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a b s t r a c t

This paper presents a hybrid prognostics approach forMicro ElectroMechanical Systems (MEMS). This approach

relies on twophases: an offline phase for theMEMSand its degradationmodeling, and an online phasewhere the

obtained degradationmodel is usedwith the available data for prognostics. In the online phase, the particle filter

algorithm is used to perform online parameters estimation of the degradation model and predict the Remaining

Useful Life (RUL) of MEMS. The effectiveness of the proposed approach is validated on experimental data related

to an electro-thermally actuated MEMS valve.
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1. Introduction

Nowadays, MEMS devices are used in several industrial segments

such as automotive, medical and aerospace, where they contribute to

achieve important tasks. However, reliability of MEMS is one of their

major concerns [1]. They suffer from various failure mechanisms,

which impact their performance, their availability and reduce their life-

time. Due to the significance of such aspect, several research works

dealing with the reliability of MEMS have been published, such as

[2–6]. The most used methodology to study the reliability of MEMS

was proposed by the Sandia National Laboratories [7,8]. The aim of this

methodology is to improve the reliability of MEMS based on the identi-

fication and the comprehension of their failure mechanisms and the

definition of their predictive reliability model.

Improving reliability of MEMS devices has several advantages, such

as increasing their lifetime and improving their availability. Neverthe-

less, reliability still has some limitations. It is defined as the ability of a

product or system to perform as intended (i.e., without failure and within

specified performance limits) for a specified time, in its life cycle conditions

[9]. According to this definition, reliability is valid only for given condi-

tions and a period of time. This is the case, for example, for cars which

are guaranteed by automobile manufacturers for a period of time in

given operating conditions. In this situation, the reliability is estimated

without taking into account the specific utilization of each car (driver

profile, environment conditions, roads quality, frequency of use, etc.).

However, in practice, the lifetime should bedifferent fromone car to an-

other depending on how and where it is used. Furthermore, the predic-

tive reliability models are obtained from statistical data on

representative samples. These models, which are generic for all the

samples, are not updated during the utilization. This means that, once

they are estimated, the model parameters still constant while they

should change due to the factors mentioned previously.

Prognostics and Health Management (PHM) can be a solution to ad-

dress the above limitations. PHM is the combination of six layers that

collectively enable linking failure mechanisms with life management

(Fig. 1). It makes use of past, present, and future operating conditions

in order to assess the health state of the system, diagnose its faults, up-

date the degradation model parameters, anticipate failures by

predicting the RUL and improve decisionmaking to prolong the lifetime

of the system.Within the framework of PHM, prognostics is considered

as the core activity. It is defined by the PHM community as the estima-

tion of the RUL of physical systems based on their current health state

and their future operating conditions.

Prognostics can be done according to three main approaches:

1) model-based (also called physics-of-failure), 2) data-driven and

3) hybrid (or fusion) prognostics approaches. The first approach deals

with the prediction of the RUL of systems by usingmathematical repre-

sentation to formalize physical understanding of a degrading system,

and includes both system modeling and physics-of-failures (PoF) [10].
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The second approach aims at transforming raw monitoring data (tem-

perature, vibration, current, voltage, etc.) into relevant information,

which are used to learn models for health assessment and RUL predic-

tion [10]. Finally, the third approach combines both previous ap-

proaches and benefits from both to overcome their drawbacks.

Prognostics results obtained by this approach are claimed to bemore re-

liable and accurate [11].

Although its benefits are well proven, there are few contributions ad-

dressing fault prognostics of MEMS [1,12]. To fill this gap, a hybrid prog-

nostics approach for MEMS is proposed in this paper. Furthermore, and

in order to demonstrate its performance, the proposed approach is ap-

plied to an electro-thermally actuatedMEMSvalve. All the steps of the ap-

proach areperformed: frommeasurements acquisition toRUL estimation.

The rest of the paper is structured as follows. Section 2 presents the

proposed prognostics approach. The main steps of the implementation

of the used prognostics tool are summarized in Section 3. The effective-

ness of the proposed approach is demonstrated in Section 4, based in an

application to a MEMS device. Finally, conclusions are drawn in

Section 5.

