Achour Mostéfaoui

Matthieu Perrin

Michel Raynal

A Simple Object that Spans the Whole Consensus Hierarchy

Keywords: Asynchronous system, Atomic read/write register, Consensus number, Consensus, Distributed computability, Generic object type, Herlihy Ledger object, Process crash failure

This paper presents a simple generalization of the basic atomic read/write register object, whose genericity parameter spans the whole set of integers and is such that its k-parameterized instance has exactly consensus number k. This object, whose definition is natural, is a sliding window register of size k. Its interest lies in its simplicity and its genericity dimension which provides a global view capturing the whole consensus hierarchy. Hence, this short article should be seen as a simple pedagogical introduction to Herlihy's consensus hierarchy.

• Termination. If a correct process invokes propose(), it decides a value.

Termination states that if a correct process invokes propose(), it decides a value whatever the behavior of the other processes (wait-freedom progress condition). Validity connects the output to the inputs, while Agreement states that the processes cannot decide differently. A sequence of consensus objects is used in the following way in a universal construction. According to its current view of the operations invoked on, and not yet applied to, the object O of type T that is built, each process proposes to the next consensus instance a sequence of operations to be applied to O, and the winning sequence is actually applied. An helping mechanism [START_REF] Censor-Hillel | Help! Proc. 34th ACM Int'l Symposium on Principles of Distributed Computing (PODC'15)[END_REF] is used to ensure that all the operations on O by any correct process are eventually applied to O.

Consensus numbers and consensus hierarchy

The notion of a consensus number associated with an object type T (denoted CN(T) in the following) was introduced by Herlihy in [START_REF] Herlihy | Wait-free synchronization[END_REF]. It is the greatest positive integer n such that consensus can be implemented in a system of n processes with atomic read/write registers and objects of type T . If there is no such finite n, the consensus number of T is +∞. Hence, a type T such that CN(T) ≥ n is universal in a system of n (or less) processes.

It appears that the consensus numbers define an infinite hierarchy (Herlihy's hierarchy) in which atomic read/write registers have consensus number 1, object types such as Test&Set, Fetch&Add, and Swap, have consensus number 2, etc., until object types such as Compare&Swap, Linked Load/Store Conditional (and a few others) that have consensus number +∞. In between, read/write registers provided with m-assignment1 with m > 1, have consensus number (2m -2). (Recent developments on synchronization objects and consensus numbers can be found in [START_REF] Afek | Deterministic objects: life beyond consensus[END_REF][START_REF] Censor-Hillel | Help! Proc. 34th ACM Int'l Symposium on Principles of Distributed Computing (PODC'15)[END_REF][START_REF] Imbs | The multiplicative power of consensus numbers[END_REF].) Content of the paper This paper addresses the following question: Does it exist a simple object family, parameterized by a positive integer k, that covers the whole consensus hierarchy (i.e., whose object instantiated with number k has exactly consensus number k)? The paper answers positively this question by presenting a simple object family, and shows that, for any k ≥ 1, its k-parameterized instance has consensus number k. This object is a very simple and natural generalization of the most basic shared object, namely the atomic read/write register, extended to become a sliding window register of size k. This object family has two noteworthy properties. One is its simplicity. The other one lies in the fact that (to our knowledge) it is the only generic object spanning all consensus numbers. This has several advantages, among which, its pedagogical dimension (easy to understand and teach to students), its universality dimension (no need to introduce a specific object at each level of the consensus hierarchy to capture it), and its definition itself (a simple and natural generalization of an atomic read/write register). As an immediate consequence of this result, a short Appendix shows that the consensus number of the ledger object (such as the one used in cryptocurrencies) is +∞.

