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Abstract: Ship detection in the maritime domain is best performed with radar due to its ability
to surveil wide areas and operate in almost any weather condition or time of day. Many
common detection schemes require an accurate model of the amplitude distribution of radar echoes
backscattered by the ocean surface. This paper presents a review of select amplitude distributions
from the literature and their ability to represent data from several different radar systems operating
from 1 GHz to 10 GHz. These include the K distribution, arguably the most popular model from
the literature as well as the Pareto, K+Rayleigh, and the trimodal discrete (3MD) distributions. The
models are evaluated with radar data collected from a ground-based bistatic radar system and two
experimental airborne radars. These data sets cover a wide range of frequencies (L-, S-, and X-band),
and different collection geometries and sea conditions. To guide the selection of the most appropriate
model, two goodness of fit metrics are used, the Bhattacharyya distance which measures the overall
distribution error and the threshold error which quantifies mismatch in the distribution tail. Together,
they allow a quantitative evaluation of each distribution to accurately model radar sea clutter for the
purpose of radar ship detection.

Keywords: radar; sea clutter; statistical analysis; amplitude distribution; K; Pareto; Rayleigh; 3MD

1. Introduction

In an operational context, radar sensors are a powerful tool for detecting targets in the maritime
environment as they can be used at any time of day and in almost any weather condition [1]. They
typically operate with an electromagnetic frequency between 1 and 15 GHz by exploiting the fact
that man-made targets scatter with a higher energy compared to the surrounding sea. Maritime
surveillance radars typically operate at low grazing angles where the mean power of the sea clutter is
smallest. However, sea clutter collected from this geometry also contains many “sea-spikes” which
manifest as undesired strong returns and are often the cause of false detections [2]. This is due to the
scattering caused by discrete returns and breaking waves/whitecaps, which are worse when a swell is
present [3], or when the radar has a high range resolution and/or horizontal polarization [4].

Many detection methods have been published in the literature, for a review the reader is referred
to [1] and [5]. They work by comparing the average value of the backscattered signal with a reference
value estimated over a target-free area. Due to the randomness and the spatial variability of the sea
clutter, a reasonable sized data region must be used to provide an accurate estimate of the amplitude
statistics and enable the detection of targets with low reflectivity. Consider the synthetic aperture radar
(SAR) image shown in Figure 1 which was collected by SETHI [6], the airborne remote sensing radar
developed by ONERA (see Section 4.3). The statistics of the backscattered signal were computed over
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a target-free sea surface (blue box) and over an area containing a ship (red box). By visualizing the
complementary cumulative distribution function (CCDF), Figure 2 highlights the impact of the target
on the signal statistics. A strong deviation is shown in the tail of the distribution, compared to that
obtained when no target is present.
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Target detection is typically approached with a constant false alarm rate (CFAR) scheme [1,3]
and the selection of a threshold which limits the number of false alarms, while maintaining a desired
probability of detection. This can be achieved by fitting a theoretical amplitude distribution or
probability density function (PDF) to the target-free radar backscatter. This also allows for much lower
false alarm rates to be used when there is insufficient data. Also, the presence of a maritime target
usually manifests itself in the tail of the radar distribution due to its higher amplitude return.

There has been a long development of PDF models used to fit both real aperture radar and SAR.
With coarse range resolution, a reasonable model for the sea-clutter PDF is the Rayleigh distribution [7].
As the range resolution becomes finer, the variation of the sea swell is better resolved and the effect
of sea-spikes becomes more pronounced. From a statistical point-of-view, sea-spikes produce a
non-Gaussian ‘long’-tailed, or ‘spiky’ distribution [4,7]. These radar returns have a larger magnitude
which has led to the development of PDF models with longer tails such as the log-normal [8] and
Weibull [9] distributions. A popular and widely used framework for developing PDF models is
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the compound Gaussian model which was originally proposed for use in sea-clutter by Ward [3].
This model includes a temporal or fast varying component known as speckle which relates to the
Bragg scattering (Bragg scattering occurs when the radar wavelength is resonant with the sea wave),
and a slowly varying component which captures the underlying swell and models the texture. The
most popular compound model in the literature is the K distribution [3,10,11] and its extended
version which accounts for the radar instrument noise, namely the K+Noise [3]. Similarly, the Pareto
distribution [12,13] and its extended version, the Pareto+Noise [14] has become popular due to its
ability to model the extended tail of the amplitude distribution. In this paper, we consider these
distributions as well as two others proposed in the literature, the K+Rayleigh [15,16] and the 3MD
distributions [17]. The latter distribution has demonstrated great potential for modeling SAR sea-clutter
and is unique in the way it models the sea clutter texture as a combination of discrete components.

While there are many studies in the literature looking at the suitability of PDF models to represent
radar sea clutter, few contain a quantitative evaluation of the accuracy in fitting the amplitude
distribution. The main contribution of this paper is an analysis of the most recent and effective
theoretical models for modeling non-Gaussian distributed sea clutter. This is achieved using fine
resolution datasets from a ground based bistatic radar and two airborne radars operating at different
frequency bands (L-, S-, and X-band), and covering a wide range of sea states and geometries.
This builds on the earlier study in [11] by expanding the range of measurement configurations and
amplitude distribution models. To assess performance, two metrics are used to quantitatively evaluate
the ability for each model to represent the sea clutter amplitude distribution.