2. Proposed hybrid prognostics approach

The proposed prognostics approach, presented in Fig. 2, can be ap-

plied on different categories of MEMS at a condition that the following

assumptions hold.

1. The instrumentation needed to monitor the behavior of MEMS (sen-

sors, camera, etc.) is available.

2. Sufficient knowledge about the studied MEMS is available to derive

their nominal behavior models and identify their failure mecha-

nisms, which may take place during their utilization.

The prognostics approach relies on two phases: an offline phase to

construct the nominal behavior model of the MEMS, select a physical

health indicator (HI) and derive its degradation model, and an online

phase where the obtained degradation model is used for future behav-

ior prediction and RUL estimation. The principal steps of the approach

are explained hereafter.

• Nominal behaviormodel construction: it can be obtained bywriting the

corresponding physical laws of the targeted MEMS or derived exper-

imentally. Its complexity depends on the modeling assumptions

made during its construction. The parameters of the model can be

identified by exciting the MEMS and getting its time response. In

other cases, these parameters can be obtained from the manufac-

turer's specifications. In this paper, the nominal behavior model is ob-

tained by writing the corresponding physical laws, which are then

validated experimentally.

• Degradation model: it can be obtained experimentally through accel-

erated lifetime tests or given by experts. In this work, the degradation

model is related to drifts of the physical parameters of theMEMS (fric-

tion coefficient, stiffness, etc.). These drifts are considered as Health

Indicators (HI) and are obtained by analyzing the data acquired from

tests by using appropriate modeling tools (regression, curve fitting,

etc.).

• Accelerated lifetime test: it is an aging of a product that induces normal

failures/degradation in a short amount of time by applying stress

levelsmuch higher than normal ones (strain, temperature, voltage, vi-

bration, pressure, etc.). Themain interest is to observe the time evolu-

tion to predict the life span. According to Matmat et al. [13], the

simplest andmost useful accelerated lifetime test to derive the degra-

dationmodel of a MEMS is to stress it by applying a square signal (cy-

cling).

• Prognostics modeling: prognostics is divided into two main stages:

learning and prediction. In the learning stage, the prognostics

tool combines the available data with the degradation model to

learn the behavior of the system and estimate the parameters of
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its degradation model. This stage lasts until a prediction is required

at time tp. Then, in the prediction stage, the prognostics tool prop-

agates the state of the system and determines at what time the fail-

ure threshold (FT) is reached. In practice, the FT can be set either

experimentally, by observing the time evolution of the HI, or

given by an expert. In this paper, it is set according to a desired per-

formance that we defined. The performance criteria can corre-

spond to the stability, the rapidity, the precision, etc. It can also

be related to a decrease (or an increase) of the system's parameters

such as its compliance. Note that, the FT does not necessarily indi-

cate a complete failure of the system, but a faulty state beyond

which there is a risk of functionality loss [14]. Finally, the RUL is

calculated as the difference between the failing time tf and the

starting prediction time tp (Eq. (1)).

RUL ¼ t f−tp ð1Þ

In the offline phase, the time evolution of the selected HI is approx-

imated by a mathematical model to define the degradation model. In

the online phase, the parameters of the degradation model are un-

known and need to be estimated as a part of the prognostics process.

To do so, the particle filter algorithm can be used. It allows propagating

the state and managing uncertainties in the model parameters and the

prognostics phase. Besides that, its allows handling non-linear and

non-Gaussian situations.

3. Failure prognostics based on particle filtering

In the literature, several research works dealing with the particle fil-

teringmethod and its application to the prognosticswere published. For

more theoretical details, interested readers can refer to the work pub-

lished by Arulampalam et al. [15]. Consequently, this section aims at

summarizing the main steps which allow to understand the implemen-

tation of the particle filter for failure prognostics of MEMS and to easily

reproduce the proposed approach.

3.1. Particle filtering framework

The particle filter was introduced in 1993 as a numerical approxima-

tion to the nonlinear/non-Gaussian recursive Bayesian estimation

problem [16]. The problem of recursive Bayesian estimation is

defined by two equations: thefirst considers the evolution of the system

state fxk; k∈Ng which is given by

xk ¼ f xk−1;λk−1ð Þ ð2Þ

where k is the time step index, f is the transition function from the state

xk−1 to the next state xk and fλk−1; k∈Ng is the independent identically

distributed process noise sequence. The objective is to recursively esti-

mate xk from measurements introduced by the measurement model

fzk; k∈Ng

zk ¼ h xk; μkð Þ ð3Þ

where k is the time step index, h is the measurement function and fμk;

k∈Ng is the independent identically distributed measurement noise

sequence.