2 The Atomic k-Sliding Read/Write Register (RW k) Definition As previously indicated, a k-sliding read/write register (in short RW k) is a natural generalization of an atomic read/write register, which corresponds to the case k = 1. Let KREG be such an object. It can be seen as a sequence of values, accessed by two atomic operations denoted KREG.write() and KREG.read(). "Atomic" means that these operations appear as if they have been executed in some sequential order, and this total order is such that, if operation op1 terminates before operation op2 starts, then op1 appears before op2 [START_REF] Herlihy | Linearizability: a correctness condition for concurrent objects[END_REF][START_REF] Lamport | On interprocess communication, Part I: basic formalism[END_REF][START_REF] Misra | Axioms for memory access in asynchronous hardware systems[END_REF].

The invocation of KREG.write(v) by a process adds the value v at the end of the sequence KREG, while an invocation of KREG.read() returns the ordered sequence of the last k written values (if only x < k values have been written, the default value ⊥ replaces each of the (k -x) missing values).

Hence, an RW k object is a sequence containing all the values that have been written (in their atomicity-defined writing order), and whose each read operation returns the k values that have been written just before it, according to the atomicity order. As already indicated, it is easy to see that, for k = 1, RW k is a classical atomic read/write register. For k = +∞, each read operation returns the whole sequence of values written so far. Let us notice that RW k objects appear in some applications (e.g., the object that models the content of a screen in an email service where only the last k received messages are displayed, or the screen describing plane time departures in airports [START_REF] Perrin | Spécification des objets partagés dans le systèmes répartis sans attente[END_REF]). 2Ranking the objects of the {RW k } k≥1 family Let RW k ≥ RW k denotes the fact that an RW k object can be built from an RW k object. The following property follows directly the length of the sequences returned by these objects.

Property 1 ∀k, k : (k ≥ k) ⇒ (RW k ≥ RW k).

The Consensus Number of RW k ≥ k

This section shows that the consensus number of an RW k object is at least k. To this end, Algorithm 1 builds a consensus object for k processes from an RW k object KREG. Proof Let us consider a read/write wait-free system of k processes. The consensus Termination property follows from the Termination properties of the operations KREG.write() and KREG.read() of the underlying atomic object KREG (lines 1 and 2), and the fact that the algorithm contains neither loops, nor wait statements.

operation propose(vi) is (1) KREG.write(vi) (2) seqi ← KREG.
As at most k processes invoke the consensus operation propose(), the underlying object KREG contains at most k values. Moreover, the oldest of them is the value v written by the first process that executed KREG.write() (line 1). It follows that the value extracted (line 3) from its local sequence seq i by any process p i is v, which proves the consensus Agreement property. The proof of the consensus Validity property follows from the same reasoning.

2 T heorem 1

The Consensus Number of RW k ≤ k

This section shows that, for any finite value k, the consensus number of an RW k object is smaller than (k + 1). The proof is a simple adaptation of impossibility proofs found in textbooks (such as [START_REF] Attiya | Distributed computing: fundamentals, simulations and advanced topics[END_REF][START_REF] Lynch | Distributed algorithms[END_REF][START_REF] Raynal | Concurrent programming: algorithms, principles and foundations[END_REF][START_REF] Taubenfeld | Synchronization algorithms and concurrent programming[END_REF]), which all rest on the basic concepts (e.g., notion of valence) and techniques introduced in [START_REF] Fischer | Impossibility of distributed consensus with one faulty process[END_REF] in the context of message-passing systems and then used in [START_REF] Loui | Memory requirements for agreement among unreliable asynchronous processes[END_REF] in the context of wait-free read/write systems.

Definitions (The definitions that follow are from [START_REF] Fischer | Impossibility of distributed consensus with one faulty process[END_REF].) Without loss of generality, the proof considers binary consensus, i.e., only the values 0 and 1 can be proposed by the processes (there are algorithms that implement multivalued consensus on top of binary consensus [START_REF] Raynal | Concurrent programming: algorithms, principles and foundations[END_REF]).

A configuration is a global state made up of the local states of each process and the state of every object shared by the processes. In our case, as RW k ≥ RW 1 (Property 1), we consider that the only objects shared by the processes are RW k objects.