The paper is organized as follows: Section 2 describes the goodness of fit metrics, Section 3
summarizes the theoretical distributions, and Section 4 describes the data sets. Section 5 then
summarizes the results and concludes by identifying the most suitable distribution to model the
sea clutter.

2. Measures of Goodness of Fit

The aim of this paper is to evaluate the accuracy of different PDF models for modeling radar sea
clutter. To quantitatively measure how well a model fits actual observations, there are many statistical
tests in the literature [11]. In this paper, we focus on two goodness of fit measures: the Bhattacharyya
distance (BD) and the threshold error. These metrics will be measured for the three radar datasets
covering a wide variety of wind speeds, collection geometries, frequencies, and polarizations.

2.1. The Bhattacharyya Distance

The Bhattacharyya distance is a metric which varies between 0 and infinity [18]. It measures the
similarity between the theoretical PDF P(.) and the actual data distribution Q(.) computed over the
same data samples, xk. The Bhattacharyya distance is commonly used to evaluate the accuracy of
statistical distributions to represent experimental data.

BD = − ln
(

∑
xk

√
P(xk)Q(xk)

)
0 ≤ BD ≤ ∞ (1)

The smaller the Bhattacharyya distance, the better the goodness of fit and thus the accuracy of the
model to represent the radar sea clutter.

2.2. Threshold Error

The second metric is the threshold error which is determined by first calculating the CCDF
for both the empirical data and the proposed model. The threshold error is then the difference
between the two results at a fixed CCDF value, often 10−4 or lower, depending on operational
requirements [19]. The CCDF is important due to its relationship with the threshold in a detection
scheme used for distinguishing between targets and interference. In this context, it is commonly
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referred to as the probability of false alarm. This measure is illustrated in Figure 3 for a CCDF of 10−4

(see red arrows). The threshold error is computed on the x-axis by measuring the difference between
the actual CCDF (blue line) and the modeled CCDF (green line). The smaller this gap, the better the
goodness of fit between the data and the model. This is a useful practical metric as it defines how far
over or under estimated a CFAR threshold would be set when the distribution of the sea clutter is
incorrectly estimated.
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3. Amplitude Distribution Models

In this section, we outline the four distributions used for our analysis: K+noise, Pareto+Noise,
K+Rayleigh and 3MD. As these are all compound distributions, we start by outlining the development
of such models. Consider a radar receiving in-phase and quadrature data from an external clutter
source with its amplitude defined by Gaussian statistics with zero mean and variance, x. In addition,
instrument noise from the radar will add a component pn which is included by offsetting the variance x.

In target detection analysis, the envelope of the received pulses is often converted to power
(square law) and the clutter distribution becomes exponential. This component is known as speckle in
the compound representation. For a frequency agile or scanning radar with sufficient time between
looks, a common method to improve the detection performance is to sum a number of looks. If there
are M independent exponential random variables, z = ∑M

m=1 ym, then the received power is described
by a gamma PDF,

P(z|x) = zM−1

(x + σ2
n)

MΓ(M)
exp

[
− z

x + σ2
n

]
(2)

where 0 ≤ x ≤ ∞, Γ(.) is the gamma function and σ2
n is the instrument noise power. In order to include

the texture component which modulates the speckle, we integrate over the speckle mean,

P(z) =
∫ ∞

0
P(z|x)P(x)dx (3)

where P(x) is the distribution of the texture component. While there are analytic solutions in many
cases, when instrument noise is included in the model, numerical integration must be used to evaluate
the compound distribution. In the following, only single-look intensity data is considered with the
data represented in decibels (dBs).

The parameters of the K+Noise, Pareto+Noise, and K+Rayleigh distributions are estimated
using the zlogz method which has demonstrated the best tradeoff for accuracy and computational
efficiency [20]. However, for the 3MD distribution, there is no suitable zlogz estimator and the model
parameters are estimated using a least squares minimization between the CCDF of the data and the
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model. This is a more computationally intensive parameter estimation approach. To quantify the
difference in run time, 100 iterations were performed and the run times averaged. For the K+Noise,
Pareto+Noise, and K+Rayleigh zlogz estimators, the mean run times were 0.13, 0.12, and 0.13 s
respectively, while for the 3MD least squares minimization, the mean run time was 1.57 s, which is
approximately 12 times longer than the zlogz estimators.

3.1. K+Noise Distribution

The K+Noise (KN) distribution is a well-established model for representing high-resolution radar
sea clutter [3,7]. It is a continuous mixture of an exponential or gamma distribution for the uncorrelated
speckle intensity (fast temporal variation) with a gamma distribution for the clutter mean power (slow
spatial variation) [3,21],

P(x) =
bν

Γ(ν)
xν−1 exp[−bx] (4)

where ν > 0 and b = ν/pc are the shape and scale parameters respectively and pc is the mean clutter
power. In the absence of instrument noise, pn = 0 and the solution to (3) is given by

P(z) =
2(bz)

ν+M
2

zΓ(ν)Γ(M)
Kν−M

(
2
√

bz
)

(5)

where Kν−M(.) is the modified Bessel function of the second kind with order ν−M. The zlogz estimator
for the shape is found by numerically solving the following equation for ν̂ [20],

E(z log z)
E(z)

− E(log z)− 1
M

=
1

1 + 1/C
eν̂/CGν̂+1(ν̂/C) (6)

where E(.) is the statistical mean or expectation operator, C is the clutter to noise ratio (CNR) and G(.)
is the generalized exponential integral function [20].

