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Abstract

This paper presents a generalization of causal consistency suited to the

family of objects defined by a sequential specification. As causality is cap-

tured by a partial order on the set of operations issued by the processes on

shared objects (concurrent operations are not ordered), it follows that causal

consistency allows different processes to have different views of each object

history.
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1 Processes and Concurrent Objects

Let us consider a set of n sequential asynchronous processes p1, ..., pn, which co-

operate by accessing shared objects. These objects are called concurrent objects.

A main issue consists in defining the correct behavior of concurrent objects. Two

classes of objects can be distinguished according to way they are specified.

• The objects which can be defined by a sequential specification. Roughly

speaking, this class of objects includes all the objects encountered in se-

quential computing (e.g., queue, stack, set, dictionary, graph). Different



tools can be used to define their correct behavior (e.g., transition function,

list of all the correct traces -histories-, pre and post-conditions, etc.).

It is usually assumed that the operations accessing these objects are total,

which means that, whatever the current state of the object, an operation

always returns a result.

As an example, let us consider a bounded stack. A pop() operation returns

a value if the stack is not empty, and returns the value ⊥ if it is empty.

A push(v) operation returns the value ⊤ if the stack is full, and returns ok

otherwise (v was then added to the stack). A simpler example is a read/write

register, where a read operation always returns a value, and a write operation

always returns ok.

• The objects which cannot be defined by a sequential specification. Example

of such objects are Rendezvous objects or Non-blocking atomic commit

objects [10]. These objects require processes to wait each other, and their

correct behavior cannot be captured by sequences of operations applied to

them.

In the following we consider objects defined by a sequential specification.

2 Strong Consistency Conditions

Strong consistency conditions are natural (and consequently easy to understand

and use) in the sense that they require each object to appear as if it has been

accessed sequentially. In a failure-free context, this can be easily obtained by

using mutual exclusion locks bracketing the invocation of each operation.

Atomicity/Linearizability The most known and used consistency condition is

atomicity, also called linearizability1. It requires that each object appears as if it

was accessed sequentially, this sequence of operations belonging to the specifica-

tion of the object, and complying with the real-time order of their occurrences.

Sequential consistency This consistency condition, introduced in [15], is simi-

lar to, but weaker than, linearizability, namely, it does not require the sequence of

operations to comply with real-time order.

1Atomicity was formally defined in [16, 17] for basic read/write objects. It was then gen-

eralized to any object defined by a sequential specification in [13]. We consider these terms as

synonyms in the following.



Figure 1 presents an example of a sequentially consistent computation (which

is not atomic) involving two read/write registers R1 and R2, accessed by two pro-

cesses p1 and p2. The dashed arrows define the causality relation linking the read

and write operations on each object (also called read-from relation when the ob-

ject is a read/write register). It is easy to see that the sequence of operations made

up of all the operations issued by p2, followed by all the operations issued by p1,

satisfies the definition of sequential consistency.

R1.write(2)

R1.write(1) R2.write(5)

R2.read()→ 5

p1

p2

R1.read()→ 2

R1.read()→ 1

Figure 1: A sequentially consistent computation (which is not atomic)

Implementing a strong consistency condition in an asynchronous message-

passing system Shared memories usually provide processes with objects built

on top of basic atomic read/write objects or more sophisticated objects accessed

by atomic operations such as Test&Set or Compare&Swap [11, 12, 22, 25]. This

is no longer the case in message-passing systems where all the objects (except

communication channels) have to be built from scratch [5, 21].

Implementations of sequentially consistent objects and atomic objects in failure-

free message-passing systems can be found in [4, 5, 7, 20, 21]. These implemen-

tations rest on a mechanism which allows a total order on all operations to be built.

This can be done by a central server, or a broadcast operation delivering messages

in the same order at all the processes. Such an operation is usually called total

order broadcast (TO-broadcast) or atomic broadcast. It is shown in [20] that,

from an implementation point of view, sequential consistency can be seen as a

form of lazy linearizability. The “compositional” power of sequential consistency

is addressed in [8, 18].

Implementations of a strong consistency condition (such as atomicity) in failure-

prone message-passing systems is more difficult. More precisely, except for a few

objects including read/write registers (which can be built only in systems where,

in each execution, a majority of processes do not crash [3]), it is impossible to im-

plement an atomic object in the presence of asynchrony and process crashes [9].

Systems have to be enriched with additional computing power (such as random-

ization or failure detectors) to be able to implement objects defined by a strong

consistency condition.



