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Abstract

We present experimental measurements of the penetration depth of the bubble cloud generated by a plunging water

jet, when this jet is oscillated parallel to the free surface. We demonstrate that when the Reynolds number is larger

than 104 the penetration depth can be adequately described with the model introduced by Clanet & Lasheras (1997)

for a non-oscillating jet tilted relative to the normal of the liquid surface, provided an effective inclination angle is

introduced to account for the jet translation velocity. In the case of jets with a Reynolds number smaller than 104, we

find that the penetration depth of the oscillated jet can be increased of up to 30% by moderate oscillation velocities.

This increase of the penetration is due to the decrease of the mixing layer angle when the symmetry around the bubble

cloud is broken by the oscillation. We finally discuss the shape of the overall region impacted by the oscillating bubble

cloud. We show that there is a regime for which the penetration is maximum at the center of this region, and a regime

for which the penetration is maximum at the periphery. We propose a cartography to predict when each regime is

relevant.
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1. Introduction

Air entrainment due to high-speed liquid structures such as drops, jets or waves impacting a free surface is com-

monly encountered in nature, e.g. cascades or breaking waves (Deike et al. (2016)), as well as in industry (Chanson

et al. (2006); Pagliara et al. (2011); Duarte et al. (2016); Descloux et al. (2016)). It is notably present in environmental

engineering (e.g. aeration), for process control (e.g. foam destruction) or in energy production (dams, turbines). Air5

entrainment involves various elementary processes such as bubble formation mechanisms, bubble transport mecha-

nisms beneath the free surface which have been investigated in diverse situations. Extensive reviews of our current

understanding of air entrainment by plunging jets have been proposed by Biń (1993), Kiger & Duncan (2012) and

more recently Miwa et al. (2018).
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In this article, we focus on the penetration depth reached by the bubble cloud entrained by a cylindrical liquid10

jet plunging into a pool of the same fluid. Many semi empirical relations or empirical relations have been proposed

to predict this penetration depth. The most popular are reported in table 1, and include those of McKeogh & Ervine

(1981), Falvey & Ervine (1987), Nakasone (1987) and Ohkawa et al. (1986) among others. Note that the dimensional

correlations proposed by McKeogh & Ervine (1981), and by Ohkawa et al. (1986) are given in S.I. units. Yet, and as

discussed in the above-mentioned reviews, there is no clear consensus on the prevailing parameters and on the relevant15

scaling laws for predicting the penetration depth. This situation is probably due to the variety of configurations to

be accounted for in terms of jet topology at impact which range from smooth to rough and up to fully destabilized

depending on the size and the velocity of the jet. The nature of the initial disturbances (including the turbulence in the

liquid, secondary flows etc.) and the distance between the injector and the free surface are also expected to impact the

bubble cloud dynamics. In this context, our objective is to investigate the influence of a specific disturbance consisting20

in an oscillation of the liquid jet parallel to the free surface. Such oscillations are indeed observed to occur along falling

jets, notably when the distance between the injector and the free surface is not too small (Guyot et al. (2016)). In order

to isolate the effect of oscillations from other kinds of perturbations, we consider turbulent water jets of small diameter

and with moderate interfacial corrugations. These types of jets have been investigated by Clanet & Lasheras (1997)

for jet diameters up to a few millimeters and using long needles as injectors (length to diameter ratios larger than 50)25

in order to ensure fully developed turbulent flows. Moreover, these authors have established a predictive model for the

penetration depth which proves valid over a large range of injection velocities. The control parameters in this model

are the jet diameter, the jet velocity at the nozzle, the terminal bubble velocity, the spread angle of the bubble cloud and

the jet inclination with respect to the free surface. We will investigate similar jets but with a vertical needle oscillating

above the free surface and parallel to it. We will show how the Clanet & Lasheras (1997) model can be adapted when30

the liquid jet is mobile. We first present the experimental method in the next section. The experimental results and

their interpretation will be presented in the following section.

2. Experimental method

A round water jet issued from a nozzle of diameter D at a mean outlet velocity V0 falls into an overflowing cubic

reservoir (edge 50 cm). The distance h between the tip of the nozzle and the water surface is constant for a given nozzle35

diameter : as in Clanet & Lasheras (1997), the ratio h/D was kept constant and equal to 20. The ratio of the maximum

penetration depth to the total depth never exceeded 0.30, in order to minimize the effect of the finite size of the pool.

