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Abstract— This paper presents a condition monitoring
approach for point machine prognostics to increase the reliability,
availability, and safety in railway transportation industry. The
proposed approach is composed of three steps: 1) health indica-
tor (HI) construction by data fusion, 2) health state assessment,
and 3) failure prognostics. In Step 1, the time-domain features
are extracted and evaluated by hybrid and consistency feature
evaluation metrics to select the best class of prognostics features.
Then, the selected feature class is combined with the adaptive
feature fusion algorithm to build a generic point machine HI.
In Step 2, health state division is accomplished by time-series
segmentation algorithm using the fused HI. Then, fault detection
is performed by using a support vector machine classifier. Once
the faulty state has been classified (i.e., incipient/starting fault),
the single spectral analysis recurrent forecasting is triggered
to estimate the component remaining useful life. The proposed
methodology is validated on in-field point machine sliding-chair
degradation data. The results show that the approach can be
effectively used in railway point machine monitoring.

Index Terms— Adaptive feature fusion, feature selection and
evaluation, health state division, point machine sliding-chairs,
prognostics, segmentation, single spectral analysis, support vector
machine (SVM).

I. INTRODUCTION

HEALTH state assessment of components can be

described as an inspection process of the machine degra-

dation to detect the health state changes due to anomalies

from the condition monitoring (CM) data [1]. Hence, the

health state assessment information can be used in the devel-

opment of prognostics for complex systems’ monitoring such

as high-speed trains [2]–[4] and railway infrastructures, power

supply systems [5], overhead contact line [6], [7], and point

machines [8].

Railway point machines are one of the complex structures

in railway infrastructure, which are used to control the railway

turnouts at a given distance [9]. Thus, it is important to monitor

the point machine components in order to increase operational
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reliability, availability, and passenger safety [10]. Usually, the

general procedure of CM methods includes data preprocessing,

i.e., feature extraction, health indicator (HI) construction,

health state division, fault detection, and remaining useful

life (RUL) estimation steps.

After the extraction of time-based, frequency-based, and

time–frequency-based [11] features from the measurements,

the feature evaluation and selection are a key step in HI

construction. The feature evaluation and selection metrics can

be classified as follows.

1) Inherent, which filters the least interesting features

using some ranking threshold (e.g., trendability (with time),

monotonicity, and seperability [12]).

2) Consistent, which filters the least correlated features from

the feature population.

3) Hybrid, which either combines inherent and/or consistent

feature evaluation metrics to build a better feature selection

scheme [13].

Javed et al. [14] proposed inherent feature selection metrics

to evaluate the goodness of features for accurate prognostics

of two different real applications. A similar work was also

proposed in [15]. This paper is based on the inherent feature

evaluation metric integrated with genetic algorithm (GA) to

build a good prognostics HI for equipment CM. A linearly

weighted hybrid fitness function for prognostics feature selec-

tion was proposed in [16]. The proposed method utilizes the

GA in the weight optimization step for the combination of

features. However, despite the good optimization performance,

using heuristic algorithms such as GA in weight optimization

step of the hybrid metrics might be computationally expensive,

particularly, if there is an increase in the amount of feature

size. Moreover, although there are plenty of proposed feature

selection metrics in the literature, it is hard to have a generic

feature selection technique which is superior to others to build

a good component HIs [17]. Thus, the development of more

robust and computationally efficient feature evaluation and

selection methods is necessary for HI construction to improve

the accuracy of CM approaches for prognostics. One of the

techniques of building a good HI for component CM is the

feature fusion.

The main goal of feature fusion is to construct a generic

machine HI to enhance the information content about the

system degradation [18]. Since a single feature may contain

partial and/or less correlated information about the component

degradation [19], it might not include enough information

about the component degradation. Therefore, it is beneficial

to fuse different features that contain more complementary

information about the health state of the degrading machine.



Fig. 1. Proposed CM approach workflow.

A novel fusion approach based on the combination of

multiple linear regression models and superstatistics for prog-

nostics has been presented in [20]. Lui et al. [21] proposed

a composite health index demonstration approach through

weighted average fusion using multisensory data for prog-

nostics. Similarly, Yan et al. [22] proposed a HI construction

approach based on the linear fusion method for asset prog-

nostics, which operates under multiple operational conditions.

In the same domain, a probabilistic multisensor data fusion

approach for machinery CM, based on factoral analysis, was

proposed in [23].

Although there are different fusion methods that were

proposed for prognostics HI construction, there still remain

some challenges in multifeature fusion due to the nonlin-

ear degradation of components under different environments.