3.2. Pareto+Noise Distribution

The Pareto+Noise (PN) distribution is another popular compound distribution used to model the
sea-clutter backscatter [14]. It is formed with an inverse gamma distribution for the texture

P(x) =
da

Γ(a)
x−a−1 exp[−d/x] (7)

where a and d = pc(a− 1) are the shape and scale parameters respectively. Similar to the K+Noise
distribution, there is no closed form expression unless the mean instrument noise power, pn = 0.
In this case, the Pareto distribution is given by

P(z) =
zM−1daΓ(M + a)

(d + z)M+aΓ(ν)Γ(M)
(8)

For the Pareto+Noise distribution, the zlogz estimator for the shape is found by numerically
solving the following equation for â [20],

E(z log z)
E(z)

− E(log z)− 1
M

=
1

1 + 1
C

(
1

â− 1
− e(â−1)CGâ((â− 1)C

)
(9)

3.3. K+Rayleigh Distribution

The K+Rayleigh (KR) distribution is an extension to the KN model designed to capture any extra
Rayleigh component in the data which arises from the non-Bragg scattering [16]. It explicitly separates
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the speckle mean level into two components, x = xr + pr, where pr is the power of the extra Rayleigh
component. As with the KN model, the texture is given by a gamma distribution,

P(xr) =
bνr

r
Γ(νr)

xνr−1
r exp[−bxr] (10)

where νr > 0 and br = νr/pc are the shape and scale parameters respectively. The PDF of the KR
distribution has no closed-form expression and is calculated by integrating (3) with respect to the
modified speckle mean level, xr instead of the total speckle x. The influence of the extra Rayleigh
component can be measured by the ratio of the mean of the Rayleigh component, pr, to the mean of
the gamma distributed component, pc, of the clutter and is defined by

kr =
pr

pc
(11)

To estimate the KR parameters, the sum of the instrument noise power and Rayleigh power needs
to be estimated in addition to the shape. This is achieved by first substituting the CNR in (6) with the
clutter to noise plus Rayleigh power, Ĉ, using the following relationship for the distribution moments,

Ĉ =
pc

pr + pn
=

1
1√
ν̂rr + 1

(12)

where

r =
M

M + 1
E
(
z2)

E2(z)
− 1 (13)

and then solving the numerical relation in (6). The Rayleigh mean power can then be found by
rearranging (12),

pr =
pc

Ĉ
− pn (14)

3.4. Tri-Modal Discrete Distribution

The compound models presented previously all assume a continuous texture distribution which
suggests a small probability of infinite texture values. The motivation of the 3MD model is to instead
use a discrete texture model that assumes the sea clutter consists of a finite number, I, of distinct
modes or scatterer types [17]. This implies that the scatterers in the observed scene are realizations
from homogeneous clutter random variables with different texture values. The PDF of the texture is
given by

P(x) =
I

∑
n=1

cnδ(x− an),
I

∑
n=1

cn = 1, an, cn > 0 (15)

δ(A) :=

{
1 if A = 0
0 otherwise

(16)

where a = [a1, . . . , aI ] are the discrete intensity texture levels and c = [c1, . . . , cI ] are the corresponding
weightings. The resulting PDF after solving (3) is then given by

P(z) =
MM

Γ(M)
zM−1

I

∑
n=1

cn

exp
(
− Mz

ρca2
n+ρn

)
(ρca2

n + ρn)
M (17)

with
ρc + ρn =

pc

pc + pn
+

pn

pc + pn
= 1 (18)
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In their original work [17], the authors have reported that I = 3 modes are sufficient to accurately
model high spatial resolution sea clutter data collected by spaceborne SAR sensors. One of the
consequences of this discretization is that spatial and long-time correlation cannot be modeled as
part of the texture, and hence the model is less suitable for clutter simulation. The 3MD distribution
also requires the non-trivial estimation of 2I unknown parameters. This can be achieved with a least
squares minimization between the 3MD model and data CCDF in the log domain. The fitting process
first assumes a single mode (I = 1). If the BD of that fit is greater than −30 dB, the parameters for
a bi-modal fit (I = 2) are then estimated. This is repeated up to the maximum number of modes,
which is set to I = 5 unless otherwise stated. The model components, an, are then ordered from largest
to smallest and any modes where the weightings, cn < 10−3 are removed. Note that the threshold
value of BD = −30 dB comes from experimental observation below which there is little change in the
3MD distribution.

4. Radar Sea Clutter Datasets

Three sea clutter datasets are used in this paper to evaluate the accuracy of the proposed PDF
models. These have been collected by different radar sensors operating at different frequency bands
(L-, S-, and X-band), different platforms (airborne and ground-based) and covering a wide range of
sea state and geometries. Two of the data sets are from a real beam radar, while the third comprises
images formed from a synthetic aperture radar.