3 Causal Consistency on Read/Write Objects

(Causal Memory)

Causality-based consistency condition A causal memory is a set of read/write

objects satisfying a consistency property weaker that atomicity or sequential con-

sistency. This notion was introduced in [1]. It relies on a notion of causality

similar to the one introduced in [14] for message-passing systems.

The main difference between causal memory and the previous strong consis-

tency conditions lies in the fact that causality is captured by a partial order, which

is trivially weaker than a total order. A total order-based consistency condition

forces all the processes to see the same order on the object operations. Causality-

based consistency does not. Each process can have its own view of the execution,

their ”greatest common view” being the causality partial order produced by the

execution. Said differently, an object defined by a strong consistency condition

is a single-view object, while an object defined by a causality-based consistency

condition is a multi-view object (one view per process).

Another difference between a causality-based consistency condition and a

strong consistency condition lies in the fact that a causality-based consistency

condition copes naturally with process crashes and system partitioning.

Preliminary definitions As previously indicated, a causal memory is a set of

read/write registers. Its semantics is based on the following preliminary defini-

tions (from [1, 13]). To simplify the presentation and without loss of generality,

we assume that (a) all the values written in a register are different, and (b) each

register has an initial value written by a fictitious write operation.

• A local (execution) history Li of a process pi is the sequence of read and

write operations issued by this process. If the operations op1 and op2 be-

long to Li and op1 appears before op2, we say “op1 precedes op2 in pi’s

process order”. This is denoted op1
i
→ op2.

• The write-into relation (denoted
wi
→) captures the effect of write operations

on the read operations. Denoted
wi
→, it is defined as follows: op1

wi
→ op2 if

op1 is the write of a value v into a register R and op2 is a read operation of

the register R which returns the value v.

• An execution history H is a partial order composed of one local history per

process, and a partial order, denoted
po
→, defined as follows: op1

po
→ op2 if

– op1, op2 ∈ Li and op1
i
→ op2 (process order), or

– op1
wi
→ op2 (write-into order), or



– ∃ op3 such that op1
po
→ op3 and op3

po
→ op2 (transitivity).

• Two operations not related by
po
→ are said to be independent or concurrent.

• The projection of H on a register R (denoted H|R) is the partial order H

from which are suppressed all the operations which are not on R.

• A serialization S of an execution history H (whose partial order is
po
→) is a

total order such that, if op1
po
→ op2, then op1 precedes op2 in S .

A remark on the partial order relation As we can see, the read-from rela-

tion mimics the causal send/receive relation associated with message-passing [14].

The difference is that zero, one, or several reads can be associated with the same

write. In both cases, the (write-into or message-passing) causality relation is a

global property (shared by all processes) on which is built the consistency condi-

tion. It captures the effect of the environment on the computation (inter-process

asynchrony), while process orders capture the execution of the algorithms locally

executed by each process.

Causal memory Let Hi+w be the partial order
po
→, from which all the read oper-

ations not issued by pi are suppressed (the subscript i + w means that only all the

operations issued by pi plus all write operations are considered).

As defined in [1], an execution history H is causal if, for each process pi, there

is a serialization S i of Hi+w in which each read from a register R returns the value

written in R by the most recent preceding write in R.

This means that, from the point of view of each process pi, taken indepen-

dently from the other processes, each register behaves as defined by its sequential

specification. It is important to see, that different processes can have different

views of a same register, each corresponding to a particular serialization of the

partial order
po
→ from which the read operations by the other processes have been

eliminated.

p1

p2

p3

R1.write(2) R1.read() returns v

R1.write(1) R2.write(3)

R1.read() returns w

R1.read() returns u

R2.read() returns 3

Figure 2: Example of an execution of a causal read/write memory

An example of a causal memory execution is depicted in Figure 2. Only one

write-into pair is indicated (dashed arrow). As R1.write(1) and R1.write(2) are



independent, each of the operations R1.read() by p2 and p3 can return any value,

i.e., u, v ∈ {1, 2}. For the same reason, and despite the write-into pair on the

register R2 involving p1 and p3, the operation R1.read() issued by p3 can return

w ∈ {1, 2}. This shows that different processes can obtain different “views” of the

same causal memory execution. Once a read returned a value, a new write-into

pair is established.

Implementations of a causal read/write memory (e.g., [2]) rest on an under-

lying communication algorithm providing causal message delivery [6, 24]. It is

shown in [1, 23] that, in executions that are data race-free or concurrent write-free,

a causal memory behaves as a sequentially consistent read/write memory.

