RWk is a classical atomic read/write register. For k = +∞, each read operation returns the
whole sequence of values written so far. Let us notice that RWk objects appear in some applications
(e.g., the object that models the content of a screen in an email service where only the last k received
messages are displayed, or the screen describing plane time departures in airports [16]).2

Ranking the objects of the {RWk}k≥1 family Let RWk ≥ RWk′ denotes the fact that an RWk′ object
can be built from an RWk object. The following property follows directly the length of the sequences
returned by these objects.

Property 1 ∀k, k′ : (k ≥ k′)⇒ (RWk ≥ RWk′).

3 The Consensus Number of RWk ≥ k

This section shows that the consensus number of an RWk object is at least k. To this end, Algorithm 1
builds a consensus object for k processes from an RWk object KREG .

operation propose(vi) is
(1) KREG.write(vi)
(2) seqi ← KREG.read();
(3) let d be the first non-⊥ value in seqi;
(4) return(d)
end operation.

Algorithm 1: Solving consensus from an RWk object (code for pi)

Theorem 1 For any positive integer k we have CN(RWk) ≥ k.

Proof Let us consider a read/write wait-free system of k processes. The consensus Termination property
follows from the Termination properties of the operations KREG .write() and KREG .read() of the
underlying atomic object KREG (lines 1 and 2), and the fact that the algorithm contains neither loops,
nor wait statements.

As at most k processes invoke the consensus operation propose(), the underlying object KREG
contains at most k values. Moreover, the oldest of them is the value v written by the first process that
executed KREG .write() (line 1). It follows that the value extracted (line 3) from its local sequence seqi
by any process pi is v, which proves the consensus Agreement property. The proof of the consensus
Validity property follows from the same reasoning. 2Theorem 1

4 The Consensus Number of RWk ≤ k

This section shows that, for any finite value k, the consensus number of an RWk object is smaller than
(k + 1). The proof is a simple adaptation of impossibility proofs found in textbooks (such as [2, 13, 17,

2An object close to RWk objects was concurrently and independently introduced in [4] to address complexity issues in the
context of multiprocessor synchronization.
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19]), which all rest on the basic concepts (e.g., notion of valence) and techniques introduced in [5] in the
context of message-passing systems and then used in [12] in the context of wait-free read/write systems.

Definitions (The definitions that follow are from [5].) Without loss of generality, the proof considers
binary consensus, i.e., only the values 0 and 1 can be proposed by the processes (there are algorithms
that implement multivalued consensus on top of binary consensus [17]).

A configuration is a global state made up of the local states of each process and the state of every
object shared by the processes. In our case, as RWk≥ RW1(Property 1), we consider that the only
objects shared by the processes are RWk objects.

Assuming an algorithm A implementing a consensus object, a configuration Σ attained by an exe-
cution of A is v-valent (v ∈ {0, 1}), if only the value v can be decided from Σ. Such configurations
are said to be monovalent. Otherwise, they are said to be bivalent (the dices are not yet cast!). Let us
observe that there is an initial configuration that is bivalent3. Moreover, let us notice that -due to its very
definition- any configuration that follows a v-valent configuration is v-valent.

A schedule σ is a sequence of operations on shared objects issued by the processes. Let us observe
that, given an initial configuration, any consensus algorithmAmust terminate (all correct processes must
decide). Consequently all the schedules it can produce (whatever the failure and asynchrony pattern)
must eventually attain a monovalent configuration.

Σ being a configuration, let opx(Σ) denotes the configuration attained from Σ by executing opx (the
next read or write operation on a RWk object issued by px), and σ(Σ) be the configuration attained from
Σ by executing the schedule σ.

A maximal bivalent schedule is a schedule that ends in a bivalent configuration Σ such that the next
operation issued by any process produces a monovalent configuration. Let us notice that, if there is
an algorithm solving consensus, any of its executions has a maximal schedule (otherwise A will have
non-terminating executions).

Theorem 2 For any positive integer k we have CN(RWk) ≤ k.

Bivalent configuration Σi

0-valent configuration
Σi = opi(Σ)

1-valent configuration
Σi = opj(Σ)

Configuration opj(Σi) = opi(Σj)

opjopi

opiopj

Bivalent configuration Σi

0-valent configuration
Σi = opi(Σ)

1-valent configuration
Σi = opj(Σ)

Configuration opj(Σi) = opi(Σj)

0-valent configuration
with decision 1

1-valent configuration

opjopi

opj Schedule σj
No operation by pi

Schedule σj
No operation by pi

Figure 1: Schedule illustrations
3Assume pi proposes 0, while pj proposes 1. It follows from the consensus Validity property that, if all the processes

except pi crash initially, only 0 can be decided. Similarly, if all the processes except pj crash initially, only 1 can be decided.
It follows that the corresponding initial configuration is bivalent.
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The proof can be seen as a straightforward generalization of the proof given in [12], which shows
that atomic registers (i.e., RW1 registers) have consensus number 1.
Proof As in [5], starting with an algorithm A assumed to implement consensus, and an initial bivalent
configuration, the proof consists in building an execution of A in which there is no maximal schedule.
Consequently, all its configurations are bivalent, from which follows that the schedule is infinite: A does
not satisfy the consensus Termination property.

