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Introduction

Let K n be a complete graph and let r ≥ 2 be an integer. A r-edge coloring of a graph is a surjection from E(G) to {0, . . . , r -1} (and thus each color class is not empty). Let k ≥ t ≥ 1 be positive integers. We denote by K [k,t] the complete graph on k vertices from which a set of edges, induced by a clique of order t, has been dropped, see Figure 1 Let k 1 , . . . , k r and t 1 , . . . , t r be positive integers with

k i ≥ t i for all i ∈ {1, . . . , r}. Let R([k 1 , t 1 ], . . . , [k r , t r ]
) be the smallest integer n such that for any r-edge coloring of K n there always occurs a monochromatic K [k i ,t i ] for some i. In the case when k i = t i for some i, we set

R([k 1 , t 1 ], . . . , [k i-1 , t i-1 ], [t i , t i ], [k i+1 , t i+1 ], . . . , [k r , t r ]) ≤ t i .
We note that equality is reached at min 1≤i≤r {t i |t i = k i }. Since the set of all the edges of K [t i ,t i ] (which is empty) can always be colored with color i. We also notice that the case R([k 1 , 1], . . . , [k r , 1]) is exactly the classical Ramsey number r(k 1 , . . . , k r ) (the smallest integer n such that for any r-edge coloring of K n there always occurs a monochromatic K k i for some i). We refer the reader to the excellent survey [START_REF] Radziszowski | Small Ramsey numbers[END_REF] on Ramsey numbers for small values. In this paper, we investigate R([k 1 , t 1 ], . . . , [k r , t r ]).

General upper bound

In this section we present a recursive formula (Lemma 2.1) that yields to an explicit general upper bound (Theorem 2.2). The latter contains the wellknown explicit general upper bound for R([k 1 , 1], . . . , [k r , 1]) due to Graham and Rödl [START_REF] Graham | Numbers in Ramsey theory[END_REF] (see Equation ( 4)).

The following recursive inequality is classical in Ramsey theory

r(k 1 , k 2 , . . . , k r ) ≤ r(k 1 -1, k 2 , . . . , k r ) + r(k 1 , k 2 -1, . . . , k r ) + • • • + (1) +r(k 1 , k 2 , . . . , k r -1) -(r -2)
In the same spirit, we have the following.

Lemma 2.1 Let r ≥ 2 and let k 1 , . . . , k r and t 1 , . . . , t r be positive integers with

k i ≥ t i + 1 ≥ 2 for all i. Then, R([k 1 , t 1 ], . . . , [k r , t r ]) ≤ R([k 1 -1, t 1 ], [k 2 , t 2 ], . . . , [k r , t r ]) +R([k 1 , t 1 ], [k 2 -1, t 2 ], . . . , [k r , t r ]) . . . +R([k 1 , t 1 ], [k 2 , t 2 ], . . . , [k r -1, t r ]) -(r -2).
A similar recursive inequality has been treated in [START_REF] Shi | A bound for multicolor Ramsey numbers[END_REF] in a much more general setting in which a family of graphs are intrinsically constructed via two operations disjoin unions and joins (see also [START_REF] Huang | New upper bounds for Ramsey numbers[END_REF] for the case r = 2). However, it is not clear how the latter could be used to obtain Lemma 2.1 that allows us to give the following general upper bound for R([k 1 , t 1 ], . . . , [k r , t r ]) (which was not considered in [START_REF] Shi | A bound for multicolor Ramsey numbers[END_REF]). Theorem 2.2 Let r ≥ 2 be a positive integer and let k 1 , . . . , k r and t 1 , . . . , t r be positive integers such that k i ≥ t i for all i ∈ {1, . . . , r}. Then,

R ([k 1 , t 1 ], . . . , [k r , t r ]) ≤ max 1≤i≤r {t i } k 1 + • • • + k r -(t 1 + • • • + t r ) k 1 -t 1 , k 2 -t 2 , . . . . . . , k r -t r
where

n 1 +n 2 +•••+nr n 1 ,n 2 ,......,nr
is the multinomial coefficient defined by

n 1 +n 2 +•••+nr n 1 ,n 2 ,......,nr = (n 1 +•••+nr)! n 1 !n 2 !•••nr!
, for all nonnegative integers n 1 , . . . , n r . Theorem 2.2 is a natural generalization of the well-known explicit upper bound for classical Ramsey numbers. Indeed, an immediate consequence of Theorem 2.2 (by taking t i = 1 for all i) is the following classical upper bound due to Graham and Rödl [3, (2.48

)] R ([k 1 , 1], . . . , [k r , 1]) ≤ k 1 + • • • + k r -r k 1 -1, . . . , k r -1 • (2) Let k ≥ t ≥ 2 and r ≥ 2 be integers and let R r ([k, t]) = R([k, t], . . . , [k, t] r
).