The main aim of the recursive Bayesian estimation problem is to re-

cursively estimate the state of the system by constructing the Probabil-

ity Density Function (PDF) of the state at time k based on all available

information, p(xk |z1:k).

It is assumed that the initial PDF of the state vector, also called the

prior, is available (p(x0 |z0)=p(x0)). The PDF p(xk |z1:k), known as the

posterior, can be obtained recursively in two main stages: prediction

and update.

Suppose that the required PDF p(xk−1 |z1:k−1) at time k−1 is

available.

• Prediction stage: in this stage the statemodel (Eq. (2)) is used to obtain

the prior PDF of the state at time k via the Chapman-Kolmogorov

equation:

p xkjz1:k−1ð Þ ¼

Z

p xkjxk−1ð Þp xk−1jz1:k−1ð Þdxk−1 ð4Þ

• Update stage: when a newmeasurement zk becomes available, one can

update the prior PDF via the Bayes rule

p xkjz1:kð Þ ¼
p zkjxkð Þp xkjz1:k−1ð Þ

p zkjz1:k−1ð Þ
ð5Þ

This gives the formal solution to the recursive Bayesian estimation

problem. Analytic solutions to this problem are available in a restrictive
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set of cases, including the Kalman filter, which assumes that the state

andmeasurementmodels are linear and λk and μk are additive Gaussian

noise of known variance. When these assumptions are unreasonable,

which is the case in many applications, and the equations

(Eqs. (4) and (5)) cannot be solved analytically, approximations are

necessary. One of the most used approximate solution for this kind of

problem is the particle filtering.

The particle filtering solution is a sequential Monte-Carlo method

which consists in representing the required posterior PDF by a set

of samples, also called particles, with associatedweights and computing

estimates based on these samples and weights. Different versions

of particle filtering are reported in the literature. In this paper, we

focus on the Sampling Importance Re-sampling (SIR) particle filer,

which is commonly used in the prognostics field [17–19]. To explain

the steps of the SIR algorithm, let suppose that at time step k = 0,

the initial distribution p(x0) is approximated in the form of a set of Ns

samples {x0
i }i=1

Ns with associated weights fwi
0 ¼ 1

Ns
g
Ns

i¼1
. Then, the

following three steps are repeated until the end of the process:

• Prediction: a new PDF is obtained by propagating the particles from

state k−1 to state k using the state model.

• Update: when a new measurement is available, the likelihood of the

particles p(zk |xk
i ) is computed. This probability shows the degree of

matching between the prediction and the measurement. Its calcula-

tion allows updating the weight of each particle.

• Re-sampling: this step appears to avoid a degeneracy of the filter. The

basis idea of re-sampling is to eliminate the particles with small

weights and duplicate the particles with large weights. The re-

sampling step involves generating a new set of particles {xk
i⁎}i=1

Ns by

re-sampling (with replacement) Ns time from an approximate dis-

crete representation of p(xk |z1:k). Surveys of re-sampling methods

for particle filtering can be found in [20]. In this work, the systematic

re-samplingmethod is used since it is simple to implement and offers

good results [21].

3.2. RUL estimation based on particle filtering

In prognostics, the particle filter is used for the learning and predic-

tion stages. During the learning stage, the behavior of the system is

learned and the unknown parameters of the state model are adjusted

consequently. When a prediction is required, at time tp, the posterior

PDF given by {xp
i ,wp

i }i=1
Ns is propagateduntil xi reaches the failure thresh-

old at tf
i. The RUL PDF is then given by calculating tf

i
− tp. The different

steps of the prognostics using the particle filter are summarized in Fig. 3.

In the next section, an application of the proposed prognostics ap-

proach to a MEMS device is presented. The SIR particle filter algorithm

is used to perform online prognostics.