All nozzles are stainless steel needles with length to diameter ratios L0/D larger than 50. The exit velocity profile can

then be assumed to be fully developed. A water circuit delivers a steady flow rate at the nozzle via a pressure regulator.

A 10 microns water filter has been inserted upstream of the circuit to clear the water. The flow rate is measured with a40

flowmeter located just above the nozzle. The flow rate range for our experiments is from 6.10−4 l/s to 3.10−2 l/s, with

an overall uncertainty of 5%. The nozzle, which remains vertical in all our experiments, is attached to a vibration table
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Table 1: Examples of correlations for the penetration depth H

McKeogh & Ervine (1981) H = 2.6(V0D)0.7 V0 : velocity at injection

D : nozzle diameter
Falvey & Ervine (1987) H/di = 3.1Q/Qi Q : water discharge

Qi : jet water discharge at

impact

di : jet diameter at impact
Nakasone (1987) H = (2/3)h h : distance between tip

of the nozzle and water

surface
Ohkawa et al. (1986) H = 5.5(V0D)0.73(h/D)−0.26(cos θ)1.11 θ : jet inclination angle

(from vertical)

(a) (b)

Figure 1: Sketch and view of the experimental apparatus. The nozzle is oscillated parallel to the interface with a peak to peak amplitude A and

frequency f .

controlled by a computer. This lab-made vibration table consists in a metal plate driven by a linear motor, guided by

bearings. The jet behavior under the water surface can be captured by two cameras : a Nikkon D200 (3872 pixels by

2592 pixels) or a Phantom V10 (1280 pixels by 720 pixels, 1016 frames per seconds) monitored by the same computer.45

The lens used with these cameras is a Nikon AF Nikkor 50 mm f/1.8D. Figure 1 illustrates the set-up : note in particular

on figure 1 right that the reservoir is slightly tilted to the right, so that it overflows over a single lateral wall without

perturbing visualization.

Three nozzle diameters were tested, D =2.4 mm, 1.3 mm, and 0.3 mm. The velocity range is 1.9 m/s to 20.1

m/s. We introduce the Reynolds number Re = V0D/ν and Weber number We = ρV2
0 D/σ, where ν is water kinematic50

viscosity, ρ the water density and σ the surface tension of water. For our experiments at T = 20◦C, values of Re

and We are computed with ν = 10−6 m2/s, ρ=1000 kg/m3 and σ = 0.072 N/m. The values of D and V0 used in our

experiments and the corresponding values of Re and We are reported on table 2. The Reynolds number range is 2420
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Table 2: Values of D, V0, Re and We for our experiments

Internal Nozzle Diameter Nozzle outlet velocity Reynolds Number Weber number

D (mm) V0 (m/s) Re We

2.4 1.89 4525 117

2.4 2.92 7011 281

2.4 3.88 9315 497

2.4 5.04 12104 839

2.4 6.76 16228 1507

2.4 7.22 17319 1717

1.3 1.86 2420 62

1.3 5.65 7345 570

1.3 8.41 10928 1262

1.3 12.2 15853 2656

1.3 15.6 20331 4368

1.3 18.6 24137 6156

0.3 9.83 2949 398

0.3 11.8 3540 574

0.3 14.9 4486 921

0.3 20.0 6022 1661

to 24100 whereas the Weber number range is 62 to 6150.

The displacement imposed by the vibration table along the axis of its linear motor is a sinusoid A/2 sin(2π f t). The55

metal plate entrained by the motor, to which the nozzle is attached, moves parallel to the reservoir surface. The values

of peak-to-peak amplitude A and frequency f for our experiments are shown in table 3. The motion of the vibration

table was recorded with high speed imaging before each measurement series in order to check i) that the difference

between the actual displacement amplitude and the prescribed amplitude never exceeded 5% ii) that the motion was

harmonic, and that the frequency of the motion was close enough to the prescribed frequency (the maximum measured60

difference was 0.1 Hz). The values of D, V0, A and f in tables 2 and 3 correspond to a total of 848 different experimental

conditions.