An immediate consequence of Theorem 2.2 (by taking k

= k 1 = • • • = k n and t = t 1 = • • • = t n ) is the following inequality R r ([k, t]) ≤ t r(k -t) k -t, . . . , k -t (3) Moreover, if t = 1 then R r ([k, 1]) ≤ (rk -r)! ((k -1)!) r • (4)

Exact values

By the so-called Chvátal's result [START_REF]Tree-complete Ramsey numbers[END_REF], we know that the exact value of the Ramsey number of K [START_REF] Huang | New upper bounds for Ramsey numbers[END_REF][START_REF] Graham | Numbers in Ramsey theory[END_REF] (a star) versus cliques is given by R([n, 1], [START_REF] Huang | New upper bounds for Ramsey numbers[END_REF][START_REF] Graham | Numbers in Ramsey theory[END_REF]) = 3n -2 for all n ≥ 1. We then naturally focus our attention to the Ramsey number of K [START_REF] Huang | New upper bounds for Ramsey numbers[END_REF][START_REF] Graham | Numbers in Ramsey theory[END_REF] versus cliques with either a dropped edge or a dropped triangle, see [START_REF] Chappelon | On Ramsey numbers of complete graphs with dropped stars[END_REF] where R([m, 1], [n, 2]) has been computed for numerous cases. We provide the new following exact values of Ramsey numbers.

Theorem 3.1 Let n ≥ 2 be an integer. Then, • R([n, 2], [4, 3]) = 2 for n = 2, • R([n, 2], [4, 3]) = 5 for n = 3, • R([n, 2], [4, 3]) = 3n -5 for n ≥ 4. Theorem 3.2 Let n ≥ 2 be an integer. Then, • R([n, 3], [4, 3]) = 3 for n = 3, • R([n, 3], [4, 3]) = 6 for n = 4, • R([n, 3], [4, 3]) = 8 for n = 5, • R([n, 3], [4, 3]) = 11 for n = 6, • R([n, 3], [4, 3]) = 3n -8 for n ≥ 7.
3.1 An estimation for R([n, 2], [START_REF] Li | On Book-Complete Graph Ramsey Numbers[END_REF][START_REF] Graham | Numbers in Ramsey theory[END_REF]) By considering K [START_REF] Li | On Book-Complete Graph Ramsey Numbers[END_REF][START_REF] Graham | Numbers in Ramsey theory[END_REF] as the book graph B 3 , it was proved in [START_REF] Li | On Book-Complete Graph Ramsey Numbers[END_REF][START_REF] Sudakov | Large K r -Free Subgraphs in K s -Free Graphs abd Some Other Ramsey-Type Problems[END_REF] that R([n, 1], [START_REF] Li | On Book-Complete Graph Ramsey Numbers[END_REF][START_REF] Graham | Numbers in Ramsey theory[END_REF]) ≤ 3n 2 log(n/e) , for all positive integers n.

The following result is a first estimation for the value R([n, 2], [START_REF] Li | On Book-Complete Graph Ramsey Numbers[END_REF][START_REF] Graham | Numbers in Ramsey theory[END_REF]).

Theorem 3.3 Let n ≥ 2 be an integer. Then,

• R([n, 2], [START_REF] Li | On Book-Complete Graph Ramsey Numbers[END_REF][START_REF] Graham | Numbers in Ramsey theory[END_REF]) = 2 for n = 2,

• R([n, 2], [START_REF] Li | On Book-Complete Graph Ramsey Numbers[END_REF][START_REF] Graham | Numbers in Ramsey theory[END_REF]) = 7 for n = 3,

• R([n, 2], [START_REF] Li | On Book-Complete Graph Ramsey Numbers[END_REF][START_REF] Graham | Numbers in Ramsey theory[END_REF]) ≤ 3 n+1 2 -5n + 4 for n ≥ 4.

  .

Fig. 1 .

 1 Fig. 1. (a) K [5,3] and (b) K [4,2]
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