Assuming an algorithm A implementing a consensus object, a configuration Σ attained by an execution of A is v-valent (v ∈ {0, 1}), if only the value v can be decided from Σ. Such configurations are said to be monovalent. Otherwise, they are said to be bivalent (the dices are not yet cast!). Let us observe that there is an initial configuration that is bivalent 3 . Moreover, let us notice that -due to its very definition-any configuration that follows a v-valent configuration is v-valent.

A schedule σ is a sequence of operations on shared objects issued by the processes. Let us observe that, given an initial configuration, any consensus algorithm A must terminate (all correct processes must decide). Consequently all the schedules it can produce (whatever the failure and asynchrony pattern) must eventually attain a monovalent configuration.

Σ being a configuration, let op x (Σ) denotes the configuration attained from Σ by executing op x (the next read or write operation on a RW k object issued by p x), and σ(Σ) be the configuration attained from Σ by executing the schedule σ.

A maximal bivalent schedule is a schedule that ends in a bivalent configuration Σ such that the next operation issued by any process produces a monovalent configuration. Let us notice that, if there is an algorithm solving consensus, any of its executions has a maximal schedule (otherwise A will have non-terminating executions).

Theorem 2 For any positive integer k we have CN(RW k) ≤ k. 3 Assume pi proposes 0, while pj proposes 1. It follows from the consensus Validity property that, if all the processes except pi crash initially, only 0 can be decided. Similarly, if all the processes except pj crash initially, only 1 can be decided. It follows that the corresponding initial configuration is bivalent.

Bivalent configuration Σ i 0-valent configuration Σ i = op i (Σ) 1-valent configuration Σ i = op j (Σ) Configuration op j (Σ i) = op i (Σ j) op j op i op i op j Bivalent configuration Σ i 0-valent configuration Σ i = op i (Σ) 1-valent configuration Σ i = op j (Σ) Configuration op j (Σ i) = op i (Σ j) 0-
The proof can be seen as a straightforward generalization of the proof given in [START_REF] Loui | Memory requirements for agreement among unreliable asynchronous processes[END_REF], which shows that atomic registers (i.e., RW 1 registers) have consensus number 1. Proof As in [START_REF] Fischer | Impossibility of distributed consensus with one faulty process[END_REF], starting with an algorithm A assumed to implement consensus, and an initial bivalent configuration, the proof consists in building an execution of A in which there is no maximal schedule. Consequently, all its configurations are bivalent, from which follows that the schedule is infinite: A does not satisfy the consensus Termination property.

Hence, let us consider a read/write wait-free system of (k + 1) processes, enriched with any number of RW k objects. As A is assumed to terminate, each of its executions generates a maximal schedule, i.e., produces a bivalent configuration Σ after which there is no more bivalent configurations. The proof is a classical case analysis depending on whether the next operation issued by each process is a read or write operation, and whether they are on the same or different RW k objects. Let p i and p j be two processes whose next operations to execute in Σ are op i and op j , producing the 0-valent configuration Σ i = op i (Σ), and the 1-valent configuration Σ j = op j (Σ), respectively.

• Case 1 (same as Lemma 1 in [START_REF] Fischer | Impossibility of distributed consensus with one faulty process[END_REF], left size of Figure 1): The operations op i and op j are on different RW k objects. We have then op j (op i (Σ)) = op i (op j (Σ)) (being on different objects, the operations commute without side effect), from which we conclude that this configuration is bivalent, which contradicts the fact that Σ is maximal. • Case 2: The next operations op i and op j issued by p i and p j are on the same RW k object and one of them (e.g., op i) is a read. In this case, there is a schedule σ j , starting from the 1-valent configuration Σ j = op j (Σ), in which all the processes except p i (which stops for an arbitrary long period or crashes) issue operations and eventually decide. As Σ j = op j (Σ) is 1-valent, they decide 1.