Hence, developing a fusion strategy which can adaptively

capture the local degradation changes conditioned to the

feature population behavior is necessary. When the com-

ponent HI is constructed, the obtained HI can be used in

health state division step to discriminate the degradation

levels.

The health state division can be defined as an assessment

process of a component health status by dividing the HI into

discrete degradation levels (e.g., healthy, faulty minor, and

faulty critical). A data-driven health assessment methodology

was proposed in [24] for failure prognostics of point machines

next to health state division. The health state division was

carried out by fitting two different degradation functions,

and then the divided states were used in RUL estimation.

A similar health state division approach using model fit-

ting techniques was proposed in [25]. Eker et al. [9] and

Eker and Camci [26] proposed a clustering-based health state

detection and probabilistic prognostics approach for point

machine monitoring. The proposed approach was compared

with a hidden Markov model (HMM)-based health state divi-

sion. However, HMM-based health state detection is compu-

tationally expensive, whereas the clustering-based approaches

may not guarantee that the change in health states is due to the

machine degradation. Indeed, the clusters, i.e., health states,

found by these tools may refer to variations of the operational

conditions rather than the variations due to degradation. Hence,

it is important to build a model which is computationally

efficient and invariant under the operational conditions. After

the health state assessment process, the obtained component

state information can be used in fault detection.

Fault detection can be described as a study of the change in

component health state magnitudes by measuring the statistics

of a fault propagation to characterize them as normal or faulty.

In the literature, fault detection and diagnostics have been

extensively studied for point machine monitoring by using

machine learning [27], [28], signal processing [29], and statis-

tical tools [30]–[32]. Lee et al. [33] proposed a fault detection

approach for railway point machines based on acoustic data

analysis. In this paper, time–frequency-based features were

extracted and some of them were selected and used to detect

and diagnose faults based on a support vector machine (SVM)

classifier. However, traditional supervised fault detection meth-

ods need a prior knowledge of the available data labels,

which may not be always possible to have such information.

Hence, it is preferable to build autonomous fault detection

methods, which do not require a prior knowledge of the data

in CM.

Based on the state-of-the-art analysis, this paper proposes

a CM approach for railway point machine prognostics to fill

the aforementioned gaps in the literature, particularly, in HI

construction via feature evaluation and selection and fusion,

health state assessment, i.e., health state division, and health

state detection. For this purpose, the proposed approach, which

is illustrated in Fig. 1, is composed of an offline phase and an

online phase.

In the offline phase, a new feature evaluation method for

prognostics feature selection, composed of hybrid feature

selection and consistency parameter ranking, is developed to

select the best representative feature class for fusion. In the

hybrid feature selection step, an affinity matrix is built from

the extracted feature pool and then, the features’ relative

importance weights are calculated. Then, inherent metrics such

as monotonicity, correlation, and robustness are calculated.



A weighted hybrid fitness function is then constructed by

combining the between (i.e., relative importance weights)

and within (i.e., inherent metrics) feature evaluation steps to

form initial-ranked (i.e., best to worse) prognostics features.

Afterward, the ranked features are used in the consistency

parameter ranking step. The main goal of the consistency

parameter ranking is to select the most consistent feature

class among the best features. The selected feature class

should have the highest consistency value. A component HI is

then built from the consistent feature class by the proposed

adaptive feature fusion (AFF) method. The AFF working

principle relies on linearly weighted fusion strategy, based on

the dynamically changing weights, conditioned to the machine

degradation evolution in time.

The obtained HI is then fed into a bottom-up (BUP) time-

series segmentation [39] algorithm and a silhouette segment

optimization to divide the machine health states. The segmen-

tation decomposes the given HI into different health states,

whereas the silhouette criterion (SC) [34] evaluates the HI seg-

ments to optimize the health states. By using the health state

division information, the unlabeled raw measurements can be

labeled (e.g., healthy, faulty-medium, and faulty-critical) prior

to supervised fault detection. Finally, an SVM classifier [35]

is trained by using the labeled raw CM measurements.

In the online phase, once the SVM detects the fault, the fail-

ure prognostics algorithm is triggered by using the fused HI.

The RUL of the sliding chair is then estimated by using a

single spectrum analysis recurrent (SSA-R) forecasting [36]

algorithm. The SSA-R is a nonparametric data-driven method

based on a combination of statistics, probability theory, and

signal processing concepts, which is used in time-series

decomposition, identification, and forecasting [37]. In the

literature, the SSA-R was used in fault detection [38], [39]

and failure prediction [40], [41] of different applications.

The proposed approach is implemented on in-field point

machine sliding-chair degradation data, which were col-

lected from a real system, to illustrate its effectiveness and

applicability.