4.1. NetRAD Dataset: Ground Based Radar Sensor

The Netted Radar (NetRAD) is a ground-based coherent bistatic radar system operating at S-band
(carrier frequency of 2.45 GHz) [22,23]. The system was developed jointly by the University College
London, UK and the University of Cape Town, South Africa. It works in both monostatic and bistatic
configurations with the two nodes synchronized in time with GPS disciplined oscillators over a
5 GHz wireless link. The system configuration used for gathering the data analyzed included a peak
transmit power of 57.7 dBm, pulse repetition frequency (PRF) of 1 kHz, antenna gain of 23.8 dBi, and a
bandwidth of 45 MHz providing a range resolution of 3.3 m. The antennas work with either vertical (V)
or horizontal polarizations (H).

The data assessed here is summarized in Table 1 and was generated during a 2010 series of trials
in South Africa near the Cape Point area. The baselines between each of two radar nodes and the
illuminated area were 1830 m and in order to vary the bistatic angle, the antennas were rotated to
cover different regions of the sea. The grazing angles from the geometries varied from 0.6◦ to 1.5◦ [23],
which will have a minor impact on the backscattered signal compared to changes with the polarization
or the bistatic angle. In the following analysis, 10 s of data have been used for each run, resulting in
more than 106 samples. Wind and wave information is given in Table 1 and was obtained from the
Cape Point wave buoy, approximately 7 km from the trial location. In Figure 4, an example of the
monostatic and bistatic radar data is displayed for a bistatic angle of 60◦.

Table 1. Properties of the NetRAD radar sea clutter acquisitions investigated in this study.

Run Frequency Pol. Bistatic
Angle (◦)

Wind Speed
(m/s)

Wave
Period (s)

Wave
Direction (◦)

Wave
Height (m)

1

S-band

VV
60 10 7.1 289 3.3

2 90 10 7.7 279 3.5
3 120 11 8.3 270 3.7

4
HH

60 11 8.3 283 3.9
5 90 11 8.3 283 3.9
6 120 12 8.6 276 4.0
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Figure 4. NetRAD: S-band time domain intensity images, monostatic (left), and bistatic 60◦ (right) for
HH (top) and VV (bottom) polarizations.

4.2. INGARA Dataset: Airborne Radar Sensor

INGARA is a polarimetric radar system maintained and operated within the Defence Science and
Technology Group in Australia [24]. During the ocean backscatter collections in 2004 and 2006, the sea
clutter data was collected at X-band (10.1 GHz carrier frequency) with a 200 MHz bandwidth giving a
0.75 m range resolution. Alternate pulses transmitted horizontal and vertical polarizations resulting
in a nominal PRF of 300 Hz. The radar was operated in a circular spotlight-mode covering 360◦ of
azimuth angles and each day, the radar platform performed at least six full orbits around the same
patch of ocean to cover a large portion of grazing angles between 15◦ and 45◦.

During the trials at sea, the wind and wave information was collected using DST Group’s wave
buoy, which was located within 50 km of the imaging site. Wind data from several different sources
were collected and compared during the trials. For the 2004 trial, the most reliable wind data were
obtained from the Bureau of Meteorology automatic weather station located on a cliff top about 50 km
northeast of the wave buoy deployment site. Hence, it will be subjected to some error and, possibly
a time delay compared with the actual conditions at the wave buoy site. For the 2006 trial, the most
reliable wind data were made with a handheld anemometer on a boat near the imaging area.

Table 2 shows the sea conditions over the two data collections, with Runs 1–8 from the 2004
collection and Runs 9–12 from 2006. The data analyzed in this paper has been pooled into blocks of 5◦

azimuth and 3◦ grazing with each block containing approximately 106 samples. An example of the
data is shown in Figure 5 for the downwind direction and 30◦ grazing.

Table 2. Properties of the INGARA radar sea clutter acquisitions investigated in this study.

Run Frequency Pol. Wind
Direction (◦)

Wind Speed
(m/s)

Wave
Period (s)

Wave
Direction (◦)

Wave
Height (m)

1

X-band Quad-pol

248 10.2 12.3 220 4.9
2 248 7.9 11.8 205 3.5
3 315 10.3 10.4 210 2.6
4 0 13.6 8.8 293 3.2
5 68 9.3 9.7 169 2.5
6 315 9.5 11.4 234 3.0
7 22 13.2 12.2 254 3.8
8 0 8.5 12.5 243 4.3

9 115 8.5 3.1 112 0.62
10 66 3.6 2.6 35 0.25
11 83 3.5 4.0 46 0.41
12 124 10.2 4.6 128 1.21
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Figure 5. INGARA range/time example (Run 3), downwind, grazing angle 30◦, wind speed 10.3 m/s.

4.3. SETHI Dataset: Airborne Imaging Radar Sensor

SETHI is the airborne remote sensing radar developed by ONERA [6]. It is a pod-based
multi-frequency high resolution SAR system designed to explore the scientific applications of remote
sensing. Both L- and X-band SAR data have been collected at two different geographical positions,
the Atlantic ocean and the Mediteranean sea along the French coast. The bandwidths are 300 MHz
at X-band (9.6–9.9 GHz) and 150 MHz at L-band (1.25–1.4 GHz). The data presented in this paper
is described in Table 3 and covers grazing angles from 10◦ to 45◦, different sea states (significant
wave heights from 1.1 to 4.9 m), a range of azimuth angles and either dual-polarized (HH, VV) or
quad-polarized (HH, HV, VH, VV) antenna combinations. The flying trajectory was either linear
(stripmap mode) or circular (spotlight mode) and the wind and wave information given in Table 3
was obtained from Météo-France, the French national meteorological service. An illustration of the
X-band dual-pol SAR data at 10◦ grazing is given in Figure 6 (Run 3) where the horizontal and vertical
axes correspond to the along-track (azimuth) and across-track (range) directions. Strong differences
in radar responses can be seen as a function of the polarization state: the HH backscattered signal
(Figure 6a) is strongly affected by sea-spikes (e.g., breaking waves), while the VV signal (Figure 6b) is
dominated by short scale waves [25].