Hence, let us consider a read/write wait-free system of (k+ 1) processes, enriched with any number
of RWk objects. As A is assumed to terminate, each of its executions generates a maximal schedule,
i.e., produces a bivalent configuration Σ after which there is no more bivalent configurations. The proof
is a classical case analysis depending on whether the next operation issued by each process is a read
or write operation, and whether they are on the same or different RWk objects. Let pi and pj be two
processes whose next operations to execute in Σ are opi and opj , producing the 0-valent configuration
Σi = opi(Σ), and the 1-valent configuration Σj = opj(Σ), respectively.

• Case 1 (same as Lemma 1 in [5], left size of Figure 1): The operations opi and opj are on different
RWk objects. We have then opj(opi(Σ)) = opi(opj(Σ)) (being on different objects, the opera-
tions commute without side effect), from which we conclude that this configuration is bivalent,
which contradicts the fact that Σ is maximal.
• Case 2: The next operations opi and opj issued by pi and pj are on the same RWk object and

one of them (e.g., opi) is a read. In this case, there is a schedule σj , starting from the 1-valent
configuration Σj = opj(Σ), in which all the processes except pi (which stops for an arbitrary
long period or crashes) issue operations and eventually decide. As Σj = opj(Σ) is 1-valent, they
decide 1.

Let us now consider opj(Σi) = opj(opi(Σ)). This configuration differs from Σj = opj(Σ) only
in the local state of pi (which read the RWk object in the configuration opj(Σi) = opj(opi(Σ)),
while it does not in Σj = opj(Σ)) See an illustration on the right size of Figure 1. Let us apply the
schedule σj to configuration opj(Σi) = opj(opi(Σ)). This is possible because no process (except
pi) can distinguish opj(opi(Σ)) from opj(Σ). From the schedule σj , it follows that pj decides 1,
contradicting the fact that the configuration Σi = opi(Σ) is 0-valent.
• Case 3: In Σ, the next operation by each process is a write, and these write operations are on the

same RWk object KREG4. The reasoning is similar to Case 2. Let Σi = opi(Σ) be 0-valent, and
Σj = opj(Σ) be 1-valent. Let σj be a schedule, starting from Σj in which

– (a) the first (k − 1) operations are the write of KREG invoked by the (k − 1) processes
different from pi and pj .

– (b) all processes, except pi, execute steps until each of them decides, and
– (b) pi executes no operation.

Let us notice that such a schedule is possible because, in Σ, the next operation of each process is
a write into KREG (Case assumption, which implies item (a)5), and the algorithm A terminates
(hence each correct process invokes the consensus operation and decides, which implies item (b)).

Let opjσj denote the schedule composed of opj followed by σj . As Σj = opj(Σ) is 1-valent, all
processes involved in opjσj (i.e., all processes except pi) decide 1.

Let us now consider the monovalent state Σi, in which pj applies opj . Let us observe that no
process, except pi, can distinguish Σj from opj(Σi) (they have the same local states in both). It

4The intuition that underlies this case is the following. While pi can be the first process that writes a value (say 0) in KREG
(thereby producing a 0-valent configuration) and then pauses for an arbitrarily long period, it is possible that the next process
writes 1, and the (k − 1) other processes write also a value, whose net effect is the elimination of the value written by pi from
the current window.

5The important point is here the following: in σj no process different from pi can know the value written in KREG by pi.
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follows that the schedule opjσj (executed previously from Σ) can also be executed from Σi. The
first k operations of this schedule are a write operation on KREG issued by each process different
from pi. Moreover, at the end of this schedule, all the processes (except pi, which is not involved
in opjσj) decide 1. This contradicts the fact that Σi is 0-valent, which concludes the proof.

2Theorem 2

5 Conclusion

This paper first introduced a new type of concurrent object, parameterized by a positive integer k, namely
an atomic read/write sequence which can be accessed by a read and a write operation. Each write adds
a new value at the end of the sequence, while a read returns the last k written values. This generic
object, called k-sliding read/write register, has an instance for each positive integer k. The instance
k = 1 corresponds to the classical atomic read/write register, which is the most basic object of com-
puting science [20]. Then, the paper has shown that the consensus number of such a k-parameterized
object is k. Hence, this object family covers the whole spectrum of Herlihy’s consensus hierarchy, a
noteworthy pedagogical property. From a technical point of view, this result may help better understand
the synchronization power of concurrent objects. Moreover, it is sufficient to show that an object can be
implemented with a k-sliding read/write register to prove its consensus number is at most k.
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A The consensus number of the ledger object

Leader object A ledger is an atomic list-like object which provides processes with two operations
denoted read() and append(). When a process pi invokes append(v), the pair 〈i, v〉 (also called block
or record) is appended at the end of the list (actually, according to the application that uses a ledger,
additional control information might be added to the pair 〈i, v〉). When a process invokes rread() it
obtains the whole sequence of operation issued so far by the processes. Hence, no pair (block or record)
is ever suppressed from a ledger. More developments on the ledger object can be found in [18].

One of the very first uses of a ledger object was in crytocurrencies, where the underlying implme-
mentation mechanism it is called blochchain. A block or record can be a set transactions (as in the
Bitcoin [15] or the Ethereum [21] applications), notarial deeds, medical observations [10], etc.

k-Bounded ledger object Let us consider the notion of a k-bounded ledger [18]. Such a ledger keeps
only the k last values appended to the ledger. Hence, the classic ledger is an∞-ledger. More develop-
ments on the ledger object can be found in [18].

Consensus number It is easy to see that a k-bounded ledger and a k-sliding read/write register are the
same object. It follows from this observation that the consensus number of a ledger object is +∞.
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