Let us now consider op j (Σ i) = op j (op i (Σ)). This configuration differs from Σ j = op j (Σ) only in the local state of p i (which read the RW k object in the configuration op j (Σ i) = op j (op i (Σ)), while it does not in Σ j = op j (Σ)) See an illustration on the right size of Figure 1. Let us apply the schedule σ j to configuration op j (Σ i) = op j (op i (Σ)). This is possible because no process (except p i) can distinguish op j (op i (Σ)) from op j (Σ). From the schedule σ j , it follows that p j decides 1, contradicting the fact that the configuration Σ i = op i (Σ) is 0-valent. • Case 3: In Σ, the next operation by each process is a write, and these write operations are on the same RW k object KREG4 . The reasoning is similar to Case 2. Let Σ i = op i (Σ) be 0-valent, and Σ j = op j (Σ) be 1-valent. Let σ j be a schedule, starting from Σ j in which -(a) the first (k -1) operations are the write of KREG invoked by the (k -1) processes different from p i and p j . -(b) all processes, except p i , execute steps until each of them decides, and -(b) p i executes no operation.

Let us notice that such a schedule is possible because, in Σ, the next operation of each process is a write into KREG (Case assumption, which implies item (a) 5), and the algorithm A terminates (hence each correct process invokes the consensus operation and decides, which implies item (b)).

Let op j σ j denote the schedule composed of op j followed by σ j . As Σ j = op j (Σ) is 1-valent, all processes involved in op j σ j (i.e., all processes except p i) decide 1.

Let us now consider the monovalent state Σ i , in which p j applies op j . Let us observe that no process, except p i , can distinguish Σ j from op j (Σ i) (they have the same local states in both). It follows that the schedule op j σ j (executed previously from Σ) can also be executed from Σ i . The first k operations of this schedule are a write operation on KREG issued by each process different from p i . Moreover, at the end of this schedule, all the processes (except p i , which is not involved in op j σ j) decide 1. This contradicts the fact that Σ i is 0-valent, which concludes the proof.

2 T heorem 2

Conclusion

This paper first introduced a new type of concurrent object, parameterized by a positive integer k, namely an atomic read/write sequence which can be accessed by a read and a write operation. Each write adds a new value at the end of the sequence, while a read returns the last k written values. This generic object, called k-sliding read/write register, has an instance for each positive integer k. The instance k = 1 corresponds to the classical atomic read/write register, which is the most basic object of computing science [START_REF] Turing | On computable numbers with an application to the Entscheidungsproblem[END_REF]. Then, the paper has shown that the consensus number of such a k-parameterized object is k. Hence, this object family covers the whole spectrum of Herlihy's consensus hierarchy, a noteworthy pedagogical property. From a technical point of view, this result may help better understand the synchronization power of concurrent objects. Moreover, it is sufficient to show that an object can be implemented with a k-sliding read/write register to prove its consensus number is at most k.

 read(); (3) let d be the first non-⊥ value in seqi; (4) return(d) end operation. Algorithm 1: Solving consensus from an RW k object (code for p i) Theorem 1 For any positive integer k we have CN(RW k) ≥ k.

Figure 1 :

 1 Figure 1: Schedule illustrations

Such an assignment updates atomically m read/write registers. It is sometimes written X1, X2, • • • , Xm ← v1, • • • , vm where the Xi are the registers, and each vi the value assigned to Xi.

An object close to RW k objects was concurrently and independently introduced in[START_REF] Gelashvili | A complexity-based hierarchy for multiprocessor synchronization[END_REF] to address complexity issues in the context of multiprocessor synchronization.

The intuition that underlies this case is the following. While pi can be the first process that writes a value (say 0) in KREG (thereby producing a 0-valent configuration) and then pauses for an arbitrarily long period, it is possible that the next process writes 1, and the (k -1) other processes write also a value, whose net effect is the elimination of the value written by pi from the current window.

The important point is here the following: in σj no process different from pi can know the value written in KREG by pi.

Acknowledgments

The authors want to thank the referees for their constructive comments. This work has been partially supported by the French ANR project DESCARTES devoted to layered and modular structures in distributed computing.