4 Causal Consistency for any Object

The problem Albeit it was introduced more than 20 years ago, it appears that,

when looking at the literature, causal consistency has been defined and investi-

gated only for read/write objects (the only exception we are aware of is [19]).

This seems to be due to the strong resemblance between read/write operations and

send/receive operations. Hence, the question: Is it possible to generalize causal

consistency to any object defined by a sequential specification? This section an-

swers positively this question.

Preliminary definitions The notations and terminology are the same as in the

previous section, but now the operations are operations on any object O of a set of

objects O, each defined by a sequential specification.

Considering a set of local histories and a partial order
po
→ on their operations,

let Assignmenti(
po
→) denote the partial order

po
→, in which, for each operation op()

not issued by pi, the returned value v is replaced by a value v′, possibly different

from v, the only constraint being that v and v′ belong to the same domain (as

defined by the corresponding operation op()). Let us notice that Assignmenti(
po
→

) is not allowed to modify the values returned by the operations issued by pi.

Moreover, according to the domain of values returned by the operations, a lot of

different assignments can be associated with each process pi.

Given a partial order
po
→, and an operation op, the causal past of op with

respect to
po
→ is the set of operations {op′ | op′

po
→ op}. A serialization S i of a

partial order
po
→ is said to be causal past-constrained if it is such that, for any

operation op issued by pi, only the operations of the causal past of op appear

before op.



Causal consistency for any object Let H = 〈L1, . . . , Ln〉 be a set of n local

histories (one per process) which access a setO of concurrent objects, each defined

by a sequential specification. H is causally consistent if there is a partial order
po
→

on the operations of H such that for any process pi:

• (op1
i
→ op2)⇒ (op1

po
→ op2), and

• ∃ an assignment Assignmenti and a causal past-constrained serialization S i

of Assignmenti(
po
→) such that, ∀ O ∈ O, S i|O belongs to the sequential spec-

ification of O.

The first requirement states that the partial order
po
→ must respect all process

orders. The second requirement states that, as far as each process pi is concerned,

the local view (of
po
→) it obtains is a total order (serialization S i) that, according to

some value assignment, satisfies the sequential specification of each object O.2

Let us remark that the assignments Assignmenti() and Assignment j() associ-

ated with pi and p j, respectively, may provide different returned values in S i and

S j for the same operation. Each of them represents the local view of the corre-

sponding process, which is causally consistent with respect to the global compu-

tation as captured by the relation
po
→.

When the objects are read/write registers The definition of a causal memory

stated in Section 3 is a particular instance of the previous definition. More pre-

cisely, given a process pi, the assignment Assignmenti allows an appropriate value

to be associated with every read not issued by pi. Hence, there is a (local to pi)

assignment of values such that, in S i, any read operation returns the last writ-

ten value. In a different, but equivalent way, the definition of a causal read/write

memory given in [1] eliminates from S i the read operations not issued by pi.

While such operation eliminations are possible for read/write objects, they are

no longer possible when one wants to extend causal consistency to any object

defined by a sequential specification. This come from the observation that, while

a write operation resets “entirely” the value of the object, “update” operations

on more sophisticated objects defined by a sequential specification (such as the

operations push() and pop() on a stack for example), do not reset “entirely” the

value of the object. The memory of such objects has a richer structure than the

one of a basic read/write object.

2This definition is slightly stronger than the definition proposed in [19]. Namely, in addition to

the introduction of the assignment notion, the definition introduced above adds the constraint that,

if an operation op precedes an operation op′ in the process order, then the serialization required for

op must be a prefix of the serialization required for op′. On the other hand, it describes precisely

the level of consistency achieved by Algorithm 1 presented below.



An example As an example illustrating the previous general definition of a

causally consistent object, let us consider three processes p1 p2 and p3, whose

accesses to a shared unbounded stack are captured by the following local histories

L1, L2, and L3. In these histories, the notation opi(a)r denotes the operation op()

issued by pi, with the input parameter a, and whose returned value is r.

• L1 = push1(a)ok, push
1
(c)ok, pop

1
()c.

• L2 = pop2()a, push2(b)ok, pop
2
()b.

• L3 = pop3()a, pop3()b.