4. Application and results

4.1. System description

The targeted device consists of an electro-thermally actuatedMEMS

valve of DunAn Microstaq, Inc. (DMQ), company (Fig. 4(a)). It is de-

signed to control flow rates or pressure with high precision at ultra-

fast time response (bb100 ms). It is currently being used in a number

of applications in air conditioning and refrigeration, hydraulic control

and air pressure control.

The valve is composed of three silicon layers. The center layer is a

movable membrane. The other two layers of silicon act as interface

plates to either electrical connections (top layer) or fluid connection

ports (bottom layer): common port, normally closed and normally

open. The maximum actuation voltage of the valve is 12 V.

4.2. Nominal behavior model construction

The actuator used inside the targeted MEMS is an electro-thermal

actuator. This actuator, presented in Fig. 4(b), is composed of hot arms

inclined to the horizontal axis by an angle θ and clamped to the sub-

strate and the freestanding central shuttle. When a voltage difference

is applied across the anchor sites, heat is generated along the beams

due to ohmic dissipation. The hot arms expand to push ahead symmet-

rically on the central part of the actuator (the shuttle). This part moves

in the direction shown in Fig. 4(b). The shuttle is connected to the
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Table 1

Numerical values used to calculate the constant β.

Parameter Symbol Value Unit

Young's modulus E 170 GPa

Section A 200 μm2

Angle of inclination θ 10 °

Thermal expansion coefficient h 2.5×10−6 K−1

(b)(a)

Fig. 4. (a) Electro-thermally actuated MEMS valve and (b) schematic view of its electro-thermal actuator.



membrane and its movement allows moving the membrane to open or

close the fluid ports.

F1
"!

and F2
"!

are the two forces generated by the thermal displace-

mentwhich act at the end of the hot arms. They are given by the follow-

ing equation:

F1
"!#

#
#

#
#
# ¼ F2

"!#
#
#

#
#
# ¼ EAhΔT ð6Þ

where E is the Young's modulus, A is the surface of the arm section, h is

the thermal expansion coefficient and ΔT is the temperature variation.

The resultant force F
!

can bewritten as the sumof the two forces F1
"!

and F2
"!

and the projection along ð i
!
; j
!
Þ leads to the following equa-

tion:

F i
!

¼ F1 i
!

þ F2 i
!

¼ 2EAhΔT sin θð Þ i
!

F j
"!

¼ F1 j
!

þ F2 j
!

¼ 0
!

(

ð7Þ

The electro-thermal actuator is modeled as a mass-spring-damper

(MSD) system. The application of the second fundamental law of dy-

namics leads to the following equation:

M a
!

¼
X

Fext
""!

¼ F f

"!
þ Fr

"!
þ F
!

ð8Þ

where a
!

is the acceleration, F f

"!
¼ − f _x i

!
is the friction force, Fr

"!
¼ kx i

!

is the restoring force, F
!

¼ 2EAhΔT sinðθÞ i
!

is the resultant displace-

ment force, x is the displacement, f is the friction coefficient, ks is the

stiffness and M is the mass.

M€xþ f _xþ ksx ¼ 2EAhΔT sin θð Þ ð9Þ

Due to the small size of the actuator, the inertial term M€x can be

neglected in Eq. (9) with regard to the other forces [23]. The validity

of this assumption will be discussed in Subsection 4.3. Based on this as-

sumption, the dynamic model simplifies to:

f _xþ ks ¼ 2EAhΔT sin θð Þ ð10Þ

To find a relation between the temperature variation ΔT and the

input of the system (voltage U), we measured ΔT for different values

ofU (from 0V to 12V). The temperature of theMEMS valve ismeasured

by using a PT100 RTD sensor. A linear approximation of the evolution of

ΔT as a function of U (Fig. 5) leads to the following expression:

ΔT ¼ αU ¼ 7:4U ð11Þ

By integrating this expression in the dynamic model, the following

equation is obtained:

f _xþ ks ¼ 2EAh sin θð ÞαU ¼ βU ð12Þ

where β=2EAh sin (θ)α is a constant. In β, two parameters are

unknown, which are A and θ. The values of these two parameters

are not given by the manufacturer and cannot be identified from

the time response of the MEMS. Then, two values for these two

parameters are assumed based on other works dealing with the

design and manufacture of electrothermal actuators. The assumed

values do not have an influence on the shape of the degradation

curve. Table 1 shows the numerical values of all the parameters to

calculate the constant β.