A minimum of 50 pictures were recorded for each velocity/diameter/amplitude/frequency condition, at a low sam-

pling frequency of 1 Hz : the time between two images is therefore much larger than the typical time of flight H/V0,

and this ensures that two consecutive images are relatively independent, which accelerates convergence of average65

quantities. The penetration depth of the bubble cloud was experimentally measured, applying a grey gradient analysis
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Table 3: Values of amplitude A and frequency f tested in our experiments.

Amplitude A (mm) Frequency f (Hz)

0 1 2 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30 32.5

2.5 x x x x x x x x x x x x x x x

4 x x x x x x x x x x x x x

8 x x x x x x x x x x

12 x x x x x x x x x

16 x x x x x x
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Figure 2: Sample picture of a plunging jet and corresponding values of the maximum vertical gray gradient for each depth. The angle α is the angle

of the mixing layer of the liquid jet, which is assumed to be constant in the model.

on each sample image (such as figure 2) : starting from the bottom of the image i) For a given line on the image a

vertical gradient of gray level is computed for each horizontal position ; ii) The maximum value of this gradient is

retained for the given line. The values of these maxima are plotted on figure 2 for each line. It can be seen on figure

2 that the lower limit of the first bubble corresponds to a very steep increase of the maximum gradient ; iii) The depth70

where this maximum gradient becomes larger than a fixed threshold is retained as the bubble cloud edge. The distance

from this edge to the location of the free surface at rest (marked by a dashed line on figure 2) is computed for each set

of 50 pictures, and given V0, D, A and f : we note H the average of these 50 values. The chosen number of 50 pictures

is largely sufficient to ensure convergence of H for our conditions. The overall uncertainty for these penetration depth

measurements is 10%.75
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3. Experimental results and discussion

3.1. Bubble penetration depth for a non-oscillating jet

First of all, our experimental results were compared to the model proposed by Clanet & Lasheras (1997) for

a steady plunging jet normal to a flat liquid surface. This simple model is based on the idea that bubbles will be

entrained downwards by the liquid jet until the liquid jet velocity reaches UT , the terminal bubble velocity. The liquid

velocity U as a function of depth z can be estimated from momentum conservation, and by assuming that the liquid jet

widens with a constant half angle α. As demonstrated in Maxworthy et al. (1996) there is a minimum terminal velocity

UT = 0.22 m/s for bubbles over 1 mm diameter in water. The size of the bubble cloud is therefore directly deduced

from the depth where liquid velocity reaches UT . Writing that U(z) = V0D/Dz where Dz is the diameter of the liquid

jet at depth z, we find that velocity UT is reached at a depth V0D/(2UT tanα). The depth H1 predicted by this model is

then :
H1

D
=

1 + tanα
2 tanα

V0

UT
(1)

Clanet & Lasheras (1997) propose a constant value of α = 12.5◦ for all their measurements : this assumption is

0 1 2 3

Re 10
4

0.7

0.8

0.9

1

1.1

1.2

b)a) c)

Zoom x3

Figure 3: a) Ratio of measured penetration depth to the model of Clanet and Lasheras (1997), for the case of a non-oscillating jet. The error bar

corresponds to a 10% uncertainty on the measurement of H. b) Image of the bubble cloud for D0 = 1.3 mm, V0 = 1.86 m/s (top : same scale as in

image c) ; bottom : magnified x3) : the predicted penetration depth H1 = 3.0 cm is in agreement with the size of the bubble cloud ; c) Same nozzle,

but V0 = 18.6 m/s. Predicted H1 = 30 cm is again in agreement with the size of the bubble cloud.

obviously a strong one, because α is actually expected to vary spatially as the liquid jet slows down and bubbles escape

the jet near its bottom. We estimate the value of this (assumed constant) angle α for our experiments by deducing it80

from the width of the entrained bubble cloud at the penetration depth (see figure 2). The average α measured for our
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experimental conditions is 11.8◦ with a standard deviation of 1.2◦ : this value is consistent with the value of 12.5◦

proposed by Clanet & Lasheras (1997), but slightly smaller than the value of α = 14◦ proposed by Ervine et al. (1997).