Table 3. Properties of the SETHI data sets. Both the range and azimuth spatial resolutions are equal.

Run Frequency Pol. Area Spatial
Res. (m)

Grazing
Angle (◦)

Wind Speed
(m/s)

Wave Height
(m/s)

1

X-band Dual-pol

Atl.

0.5 10 17.65 4.9
2 0.5 20 17.65 4.9
3 0.5 10 7.2 3.3
4 0.5 20 7.2 3.3
5 0.5 30 7.2 3.3

6
X-band Dual-pol 0.5

20 10.2 3.6L-band 1

7 X-band Dual-pol 0.5 10 10.1 3.6

8
X-band Quad-pol Med.

0.5
45 8.5 1.1L-band 1
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threshold error values in Table 5. 

Figure 6. SETHI X-band SAR images (Run 3), grazing angle 10◦, wind speed 7 m/s. (a) HH polarization,
(b) VV polarization.

5. Results and Discussions

This section provides an analysis of the four amplitude PDF models applied to the NetRAD,
INGARA, and SETHI datasets. For each result, the data is plotted in a thick blue dotted line, while the
cyan, black, green, and red lines are for the K+Noise (KN), Pareto+Noise (PN), K+Rayleigh (KR), and
3MD models respectively. The PDF curves represent the probability of occurrence of radar intensity
values (in dBs), while the CCDF curves show the probability that the radar intensity takes a value
greather than the threshold (see Section 2.2). Both the Bhattacharyya distance and the threshold errors
are provided for each example and reported in dBs.

5.1. NetRAD Analysis

In this section, we investigate the accuracy of the theoretical models to represent the NetRAD
bi-static dataset. We first show an example of the model fits and report on the number of modes
required by the 3MD model. We then study the model accuracy using the goodness of fit metrics,
focusing firstly on the overall PDF fit and then the tail of the distribution.

The example in Figure 7 shows the results for Run 4 of the NetRAD bistatic data which has HH
polarization and a bistatic angle of 60◦. For this result, the 3MD model has been fitted to the data with
I = 5 modes. The parameter estimates are given in Table 4, while the BD and threshold error results
are given in Table 5. For the KN and KR distributions we observe a strong mismatch in the body of
the distribution (Figure 7a) with high BD values (Table 5), while the PN and 3MD models fit the data
closely over all intensity values. However, the CCDF fits in Figure 7b clearly shows that the KN and
the PN distributions both have a mismatch in modeling the distribution by under and over estimating
the tail respectively, while the 3MD and the KR both match closely. This is reflected in the threshold
error values in Table 5.
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Table 4. Parameter estimates for the models in Figure 7.

CNR (dB) 28.9
KN shape 0.58
PN shape 1.6

K+Rayleigh shape 0.04
K+Rayleigh kr—value 0.41

3MD mode 1 (a, c) (0.458, 0.379)
3MD mode 2 (a, c) (0.682, 0.345)
3MD mode 3 (a, c) (1.163, 0.220)
3MD mode 4 (a, c) (2.334, 0.0488)
3MD mode 5 (a, c) (5.463, 0.0064)

Table 5. Goodness of fit metrics for the models in Figure 7. Threshold error is measured at a CCDF
of 10−4.

BD (dB) Threshold Error (dB)

KN −15.65 5.17
PN −31.55 −1.73
KR −22.75 −0.02

3MD −37.31 0.11

5.1.1. Number of Modes Required for the 3MD Distribution

In previous work, it has been reported that three modes are sufficient to accurately model
amplitude distributions from spaceborne SAR data [17], airborne SETHI SAR data, and airborne
INGARA real aperture sea clutter data [26]. We now investigate how many modes of the
3MD distribution are required to accurately model the mono and bistatic sea clutter from the
NetRAD dataset.

As discussed in Section 3.4, the minimum number of modes required for a good fit is determined
when the BD goes below the desired value of −30 dB. Figure 8 shows an example model fit from the
NetRAD bistatic data with 60◦ bistatic angle and VV polarization (Run 1) with different numbers of
components, I. The BD for both polarizations is then shown in Figure 9 where we observe that four
modes are required to satisfy the condition that the BD is less than −30 dB.
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data S-band, VV-polarization, bistatic configuration, 60◦ bistatic angle (Run 1). Illustrations show the
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Figure 9. Bhattacharyya distance (dB scale) for the 3MD distribution using different numbers of modes
with the NetRAD data, S-band, bistatic configuration, 60◦ bistatic angle. (a) HH polarization (Run 4),
(b) VV polarization (Run 1).