The main contributions of this paper are as follows.

1) A new HI construction method for point machine

prognostics composed of a hybrid feature selection,

a consistency parameter ranking, and an AFF based

on a dynamic weight update strategy. Compared to the

heuristic methods [16], our feature evaluation method is

computationally efficient and effective for machine HI

construction.

2) Segmentation-based point machine health state assess-

ment (i.e., health state division). The segmentation-based

health state division method can detect health state

transitions better than clustering-based techniques [9],

and it is robust against the nonmonotonicity problem,

which is more likely seen in clustering-based health state

division methods.

3) An autonomous health state classification regardless of

a priori knowledge. Compared to traditional supervised

methods, our health state classification method relies

on an unsupervised data labeling strategy that labels

Fig. 2. (a) Raw data (DN is the N th sample). (b) Extracted feature set
( fM,N ). (c) Selected feature subset ( fK ,N , where K < M).

unlabeled measurements autonomously, regardless of the

user intervention.

4) Finally, the application to real data related to railway

point machines.

This paper contains four sections after the introduction.

Section II explains the proposed approach. The point machine

description, the data collection procedure, and the pro-

posed approach results are presented in Section III. Finally,

Section IV concludes this paper.

II. PROPOSED APPROACH

In this section, the offline and online phases of the proposed

approach will be explained. The offline phase includes hybrid

feature selection and consistency parameter ranking steps,

segmentation-based health state division and optimization, and

fault detection tool training. The online phase includes fault

detection and SSA-R-based failure prognostics for component

RUL estimation. The proposed CM approach workflow is

shown in Fig. 1.

A. Feature Ranking and Consistency Evaluation

In this paper, time-domain-based features such as skewness,

root mean square (rms), kurtosis, mean, standard deviation

(stdev), variance (var), crest factor (crfactor), and peak-to-peak

(p2p) are extracted from the point machine sliding-chair CM

data. The extracted statistical features with different degra-

dation behaviors (e.g., increasing or decreasing) in different

scales are normalized before the selection step [(1) and (2)].

Equation (1) is used to normalize the features with a decreas-

ing trend, whereas (2) is used to normalize the features with

an increasing trend. The developed feature evaluation steps are

shown in Fig. 2.

Fi = (Di − min(Di ))

(max(Di ) − min(Di ))
; where Di,t = fi,t

max( fi )
(1)

Fi =
(Di − min(Di ))

(max(Di ) − min(Di ))
; where Di,t =

min( fi )

fi,t
(2)

where fi,t is the i th feature data point at time index t (t =
1, . . . , T ), T is the feature length, and Fi is the i th normalized

feature.



The hybrid feature selection, that is to rank the best features, 
is carried out in two steps. In Step 1, the affinity matrix 
(4) is built using the Euclidean distance (3) in the following

equation:

dist( f p, fq ) =

√√√√
N∑

i=1

( f p,i − fq,i )
2 (3)

where N is the length of the given features p and q

AffinityM×M =
{
0 if p = q

dist( f p, fq ) if p 6= q
(4)

where dist( f p, f q) is the Euclidean distance between the fea-

tures f p and fq from the feature population with a size of M .

The relative importance weight wi of the i th(∀i = 1 . . . M)

feature is calculated by using the exponential membership

function (5). A feature with the minimum interclass distance

is assigned with the highest weight (w) value in the feature

selection.

wi = exp


−1 ×

M∑
i=1

dist( f i,1)

M


 . (5)

In Step 2, inherent metrics such as monotonicity (Moni ),

correlation (Corri ), and robustness (Robi ) are calculated

using (7)–(9). Then, a hybrid feature evaluation function is

built.

The feature monotonicity metric is used to extract increas-

ing or decreasing trend information. The feature correlation

measures the linearity statistics between the degradation and

time. The robustness metric stands for the features’ resistance

to the measurement noise. The correlation parameter utilized

in this paper is based on Pearson’s correlation coefficient [42].

Moni ( fi ) =
(∣∣∣∣∣

# d
d fi

> 0

N − 1
−

# d
d fi

< 0

N − 1

∣∣∣∣∣

)
(6)

where Moni is the monotonicity value for the i th feature ( fi )

with the length of N . The absolute value of the difference

between the number of positive (#(d/d fi ) > 0) and negative

(#(d/d fi ) < 0) derivatives gives the monotonicity value.