We compare in figure 3a the result of measurements of the average penetration depth for a non-oscillating jet, H, to

the model penetration depth H1 as a function of the Reynolds number of the liquid jet Re. All diameters and outlet85

velocities of table 2 were tested. The error bars correspond to the amplitude of the temporal fluctuations of H, which

are of the order of the jet width. These fluctuations, which arise possibly because of turbulence and because of the

interaction with ascending bubbles, are the main cause of uncertainty, and largely overcome the uncertainty introduced

by the image analysis. They are estimated at 10% of H. We observe on figure 3a that the ratio H/H1 is close to one

for all conditions, in spite of the strong assumption on the mixing layer angle. There is however an influence of90

the Reynolds number : for Re > 104, the model overestimates the measured length by 10%-20%. The correctness

of the prediction of equation (1) indicates that considering the linear spreading of a single phase jet (Pope (2000);

Horn & Thring (1956)) is an acceptable approximation even in the presence of entrained bubbles. One reason for this

relies on the moderate void fractions involved in such situations which therefore induce a weak momentum transfer

between phases and thus a weak modification of the jet dynamics. The fact that these void fractions are moderate can95

be qualitatively appreciated from instantaneous images (see figures 2,3b and c, and 8) as the optical density is never

strong enough to fully block the light propagation. Quantitative data are also available in the literature (e.g. McKeogh

& Ervine (1981); Van de Donk (1981)) which indicate that, in the quasi fully developed region, the void fraction is

maximum on the center line. It starts from a value about 0.4 at most but it strongly decays with the distance d beneath

the free surface (as d−3) and it strongly decays radially. These features imply that the void fraction is significant only100

in a relatively small portion of the jet beneath the free surface. This feature is confirmed by the two-fluid simulations

of Ma et al. (2010) that account for momentum transfer including drag, added mass, lift as well as turbulent dispersion

contribution and that properly recover the experimental void fraction profiles at different distances beneath the free

surface.

3.2. Bubble penetration depth for an oscillating jet105

We now present measurements of H when the nozzle is oscillated parallel to the interface with an amplitude A and

a frequency f . On figure 4, the dimensional bubble penetration depth is plotted as a function of f for all the conditions

of tables 2 and 3. The D = 0.3 mm nozzle corresponds to the orange and red lines, the D = 1.3 mm nozzle to the

yellow and green lines and the D = 2.4 mm nozzle to the the cyan and dark blue lines. For each D, five amplitude

values are tested which is why five lines are represented for each series. A close-up of the data for D = 0.3 mm and110

lower H values is shown on figure 5. The first observation is that H spans a large range of values, from 9 mm to 271

mm, for all 848 experimental points. For most series, bubble penetration depth decreases when frequency is increased

at constant D, V0 and A. However, a maximum of penetration depth is measured for low frequencies (between 1 and

5 Hz) for several series : this occurs in particular for the smaller V0, and is relatively more pronounced for the smaller

diameter D (see close-up on figure 5). When the oscillation amplitude A is increased, the penetration depth generally115
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decreases : an increase of penetration depth with amplitude is nonetheless observed for a few cases, namely just before

the maximum in frequency when this maximum is sharp (see e.g. case V0 = 15 m/s and A = 8 mm to 16 mm for

f < 2.5 Hz on figure 5).
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Figure 4: Bubble penetration depth H as a function of frequency f , for different D, V0 and A. The orange and red lines correspond to the D = 0.3

mm nozzle, the yellow and green ones to the D = 1.3 mm nozzle and the cyan and dark blue ones to the D = 2.4 mm nozzle. Solid lines correspond

to A = 16 mm, dashed lines to A = 12 mm, dotted lines to A = 8 mm, dash-dotted lines to A = 4 mm, and solid lines with symbol to A=2.5 mm.

3.2.1. Non dimensionalization of results

We now want to non-dimensionalize the results of figure 4. We first carry out a simple dimensional analysis : for120

the non-oscillating jet, the physical parameters of the problem are H, V0, D, UT . These parameters must be associated

to two dimensionless numbers. Equation (1) gives H/D as a function of V0/UT , and as a function of α which is itself

dimensionless. Figure 3 suggests that the Reynolds number (via the kinematic viscosity) should be introduced as a

fourth dimensionless number. The oscillation of the jet introduces two additional physical parameters A and f . The

amplitude can be non dimensionalized as A/D : the effect of A for fixed f will be discussed in section 3.2.4. In order to125

non dimensionalize frequency, we have to introduce a time scale. When frequency is increased, the horizontal velocity

of the liquid jet relative to the surface increases. In a frame moving with the liquid jet, the situation is similar to that

of a liquid jet entraining bubbles in an oscillating cross flow of characteristic velocity of order A f (the horizontal

velocity is more precisely πA f with the definition of A introduced above). We therefore non dimensionalize frequency

by introducing the velocity ratio associated to this situation, namely the ratio of horizontal velocity A f to vertical130

velocity. There are two vertical velocities in this problem : the initial jet velocity V0, and the terminal velocity UT
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Figure 5: Bubble penetration depth H as a function of frequency f . Close-up on the data of figure 4 for diameter D = 0.3 mm and three smaller

values of V0. A maximum in penetration depth is observed when f is varied.