Table 6 summarizes the minimum number of modes required by the NetRAD data. Among the
12 datasets (monostatic and bistatic), 7 need 2 or 3 modes (which is in agreement with [17,26]), but we
find that 5 datasets need 4 or 5 modes. The link between the number of modes and the acquisition
parameters are not obvious from the available data and further study is required to fully understand
this relationship. Nevertheless, we have demonstrated that the 3MD distribution is able to accurately
model the amplitude distribution of each of the NetRAD datasets, but at the cost of a greater number
of parameters to estimate, 2I.

Table 6. 3MD distribution: minimum number of modes required to accurately match the NetRAD data.

Bistatic Angle

Polarization

HH VV

Monostatic Bistatic Monostatic Bistatic

60 4 4 3 4
90 4 3 2 5

120 3 3 2 3

5.1.2. Analysis of Model Accuracy

In this section we study the accuracy of the four models described in Section 3 when fitting
amplitude distributions to the NetRAD dataset. Figure 10 first shows the BD for each bistatic angle
and polarization. The only result that shows a good match for nearly every model (BD ≤ −30 dB)
is the monostatic case with VV polarization (Figure 10c). However, it is only the 3MD distribution
that has a consistently low BD over all the datasets. The other results are mixed with the PN and KR
models both providing a good fit with some datasets, while mismatching with others (BD > −30 dB).
The KN model nearly always fails to accurately fit the data.

Results of the threshold error for a CCDF of 10−4 are then displayed in Figure 11, where low
errors are observed for both the KR and 3MD models (<±1 dB), while the PN and KN distributions
have a greater mismatch with errors up to±4 dB. If the PN distribution was used in a detection scheme
with such a large mismatch, there will be a large number of missed detections. Conversely, if the KN
distribution were used, there would be a higher probability of false alarm.
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5.1.3. Summary

Analysis of the NetRAD S-band monostatic and bistatic sea clutter dataset demonstrates that
both the KN and PN distributions fail to match the data in many cases and would provide degraded
detection performance if used in a detection scheme. However, the KR and 3MD distributions show a
good match in the tail region, making them a good choice. When considering the total fit to both the
body and distribution tail, it is only the 3MD model that is able to consistently provide good results,
but at the cost of a higher number of parameters to be estimated.

5.2. Analysis of the INGARA Dataset

We now consider how the different distributions can model the INGARA sea clutter data set.
Firstly, we give some illustrations of the proposed models with an example run. We then study the
behavior of the texture for the 3MD model over a range of geometries. Finally, we look at the model
accuracy for fitting each distribution to the INGARA dataset.

Two example datasets, Runs 3 and 9 are first considered with the respective sea conditions given
in Table 2. Figure 12 shows the model fits for Run 3 in the upwind direction and 30◦ grazing. These
results show the KN under fitting the HH polarization and the PN over fitting for each result. The KR
model has a good fit until a CCDF value of 10−4, while the 3MD shows an excellent fit for all results.
The estimated model parameters and goodness of fit metrics are given in Tables 7 and 8 respectively.Remote Sens. 2019, 10, x FOR PEER REVIEW  15 of 24 
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Figure 12. Amplitude distributions for the INGARA dataset (Run 3), upwind, grazing angle 30◦.
Illustrations show the (left) PDF and (right) CCDF results.

Table 7. Parameter estimates for the model fits in Figure 12.

Run 3
Polarization

HH HV VV

CNR (dB) 11.7 6.5 21.6
KN shape 2.3 3.5 7.0
PN shape 3.4 4.7 8.0

K+Rayleigh shape 0.34 1.9 7.1
K+Rayleigh kr—value 0.49 0.19 0

3MD mode 1 (a, c) (0.70, 0.49) (0.82, 0.74) (0.82, 0.55)
3MD mode 2 (a, c) (1.12, 0.47) (1.42, 0.26) (1.19, 0.45)
3MD mode 3 (a, c) (2.11, 0.038) - -
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Table 8. Goodness of fit metrics for the model fits in Figure 12. Threshold error is measured at a CCDF
of 10−4.

BD (dB) Threshold Error (dB)