By applying the Laplace transformon Eq. (12), we derive the transfer

function given in Eq. (13):

X pð Þ

U pð Þ
¼

K

1þ τp
ð13Þ

where K ¼ β
ks
is the static gain and τ ¼ f

ks
is the time constant.

The obtained transfer function corresponds to a first order sys-

tem. In the next subsection, this model is validated experimentally

and its parameters are identified. These parameters are used in this

approach to select a HI, which allows to track the degradation of

the MEMS.

4.3. Experimental setup and tests

In order to validate the nominal behavior model and perform accel-

erated lifetime tests to generate the degradation model of the MEMS

valve, we designed and built an experimental platform (Fig. 6). It is

composed of five main parts:

1. The MEMS and its environment: each MEMS is fixed on a support

composed of a plastic part made by 3D printer, a metal plate to

allow heat dissipation as the MEMS heats a lot, input-output of

air connected to the fluid connection ports and an electronic
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Fig. 6. Overview of the experimental platform.
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Fig. 7. Support designed to fix the MEMS.



card for power supply. The MEMS is attached on the metal plate

under the electronic card by using silicone (Fig. 7).

2. Power supply part: it is composed of two voltage suppliers and two

Arduino Uno cards. The cards are used as a switch to cycle the

MEMS with the desired frequency.

3. Image acquisition part: image acquisition is accomplished by a “Guppy

Pro F-031” camera with a frame rate equal to 100 frames per second

(fps) and a light source for the camera to allow seeing the movement

of the membrane inside the MEMS. The communication between the

computer and the camera is ensured by a FireWire B cable. The ensem-

ble of images taken by the camera with aMatlab image-processing al-

gorithm (Algorithm 1) allow measuring the displacement of the

membrane of the MEMS and getting its time response.

Algorithm 1. Pseudo-code of the Matlab image-processing algorithm.

4. Temperature acquisition part: the temperature of the MEMS is mea-

sured by using a PT100 RTD sensor attached on the metal plate.

The communication between the PT100 RTD and the PC is ensured

by a National Instrument card (NI 9216) and a Labview interface.

5. Pneumatic part: this part is composed of an air supply, an air filter

and a pressure regulator.

To better show the different parts, a global synoptic of the experi-

mental platform is given in Fig. 8. Tominimize themechanical vibra-

tion, the experimental platform is placed on an anti-vibration table.

Before performing accelerated lifetime tests, one has to set the volt-

age value, which will be applied to the MEMS. For this purpose, static

tests were conducted by increasing gradually the voltage (from 1 V to

12 V) to find the displacement for various applied voltage values.

Based on that, the voltage chosen is this application to perform acceler-

ated lifetime tests is equal to 8 V. This value is not too high to not bring

up prematurely degradation and not too low to obtain enough

displacement.

Fig. 9 shows an example of an obtained time response of one MEMS

valve supplied by a periodic square signal of 8 V magnitude and 1 Hz

frequency.

This time response is typical of a first order system and this confirms

that the inertia can be neglected. The identification of the system pa-

rameters is based on the same experimental measurements and the

modeling described in Section 4.2. By usingMatlab system identification

toolbox, the transfer function can be obtained and all the system param-

eters can be easily identified. The time evolution of all the identified pa-

rameterswill be used to select aHI. The transfer function corresponding

to the time response presented in Fig. 9 is given in Eq. (14) and the iden-

tified parameters are given in Table 2.

X pð Þ

U pð Þ
¼

8:02

1þ 0:052p
ð14Þ

Accelerated lifetime tests consist in cycling continuously four

MEMS valves (Fig. 6). They are supplied by a periodic square signal

of 8 V magnitude and 1 Hz frequency. The measurements acquisition

is the same for all the tested MEMS. For each one of them the follow-

ing steps are applied: 1) adjust the MEMS below the camera using a

3D positioner until having a very clear image, 2) get the time
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response by using the Matlab image-processing algorithm, 3) identi-

fy the parameters of the system by using the Matlab system identifi-

cation toolbox, which leads to the transfer function of the obtained

time response, and 4) store the results in different files in a dedicated

computer for later use. Note that, the operating conditions and load

were kept constant during the cycling tests.