reached by the liquid at the bottom of the bubble cloud, and therefore two possible Strouhal numbers, A f /V0 and

A f /UT . We compare on figure 6 how these two Strouhal numbers, A f /V0 and A f /UT succeed in capturing the location

of the maximum of H observed at low frequencies for small diameters and lower V0 series. In this graph, the measured

bubble penetration depth is made non dimensional with the length H1 of equation (1). A first observation on figure 6a135

is that values of A f /V0 for our experiments are always smaller than 0.03 : horizontal velocity is negligible compared

to V0, meaning that the liquid jet remains almost vertical when it hits the water surface. Note also that while maxima

on figure 6a are clearly scattered over a wide range of A f /V0, the same maxima occur at a constant A f /UT ≈ 0.1 on

figure 6b.

The ratio between the (maximum) horizontal jet velocity and the terminal vertical liquid velocity within the bubble

cloud, A f /UT , is directly related to the (maximum) angle of inclination of the bubble cloud at its bottom. The Clanet

& Lasheras (1997) work precisely includes the case of a jet inclined of an angle θ relative to the vertical : their

experimental penetration depth exhibits a maximum when θ is varied, and this maximum is in the same proportions as

the one we observe when f is varied (up to plus 30% in depth on figure 6b). Instead of A f /UT , we therefore introduce

as a new parameter the angle β = atan(πA f /2UT ), which can be interpreted as the angle of the bubble cloud relative to

the vertical when its vertical velocity is 2UT . This angle is expected to be more representative of the average inclination

of the bubble cloud than the maximum angle built with vertical velocity UT , only reached at the tip of the cloud. We

plot on figure 7 the ratio H/H1 as a function of β. The scattered data of figure 4 is now relatively gathered around ratios

H/H1 close to one. While the existence of a maximum of H with the inclination angle θ is not explained in the work

9
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Figure 6: Comparison of two possible Strouhal numbers in scaling the maximum in penetration depth : maxima occur for variable AF/V0 (a), but

for a constant AF/UT ≈ 0.1 (b).

of Clanet & Lasheras (1997), they propose a model for the decrease of H observed at large θ . This model, which is

simply a geometrical variation of the model behind equation (1) when the jet is tilted, predicts a depth H2 such that :

H2

D
=

(1 + tanα) cos θ + tanα sin θ
2 tanα

cos(θ − α)
cosα

V0

UT
(2)

In this model it is assumed that the bubble cloud remains axisymmetric relative to the jet axis, namely that α does not140

depend on the azimuthal angle around the jet. The ratio H2/H1 is plotted as a dashed black line on figure 7, based

on equation (2) with θ equated to β. Note that even though there is still a large dispersion around the prediction, the

widely scattered data of figure 4 is relatively well gathered around the black curve. The model captures the decrease

in penetration depth observed at larger horizontal velocities (equivalent to larger angles). The large dispersion of the

experimental data around β = 0.2 ± 0.1 rad (corresponding to 11◦ ± 6◦) results from the fact that in this region some145

of the curves exhibit a maximum of H, while others decrease monotonically. Something is obviously missing in the

model, and this is discussed in the next section.

3.2.2. Existence of a maximum of penetration

As mentioned above, a maximum in penetration depth of up to 30% is also observed by Clanet & Lasheras (1997)

in their experimental data when they vary the angle of inclination θ of the jet, but it is not explained by their model. We150

first discuss this maximum observed when a non-oscillating inclined jet is inclined. Observation of the dynamics of the

bubble cloud shows that when the jet is vertical and not oscillated, the bubbles released from the jet ascend all around

the jet, figure 8a ; when the jet is slightly tilted, or equivalently when it is moving relative to the liquid bath because of

an oscillation, the symmetry is broken and the bubbles ascend in a confined region farther from the plunging jet, see

figure 8b. This has a strong impact on the angle α of the mixing layer : it can be seen on figure 8 that the value of α is155

larger when the bubbles ascend all around the jet. The angle α measured from these images is equal to 17◦ for figure
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Figure 7: Non dimensional bubble penetration depth as a function of β = atan(πA f /2UT ). Same legend as in figure 4. Dashed black line corresponds

to the model of Clanet and Lasheras (1997) for a jet tilted of an angle θ = β, equation (2).