Hence, the question: Is H = 〈L1, L2, L3〉 causally consistent? We show that

the answer is “yes”. To this end we need first to build a partial order
po
→ respecting

the three local process orders. Such a partial order is depicted in Figure 3, where

process orders are implicit, and the inter-process causal relation is indicated with

dashed arrows (let us remind that this relation captures the effect of the environ-

ment –asynchrony– on the computation).

p1

p2

p3

pop3()a

push2(b)ok

push1(a)ok push1(c)ok

pop3()b

pop2()a

pop1()c

pop2()b

Figure 3: Example of a partial order on the operations issued on a stack

The second step consists in building three serializations respecting
po
→, S 1 for

p1, S 2 for p2, and S 3 for p3, such that, for each process pi, there is an assignment

of values returned by the operations pop() (Assignmenti()), from which it is pos-

sible to obtain a serialization S i belonging to the specification of the stack. Such

assignments/serializations are given below.

• S 1 = push1(a)ok, pop
3
()a, push1(c)ok, pop

2
()⊥, push

2
(b)ok,

pop1()c, pop2()b, pop3()⊥.

• S 2 = push1(a)ok, pop
2
()a, push2(b)ok, pop

2
()b, pop3()⊥,

pop3()⊥, push1(c)ok, pop
1
()c.

• S 3 = push1(a)ok, pop
3
()a, pop2()⊥, push2(b)ok, pop

3
()b,

pop2()⊥, push1(c)ok, pop
1
()c.



The local view of the stack of each process pi is constrained only by the causal

order depicted in Figure 3, and also depends on the way it orders concurrent op-

erations. As far as p2 is concerned we have the following, captured by its seri-

alization/assignment S 2. (The serializations S 1 and S 3 are built similarly.) We

have considered short local histories, which could be prolonged by adding other

operations. As depicted in the figure, due to the last causality (dashed) arrows,

those operations would have all the operations in L1 ∪ L2 ∪ L3 in their causal past.

1. Process p2 sees first push1(a)ok, and consequently (at the implementation

level) updates accordingly its local representation of the stack.

2. Then, p2 sees its own invocation of pop2() which returns it the value a.

3. Then, p2 sees its own push2(b) and pop2() operations; pop2() returns con-

sequently b.

4. Finally p2 becomes aware of the two operations pop3() issued by p3, and the

operations push1(c) and pop1() issued by p1. To have a consistent view of

the stack, it considers the assignment of returned values that assigns the

value ⊥ to the two operations pop3(), and the value c to the operations

pop1(). In this way, p2 has a consistent view of the stack, i.e., a view which

complies with the sequential specification of a stack.

A universal construction Algorithm 1 is a universal construction which builds

causally consistent objects from their sequential specification. It considers de-

terministic objects. This algorithm is built on top of any underlying algorithm

ensuring causal broadcast message delivery [6, 24]3. Let “co_broadcast MSG(a)”

denote the causal broadcast of a message tagged MSG carrying the value a. The

associated causal reception at any process is denoted “co-delivery”. ”?” denotes a

control value unknown by the processes at the application level.

when pi invokes O.op(param) do

(1) resulti ← ?;

(2) co_broadcast OPERATION(i,O, op(param));

(3) wait (resulti , ?);

(4) return (resulti).

when OPERATION( j,O, op(param)) is co-delivered do

(5) 〈r, statei[O]〉 ← δO(statei[O], op(param));

(6) if ( j = i) then resulti ← r end if.

Algorithm 1: Universal construction for causally consistent objects (code for pi)

3Interestingly, the replacement of the underlying message causal order broadcast by a message

total order broadcast, implements linearizability.



Each object O is defined by a transition function δO(), which takes as input

parameter the current state of O and the operation op(param) applied to O. It

returns a pair 〈r, new_state〉, where r is the value returned by op(param), and

new_state is the new state of O. Each process pi maintains a local representation

of each object O, denoted statei[O].

When a process pi invokes an operation op(param) on an object O, it co-

broadcasts the message OPERATION(i,O, op(param)), which is co-delivered to

each process (i.e., according to causal message order). Then, pi waits until this

message is locally processed. When this occurs, it returns the result of the opera-

tion.

When a process pi co-delivers a message OPERATION( j,O, op(param)), it up-

dates accordingly its local representation of the object O. If pi is the invoking

process, it additionally locally returns the result of the operation.

5 Conclusion

This short article extended the notion of causal consistency to any object defined

by a sequential specification. This definition boils down to causal memory when

the objects are read/write registers.

The important point in causal consistency lies in the fact that each process has

its own view of the objects, and all these views agree on the partial order on the

operations but not necessarily on their results. More explicitly, while each pro-

cess has a view of each object, which locally satisfies its object specification, two

processes may disagree on the value returned by some operations. This seems to

be the “process-to-process inconsistency cost” that must be paid when weakening

consistency by considering a partial order instead of a total order. On another

side and differently from strong consistency conditions, causal consistency copes

naturally with partitioning and process crashes.
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