4.4. Degradation model

To get the degradation model of the MEMS, the accelerated lifetime

tests remained running for approximately three months, where the

MEMS valves were continuously cycled. During this period, measure-

ments were collected regularly. The raw results of the performed tests

are presented in Fig. 10. The decrease in the magnitude of the displace-

ment is related to the degradation in the tested MEMS valves. Among

the identified parameters, the compliance C (inverse of the stiffness)

has the same time evolution as the displacement (Fig. 11). Therefore,

the compliance is selected as the physical HI, which can be used to

track the degradation of the MEMS valves. The projection of this HI

can be exploited to predict the future behavior of each MEMS valve

and calculate its RUL.

To reduce variability of the raw experimental data and to remove

different peaks, smoothing process is performed to capture important

trends. This step is met by applying a robust local regression filter rloess

(or robust locally weighted scatter plot smooth method) with a span

value equal to 0.4 (i.e., 40% of the total number of data points in the

data set). Basically, rloess is a popular smoothing method based on ro-

bust locally weighted regression function and a second degree polyno-

mial. Given scattered data, rloess filter can compute the robust weight

for each data point in the span, which is resistant to outliers (it allocates

lower weights to outliers). Fig. 12 shows the filtered experimental data

using rloess filter.

By using the curve fittingmethod, the time evolution of the HI is ap-

proximated by a double exponential model, which represents the deg-

radation model of the MEMS valves:

HI tð Þ ¼ aexp btð Þ þ cexp dtð Þ ð15Þ

The numerical values of the exponential model parameters (a, b, c

and d) for the four tested MEMS valves are given in Table 3. The coeffi-

cient of determination (R2) values obtained from the curve fitting dem-

onstrate that the double exponential model fits well the data.

The four testedMEMS valves have the same form of the degradation

model (Eq. (15)), but with different values of the parameters. Thus, this

model is set as a generic degradationmodel for the studiedMEMS valve.

4.5. Prognostics modeling and results

To integrate the degradationmodel in the particle filter, thefirst step

is to write it in a recursive form to create the state model:

HI tkð Þ−HI tk−1ð Þ ¼ aexp btkð Þ þ cexp dtkð Þ−aexp btk−1ð ÞÞ−cexp dtk−1ð Þ

HI tkð Þ ¼ HI tk−1ð Þ þ aexp btkð Þ 1− exp −bð Þð Þ þ cexp d ) tkð Þ 1− exp −dð Þð Þ

ð16Þ

We note that no additive noise is added to themodel as in the theo-

retical form.We consider that the uncertainty ofmeasures is included in

the parameters of themodel identified by the filter. Regarding themea-

surement model, the experimental data are used in the filter. We as-

sume that the additive noise is unknown and its variance is managed

by the filter as described in [18].

4.5.1. Filter settings

The first step of the filter settings is the creation of the initial distri-

butions for the state and themodel parameters (a, b, c and d). The initial

distribution of the state is centered on the first measured compliance

value (HI(t=0)). The noise induced by the measurement instruments

and the form of the distribution are not known. In this case, we chose

an uniform distribution centered on the initial measured value with a

dispersion of ±0.05HI(t=0). For the unknown parameters, an uniform

distribution is also defined for each of them. The value on which each

distribution is centered is obtained by fitting the model to the data.

Finally, the number of particles to be usedmust be defined. The larg-

er it is, the better should be the prediction. However, a significant num-

ber of particles leads to a long calculation time. By refining the

initialization of the model parameters, it is possible to use fewer parti-

cles. Pitt et al. [24] proposed a methodology to choose that number of

particles. This methodology consists in launching the filter several
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Fig. 9. Time response of the MEMS valve. The two images of the membrane, 1 and 2, are

taken by the camera through the normally closed port. At 8 V, the membrane moves

(image 1) to create an output or an input of the air (circled part). At 0 V, the membrane

returns to its initial position (image 2).

Table 2

Numerical values of the identified parameters of the system (these values concern only an

example of measurement).