8a, and to 12◦ for figure 8b. We interpret the larger α of figure 8a as resulting from the annular upwards flow generated

by ascending bubbles. When the jet is tilted, the ascending flow is displaced away from the plunging jet, α therefore

decreases, which in turn leads to a larger penetration depth via momentum conservation (plus 30% on figure 8b).

This explains the existence of a maximum in the Clanet & Lasheras (1997) measurements when the jet inclination160

is increased. We believe the same mechanism explains the maximum observed in our experimental results. In other

terms, for low but finite β, i.e. moderate horizontal velocities, the jet motion breaks the symmetry of the upwards flow

and leads to a penetration larger than that for a vertical jet. If β is further increased (i.e. horizontal velocity further

increased), the vertical penetration eventually decreases because a larger fraction of the jet momentum is injected in

the horizontal direction, as modelled in equation 2.165

As pointed out before, the maximum in penetration depth is not observed for all cases in figure 7. This maximum

exists when D = 0.3 mm with all the velocities and Reynolds tested, whereas it only appears for velocities under

5.63 m/s (Re= 7345) for a nozzle diameter equal to D = 1.3 mm and only for the lowest velocity V0 = 1.88 m/s

(Re=4524) in the D = 2.4 mm case. Our interpretation is that when the momentum of the jet is larger, the impact

of the bubble cloud on the liquid flow is smaller. We check this assumption by plotting on figure 9 the ratio of the170

maximum penetration depth when A and f are varied to the penetration depth H0 when A and f are zero (•) as a

function of the Reynolds number. There is a clear trend, namely this ratio decreases almost monotonically to one when

Re is increased. The conditions for which no maximum is observed roughly correspond to Reynolds numbers larger

than 104. Hence, an increase of the penetration depth with the oscillation of the jet can only be observed for low values
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(a) (b)

Figure 8: Penetration cloud for D = 1.3 mm, V0 = 15.64 m.s−1, Re=20331 ; a) The nozzle is vertical ; b) The nozzle is tilted with an angle θ equal

to 15.5◦.

of Re, when the jet momentum is weaker. This increase can be of up to 30% for the smallest jet Reynolds numbers175

investigated, namely Re ≈ 2500 − 2900. These values being close to the end of the transition to turbulence region,

we can conclude that, for a oscillated fully turbulent jet, the maximum depth of penetration when Re is varied is 30%

larger than the Clanet et al prediction. Note that we have not investigated laminar nor transition conditions for which

the air entrainment process is changed.

We have also included on figure 9 three points corresponding to the data of Clanet and Lasheras (1997) : for180

these points the ratio Hmax/H0 corresponds to the ratio of the maximum penetration depth when the jet is inclined to

the penetration depth when it is vertical for the same D and V0. For a given Re the ratio Hmax/H0 observed in their

experiment is larger than for our oscillated jet, but this is expected since the impact of the ascending secondary flow on

H will be stronger when the jet is stationary than when its “effective inclination” oscillates. Interestingly, a decrease

of Hmax/H0 with Re is also observed in their experiments.185

3.2.3. Impact of mixing layer angle α on the penetration length

As mentioned in the preceding subsection, the existence of a maximum of penetration when the jet is oscillated is

due to the impact of the oscillation on the mixing layer angle α. The model of Clanet & Lasheras (1997) is based on

the assumption that α, the angle of the mixing layer, is constant. While this is mostly true for the case of the fixed jet,