HH HV VV HH HV VV

KN −30.7 −36.5 −36.0 1.6 0.2 −0.3
PN −36.1 −35.1 −34.9 −0.8 −1.1 −0.9
KR −35.1 −36.6 −36.0 −0.2 −0.1 −0.3

3MD −36.5 −35.0 −36.0 0.1 0.2 0.1

5.2.1. Parameter Variation for the 3MD Distribution

In order to further study the modes of the 3MD model, we compare the product of the texture
locations an and the proportion cn [17]. For INGARA Runs 3 and 9, Figures 13 and 14 show this result
for each polarization, over all azimuth angles and grazing angles from 15◦ to 45◦. The dashed lines
indicate either missing data or regions where no mode was required for the model fit. To achieve a
BD lower than −30 dB, at least two modes were required for each polarization, with 53% and 20% of
the HH data blocks requiring three. These latter data blocks are primarily in the low grazing angle
region in the HH polarization where there is an even proportion spread between the first two modes
( ancn ∼ 0.5). Although not shown here, this result matches where the KR shape value is lowest
indicating the spikiest clutter [26].
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To determine the accuracy of the model fits over the two data runs, the BD and threshold errors at
a CCDF value of 10−4 have been measured for all data blocks with the results shown as histograms
in Figures 15 and 16. For the BD, the biggest variation is seen for the HH polarization with the KN
distribution having the highest value (worst fit) for Run 3 followed closely by the 3MD distribution.
Note that the BD values for the 3MD distribution are nearly always less than −30 dB which is our
stopping criteria for the model fit. The other two distributions, KR and PN have very similar results
spread between −40 to −30 dB.
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For the threshold error in Figure 16, the 3MD distribution clearly has the lowest error with very
little bias around 0 dB. The KR distribution also has a low error spread, while the KN and PN show
a wide range of threshold errors. Figure 17 then shows the threshold errors over the 12 different
days/wind speeds in the upwind direction for grazing angles of 15◦, 30◦, and 45◦. The same spread of
errors are observed here with a large mismatch for the KN and PN distributions with mean absolute
values of 0.76 and 0.89 dB respectively, while the KR and 3MD models show the lowest absolute mean
errors of 0.30 and 0.11 dB. The largest errors were observed within the HH polarization at the lowest
grazing angles for the PN and KN models, while data from the VV polarization showed a significantly
reduced threshold error across all grazing angles.Remote Sens. 2019, 10, x FOR PEER REVIEW  18 of 24 
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5.2.3. Summary

The results for the INGARA sea clutter data set show that the 3MD distribution produces the best
match with the data set over a wide range of collection geometries and sea conditions, with at most
three modes required. The KR distribution provides a reasonable match in the body of the distribution,
but has a slightly higher threshold error and hence mismatch in the tail of the distribution. The PN
and KN distributions produce the worst match, particularly in the HH polarization.

5.3. Analysis of the SETHI Dataset

This section now looks at results from the SETHI SAR dataset. We first show illustrations of
model fitting with X-band SAR data and then study the model accuracy when representing real SAR
data with varying geometry and sea state.

Examples of the model fits are shown in Figure 18 from Run 1 (see Table 3) at a grazing angle
of 10◦ and a high sea state (wind speed of 17 m/s). For the HH polarization, the KN distribution
deviates from the data PDF, while the PN, KR, and 3MD models show close agreeement to the real
data (Figure 18a). In the tail of the distribution (Figure 18b), the KR and 3MD models show a good
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match the data, while the KN and PN both show mismatch. For the VV polarization (Figure 18c–d), we
observe an overall good agreement between the data and the models, except for the PN distribution
which over estimates the distribution tail (Figure 18d). Tables 9 and 10 show the model parameters
and goodness of fit metrics for these results.Remote Sens. 2019, 10, x FOR PEER REVIEW  19 of 24 
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Table 9. Parameter estimates for the models in Figure 18.

Run 3
Polarization

HH VV

CNR (dB) 12.08 16.70
KN shape 1.45 5.56
PN shape 2.44 6.56

K+Rayleigh shape 0.19 2.69
K+Rayleigh kr—value 0.47 0.27

3MD mode 1 (a, c) (0.68, 0.65) (0.88, 0.795)
3MD mode 2 (a, c) (1.29, 0.33) (1.39, 0.205)
3MD mode 3 (a, c) (2.92, 0.02) -

Table 10. Goodness of fit metrics for the model fits in Figure 18. Threshold error is measured at a CCDF
of 10−4.

BD (dB) Threshold Error (dB)

HH VV HH VV

KN −24.5 −41.0 2.88 0.23
PN −38.0 −39.4 −1.27 −0.68
KR −33.5 −41.5 0.22 −0.02

3MD −36.5 −36.1 0.15 −0.06
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5.3.1. Grazing and Azimuth Angle Variation

We now look at the goodness of fit for the SETHI data as a function of grazing and azimuth angles.
The first set of results are for Runs 3 to 5 (see Table 3) with grazing angles of 10◦, 20◦, and 30◦ and
a wind speed of 7 m/s. Table 11 shows the Bhattacharyya distance for the four models with good
results (BD ≤ −30 dB) observed. Figure 19 then shows the threshold errors for CCDF values of 10−4.
For the HH data, the threshold errors obtained with the KN and PN distributions decrease when the
grazing angle increases, while KR and the 3MD distributions show a consistently low error. For the
VV polarized radar data, the threshold errors are less than or equal to 1 dB for each model.

Table 11. SETHI X-band Run 3 (grazing 10◦), Run 4 (grazing 20◦), and Run 5 (grazing 30◦).
Bhattacharyya distance (values in dB) between experimental and fitted PDFs.

Polarization Grazing Angle KN PN KR 3MD

HH
10◦ −29.9 −36.4 −36.2 −38.4
20◦ −30.4 −34.5 −38.0 −39.0
30◦ −29.2 −35.9 −36.9 −37.6

VV
10◦ −40.7 −49.9 −51.7 −35.2
20◦ −37.5 −39.4 −39.7 −38.1
30◦ −34.3 −37.5 −37.9 −38.4
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that the KN model has under fitted both data sets, while the PN and KR histograms show an over 
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As with the INGARA results, there are no clear trends with the goodness of fit metrics as a
function of wind direction. The next results consider the dual-frequency SAR data collected at 45◦

grazing and over the full 360◦ azimuth range (Run 8). For both the L and X-band datasets, histograms
of the BD and threshold errors are shown in Figures 20 and 21 at a CCDF value of 10−4. For the L-band
data, the BD is low (≤−30 dB) for the four investigated models suggesting that they all match closely
to the body of distribution, regardless of the polarization state. For the X-band data, the mean BD
values increase for each model with the KN distribution showing the largest increase. There is also an
increase in the spread of BD values at X-band. For the threshold error results, the 3MD distribution
clearly has the lowest error at both frequencies with no bias around 0 dB. We find that the KN model
has under fitted both data sets, while the PN and KR histograms show an over fitting. For the KN, PN,
and KR models, the threshold error increases at X-band, probably due to data being spikier.
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5.3.2. Wind Speed Variation