Parameter Symbol Value Unit

Displacement D 65 μm

Current I 0.5 A

Static gain K 8.02 μm/V

Time constant τ 0.052 s

Stiffness ks 2.7×10−2 N/m

Compliance C 37.03 m/N

Friction coefficient f 1.4×10−3 Ns/m
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Fig. 10. Experimental results: displacement as a function of time.



times to create statistics and choose the appropriate number of parti-

cles. We applied the same methodology to define this number. The re-

sults obtained below were obtained using 5000 particles. This number

provides good predictions with a reasonable calculation time.

4.5.2. Prognostics results

The RUL estimation of each MEMS requires a definition of a corre-

sponding FT. In this case study, the FT is set as the point at which the

HI value decreases by 60%. Obviously, this value can change depending

on the desired performance of the MEMS.

As explained in Section 3.2, prognostics is divided into two stages:

learning and prediction. During the learning stage, the state of the

MEMS (PDF of the HI) at time step k is estimated using the degradation

model and the state at time step k−1. The parameters of the state

model are consequently adjusted. Note that, the measurement model

is not needed since measurements of the HI are available. These mea-

surements are used in the update stage of the particle filter to update

the weights of the particles. This process lasts until a prediction is re-

quired at tp. At this time, the estimated PDF of the HI is propagated

until it reaches the FT at tf. The duration between tf and the starting

point of prediction tp gives the PDF of the RUL.

The settings described above is used to perform predictions of the

health state and RUL. To construct the time evolution of the RUL, the

prediction is launched at several time intervals (12 lengths of learning

data). Fig. 13(a) gives a prediction made with a length of learning data

of 60 days. The estimated health indicator is represented with a confi-

dence interval to compare with the actual values. The estimated RUL

corresponds to the median of the RUL PDF. The median RUL is chosen

rather than the mean RUL since it gives early estimates and has better

accuracy when more data are available. Note that, in PHM context, it

is better to have early estimates rather than late RUL to avoid latemain-

tenance interventions [25]. The particle filter allows managing uncer-

tainty of long-term predictions and the confidence to facilitate

decision making either offline for maintenance or online for control or

system configuration.

Fig. 13(b) shows the estimated RUL at frequent intervals compared

to the real one. One can clearly see that the accuracy of the RUL esti-

mates increases with time, as more data are available. Furthermore,

the real RUL values are within the prediction interval at the different

time steps. Finally, the uncertainties in RUL estimation decreases as

time passes. This is shown in Fig. 13(c), which represents the time evo-

lution of the RULPDF (only somePDFs are drawn tomake a readablefig-

ure). For example, at time equal to 37 days,we have a flat distribution of
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RUL, whereas at time equal to 81 days we have a sharp one. This evolu-

tion of the RUL PDF explains the increase of the prediction accuracy in

time. These obtained results demonstrate the accuracy and the signifi-

cance of the proposed prognostics approach.

5. Conclusion

Ahybrid prognostics approach is proposed in this paper. First, the ar-

chitecture of this approach and its different steps are presented. After

that, the used prognostics tool is introduced.

The proposed approach is applied to an electro-thermally actuated

MEMS valve. For this purpose, an experimental platform is designed

to validate the obtained nominal behavior model of the targeted

MEMS, perform accelerated lifetime tests and derive its degradation

model. In this work, the degradation of each MEMS was seen as a drift

in its physical health indicator, which corresponds to its compliance.

Once the degradation model is obtained, the SIR particle filter is used

to perform online prognostics. This tool allowed to estimate the degra-

dation model parameters, predict the future behavior of the MEMS and

calculate its RUL. The obtained results clearly demonstrate the effective-

ness of the proposed prognostics approach.

The estimated RUL values can be exploited to take appropriate

decision on systems in which the MEMS are used. However, this

aspect is not addressed in this contribution. Thus, as a future work,

it is expected to implement this approach on a real application,

including the decision part. The application consists in a centimeter

contact-less distributed MEMS-based conveying surface. It is

dedicated for distributed post-prognostics decision making

and aims at optimizing the utilization of the conveying surface,

maintaining a good performance as long as possible and avoiding

loss or damage of transported micro-objects.
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