α is expected to exhibit strong variations when the jet is oscillated. We discuss in this paragraph these variations of α190

during the course of an oscillation of the liquid jet. We present some pictures of the bubble cloud along its oscillation

on figure 10, for two distinct conditions : on the bottom line is represented the case where one of the highest maximum

of H is measured on figure 5 (D = 0.3 mm, V0 = 9.8 m/s, A = 12 mm, f = 1 Hz corresponding to Re = 2950) ; on

the top line is a case without a maximum in penetration depth (D = 1.3 mm, V0 = 18.6 m/s, A = 16 mm, f = 1 Hz

corresponding to Re = 24137). For both lines the leftmost image shows the jet when it reaches its maximum excursion195
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Figure 9: Ratio of maximum penetration depth Hmax when A and f are varied, to penetration depth H0 when A = 0 and f = 0, for fixed D and V0,

as a function of the Reynolds number : • present measurements, ◦ Clanet and Lasheras (1997) measurements. The maximum is enhanced for low

values of Re.

to the left, the central image represents the central position, corresponding to the maximum velocity ; the rightmost

image the maximum excursion to the right. The numerical values correspond to an average of α measured on the

left/right sides of the jet, and are deduced from the maximum width at the bottom of the cloud. When the jet of the

bottom line is located at the extreme positions (left or right), α is around 7◦, while it rises up to 11◦ when the jet is

at the middle position (maximum velocity). On the contrary, no real variation of α happens for the conditions of the200

top line, for which no maximum of H was observed : α remains constant around 12◦. The conditions of the top line of

figure 10 correspond to a much larger Re than that of the bottom line, and our interpretation is that the constant α for

this case results from the larger momentum of the liquid jet for these conditions. On the contrary, when Re is smaller

as in the bottom line, the mixing layer angle of the jet is strongly impacted by the oscillation. Namely, the effect of

the oscillation is to remove the jet from its ascending bubble cloud, leading to smaller values of α at the position of205

maximum amplitude.

Via the conservation of momentum, these local variations of α are expected to strongly impact the local penetration

depth Hloc, defined as the instantaneous penetration depth observed at a given position : table 4 shows how a variation

of α in the range 10-14◦ leads to variations of the model penetration depth H1 of about 30%, via equation (1). A local

decrease of the mixing layer angle at the outermost positions will therefore logically induce a larger local penetration210

depth at this location.

We believe the dispersion of the average penetration depth in figure 7 is caused by these variations of α, which are

not accounted for in the Clanet & Lasheras (1997) model, only based on the assumption that α = 12.5◦. Namely we

believe the difference between the red (small diameter D) and blue (large D) curves on figure 7 are the same as the

difference between the top and bottom line on figure 10 : for a given amplitude/frequency if the jet has a much smaller215
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Figure 10: Top line : D = 1.3 mm, V0 = 18.6 m/s, A = 16 mm, f = 1 Hz, Re = 24137. Bottom line : D = 0.3 mm, V0 = 9.8 m/s, A = 12 mm,

f = 1 Hz, Re = 2950. Left column shows the bubble cloud when the jet reaches its leftmost position. Center column shows the jet reaching its

maximum velocity while travelling rightwards. Right column shows the bubble cloud when the jet has reached the rightmost position. The angle α

is illustrated for each bubble cloud : this angle is constant for the conditions of the top line, but varies strongly for the conditions of the bottom line,

leading to a decrease in the instantaneous penetration depth when horizontal velocity is the largest.

inertia (much smaller Re), it will display a much larger local penetration depth at its outermost positions, where its

mixing layer angle is the smallest, and therefore a larger average penetration depth H.

3.2.4. Shape of the bubble cloud

While results of figures 4 to 9 were devoted to measurements of the average penetration depth H of the bubble

cloud, a consequence of the previous discussion is that the local penetration depth Hloc is actually not uniform over220

the region covered by the oscillating jet. This can be illustrated by superposing instantaneous images of the clouds, see

figure 11. The depth of the bubble cloud exhibits strong spatial variations for V0 = 2.9 m/s and f = 10 Hz, figure 11a,

Table 4: Impact of mixing layer angle α on model penetration depth H1.

α(◦) 10 11.5 12.5 14

H1 in mm (V0 = 18.6 m/s, D = 1.3 mm) 315 275 253 226

H1 in mm (V0 = 9.8 m/s, D = 0.3 mm) 38 33 30 27
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with a minimum at the central location. The same effect is observed, to a smaller extent, for figures 11b and 11c. For

the conditions of figure 11d though, corresponding to the same amplitude but to a smaller frequency f = 1 Hz, such a

minimum at the center is not observed.