The final section looks at the fitting accuracy as the wind speed varies for the SETHI dataset.
For this analysis, we consider three runs with grazing angles of 10◦ and 20◦ (see Table 3) and wind
speeds of 7 m/s (Runs 3 and 4), 10 m/s (Runs 6 and 7) and 17 m/s (Runs 1 and 2). As with previous
results, the BD is quite low, indicating a good fit to the distribution body. There is no observed trend or
increase of the BD with the wind speed and the relative ordering of the four models are also similar
to the previous results with the PN, KR, and 3MD distributions all having lower values than the KN
model for the HH polarization, while all four models have similar BD values close to -40 dB for the
VV polarization.

The threshold error for a CCDF of 10−4 is shown in Figure 22 for the HH and VV polarizations
and both grazing angles. These results show quite similar errors for the KR and 3MD distributions
with values typically below ±0.5 dB. There is one exception for the VV polarization with the higher
wind speed and 20◦ grazing, where the KR model has overfitted the data. In this case, the 3MD model
still produces a good fit with a low threshold error. No significant variation of the threshold error with
the wind speed is observed.
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Figure 22. Threshold error against windspeed for the SETHI X-band dataset. Threshold error is
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polarization, 20◦ grazing; (d) VV polarization, 20◦ grazing.

5.3.3. Summary

Analysis of SETHI airborne SAR dataset presented in this section shows that the BD is always very
low for the four investigated models, indicating that they can all accurately model the distribution body
of the data. However, when we focus on the tail of the distribution, both the KR and 3MD distributions
produce superior fits to the experimental data, especially for the HH polarization. Moreover, no
significant variation of the threshold error with the wind speed and the angles of observation (grazing
and azimuth) can be inferred from these results.

6. Conclusions

Accurately modeling the amplitude distribution of sea clutter is key to ensure good detection
performance in the maritime domain. This can be a challenging task due to the wide variety of
environmental conditions, collection geometries, and radar configurations. In this paper, we have
evaluated the accuracy of four key amplitude distributions, the K+Noise, P+Noise, K+Rayleigh,
and 3MD, in matching experimental high spatial resolution data from three different radar sensors.
These include a ground-based radar collecting S-band mono- and bi-static data at very low grazing
angles, an airborne sensor acquiring X-band full-polarized real aperture data and a second airborne
fully-polarized SAR operating simultaneously at L- and X-band. The model accuracy was assessed
using two goodness of fit measures: the Bhattacharyya distance which considered the body of the
distribution, and the threshold error which focused on the tail.
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The originality of the analysis is a quantitative evaluation of PDF models to represent actual radar
sea clutter. This extends an earlier study [11] by expanding the range of frequency bands, collection
geometries and amplitude distribution models. In Tables 12 and 13 below, a summary of the average
Bhattacharyya distance and the threshold error measured at a CCDF of 10−4 is illustrated for each
dataset. They demonstrate that both the KR and 3MD models provide a good match to the datasets
studied, while the KN and PN distributions often show a mismatch. When focusing on the tail of the
distribution, only the 3MD model consistently matches well, while the KR model has a slightly higher
threshold error. The tradeoff with using the 3MD model is the larger number of parameters which
require estimating.

Table 12. Mean values of the Bhattacharyya distance for each dataset investigated in this study.

Dataset Polarization
Bhattacharyya Distance (Mean Value—dB)

KN PN KR 3MD

NetRAD
HH −15.4 −23.7 −30.1 −37.5
VV −21.5 −23.5 −26.2 −35.2

INGARA
HH −32.0 −34.1 −34.3 −32.8
VV −35.5 −35.3 −35.6 −35.4

SETHI
HH −28.5 −37.7 −37.8 −33.2
VV −38.1 −40.2 −40.5 −35.2

Table 13. Mean values of the threshold error at a CCDF of 10−4 for each dataset investigated in
this study.

Dataset Polarization
Threshold Error (Mean Value—dB)

KN PN KR 3MD

NetRAD
HH 4.7 −2.4 −0.2 0.2
VV 2.7 −3.3 0.2 0.1

INGARA
HH 1.4 −0.8 0.0004 0.1
VV 0.03 −0.3 −0.1 0.05

SETHI
HH 2.7 0.7 0.3 0.1
VV 0.3 −1.3 0.4 0.1

Since the reported data covered such a wide range of frequencies, collection geometries, and sea
conditions, these conclusions give confidence that these models would be applicable over a much
wider range of conditions and with different radar sensors. In future work, we will focus on the
improving the usefulness of the 3MD model. This can be achieved by speeding up the parameter
estimation and understanding how the model parameters can be related to our understanding of the
ocean scattering.
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