1 cm

(a) V0=2.9 m/s 

f=10 Hz

(b) V0=5.0 m/s 

f=10 Hz

(d) V0=7.2 m/s 

f=1 Hz

(c) V0=7.2 m/s 

f=10 Hz

Figure 11: Global shape of the bubble cloud obtained by superposing images below the oscillating jet. Fixed D = 2.4 mm and oscillation amplitude

A = 16 mm.

225

The fact that the minimum at the center of the cloud disappears when frequency is lowered can be interpreted via

the impact of the effective angle β, illustrated in figure 7 : for conditions of large frequency and hence large β, Hloc

will decrease when the jet reaches its maximum velocity, namely at the center. Patterns such as those of figures 11a

to c are therefore expected to occur for large values of β. A second necessary condition is that the amplitude of the

motion must be larger than the width of the instantaneous cloud itself. The width of the cloud at its bottom can be230

estimated from DV0/UT , the condition is then simply that dimensionless number AUT /DV0 must be large enough. In

the dimensional analysis, this parameter replaces parameter A/D introduced in section 3.2.1, and whose impact had not

yet been discussed. We represent on figure 12 a histogram of all our data points, with axes β and AUT /DV0. Conditions

for which there is a maximum at the center (e.g. figure 11d) are colored in blue, and conditions for which there is on

the contrary a minimum at the center (e.g. figure 11a) are colored in orange. We consider that there is a minimum at the235

center when Hloc(max)/Hloc(center) > 1.05. Figure 12 shows that there is very little overlap of the blue/orange regions,

and that the two dimensionless numbers we propose are relevant to predict the shape of the bubble cloud generated by

an oscillating jet : spatial heterogeneity of the penetration depth clearly corresponds to larger AUT /DV0 and β values.

Note that this cartography has been obtained by varying independently A, f , V0, and D, i.e. all the physical parameters

introduced in both dimensionless groupings except UT .240

4. Conclusion

We have measured the penetration depth of the bubble cloud generated by an oscillating liquid jet. We have shown

that the order of magnitude of the average penetration depth can be well estimated by the simple model of Clanet
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Figure 12: Histogram of all data points as a function of AUT /DV0 and β (in ◦), showing in blue conditions for which there is a maximum in

penetration depth at the center of the bubble cloud (e.g. figure 11d) and in orange conditions for which there is a local minimum in penetration depth

at the center (e.g. figure 11a). A minimum of penetration at the center is observed for larger values of AUT /DV0 and β.

& Lasheras (1997) for a non-oscillating tilted jet, with a constant mixing layer angle α = 12.5◦. The effect of an

oscillation of amplitude A and frequency f can be captured via an effective inclination angle β = atan(πA f /2UT ).245

When frequency is varied, a maximum of penetration depth can be observed if the inertia of the jet is low enough,

namely if Re = DV0/ν < 104 : this maximum is caused by the modification of the ascending flow around the bubble

cloud, which impacts the mixing layer angle α. The existence of this maximum, which is not captured by the Clanet

and Lasheras (1997) model, is the main cause of discrepancy between experiments and model, up to 30% for β in the

range [0.15-0.25].250

Examination of the dynamics of the oscillated jet shows that for lower inertia jets, the angle α varies strongly

during the course of an oscillation : α is larger at the central position, and smaller at the outermost positions. The local

penetration depth is therefore smaller at the central position, and larger at the edges. A consequence of these variations

of α, is that for these conditions the global shape of the bubble cloud itself displays a minimum at the central position

for large β and AUT /DV0. The cartography we provide on figure 12 can be used to predict this shape.255

The distance h between the nozzle and the surface is equal to 20D for all our measurements. A variation of this

distance is expected to affect the amplitude of perturbations on the liquid jet surface when it hits the pool, and therefore

the amount of gas entrained below the surface. Preliminary measurements have shown that the quantity of bubbles had
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little effect on the penetration depth, and only played a part via the secondary flow of ascending bubbles. However,

this will have to be quantified more precisely in future experiments.260

The penetration depths measured in the present study were obtained for turbulent jets, but the scale of the liquid

jets remained small compared to the scales involved in hydraulic systems. As mentioned in the introduction, for larger

systems the jet is expected to exhibit natural oscillations related to the development of instabilities along its fall, and

it may also fragment. The model presented in this work for the penetration depth is expected to apply as well for such

systems provided the oscillation and jet structure at impact are adequately quantified. This will have to be demonstrated265

in future works.
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