A feature with the higher monotonicity indicates a better

degradation with an increasing/decreasing trend

Corri ( fi , Ti ) =
(
cov( fi , Ti )

σfiσTi

)
(7)

where cov is the covariance of the i th feature ( fi ) with the

time vector T , and σ is the standard deviation. To calculate

the features robustness, first of all, the given feature should

be decomposed into the trend and residual components. The

residual component (res fi ) of a feature fi is extracted by

subtracting the smoothed feature smoothed_ fi (trend) from the

original (noisy) feature fi , as given in (8). Then, the robustness

is calculated by using (9)

res fi = fi − smoothed_ fi (8)

Robi ( fi ) =




N∑
n

exp
(
−

∣∣∣ res f i

fi

∣∣∣
)

N


 (9)

where N is the length of the i th feature ( fi ). Then, the features

are ranked by using the hybrid feature ranking function given

in (10). The hybrid ranking function is the combination of

the inherent metrics weighted by the corresponding relative

importance weights.

hybRrankingi =
M∑

i=1

[wi × Moni , wi × Corri , wi × Rubi ].

(10)

Finally, the hybRranking vector is sorted in a descending

order starting from the highest relevant feature to the lowest

relevant feature. Once the feature ranking step is completed,

the ranked features are fed into the consistency evaluation step

to select the most consistent feature class for the fusion.

The goal of the feature consistency evaluation can be

described as an analysis of the correlation statistics among

the given feature set to select the most consistent class of

features. In regard to this, the optimal (i.e., the most consistent)

class can be obtained by an incremental evaluation method.

To do this, the first k number of features is selected. Then,

the consistency parameter Conk is calculated. In each iteration,

the same procedure is repeated by incrementing the value of k

by 1, i.e., adding a new feature to the previous class, until the

whole feature set is evaluated. Finally, the feature class with

the size of K (K < M) can be determined as the optimum

consistent class with the maximum consistency parameter.

The Conk parameters are calculated by using the following

equation:

Conk = exp

(
−std (HIEOL)

mean |HIEOL − HI0|

)
, ∀k = 2 . . . (M − 1)

(11)

where HIEOL is a vector including the HI values at the end of

life, and HI0 is a vector including the HI values at the initial

time. The selected feature subset is then used to build a unique

component HI by using the AFF.

B. Adaptive Feature Fusion

In this section, the proposed AFF method, which is based

on the dynamic weight, is described to construct the generic

component HI.

Suppose that we have selected the most consistent feature

subset SN×k from the hybrid feature selection step, with k

features (xi , i = 1, . . . , k), where k = max(Con)(11) and

N is the number of observations. Then, the mean distance

vector di (12) between the given feature values x t
i at time t ,

(x i
t , i = 1, . . . , k, t = 1, . . . , N) is calculated as given in (12).

It is obvious that the feature value x t
i with the min(d i ) has the

maximum relevance to the given feature values x
j
t , (i 6= j,



Fig. 3. Simulated features with varying mean distance values.

j = 2, . . . k, ) at time t . Therefore, the following weight wt
i

is assigned to x t
i , as given in (13). As the feature degradation

behavior changes in time, the weights assigned to each feature

value change adaptively, conditioned to the distance parameter

between the feature observations.

di (x t
i ) =

1

k − 1
×

N∑

i 6= j,t=1

‖x t
i − x t

j‖
2 (12)

wt
i = exp(−1 × di ). (13)

After the construction of the dynamic weights for the given

features at time t , the features are weighted and combined

to get the generic HI for prognostics. The final form of the

proposed AFF is given in the following equation:

Ft =

N∑
i=1

wi,t fi,t

N∑
i=1

wi,t

=

N∑
i=1

[
exp

(
−1 ×

(
1

k−1
×

N∑
i 6= j,t=1

∥∥x t
i −x t

j

∥∥2

))]
× f i,t

N∑
i=1

(
exp

(
−1 ×

(
1

k−1
×

N∑
i 6= j,t=1

∥∥x t
i − x t

j

∥∥2

)))

(14)

where Ft is the fused feature at time t (t = 1, . . . , N).

To illustrate the dynamic evolution of the feature values,

we have simulated four exponentially degrading features

( f1– f4), as shown in Fig. 3. The vertical solid lines at each

time index indicate the in-between feature values mean dis-

tance, which can be referred to error bars. After the fifth cycle,

the variance between f4 and the other features increases and

the length of the error bars changes dynamically. In contrast,

the features f1,2,3 keep the similar pattern of error length,

indicating the correlation in failure propagation. It is most

likely that this kind of feature propagations can happen in most

applications, assuming that each feature (or sensor) has its

distinct physical meaning with the varying failure propagation.

TABLE I

BUP TIME SERIES SEGMENTATION PSEUDOCODE

Hence, a fusion algorithm should be able to cope with the

local changes in failure propagation when constructing the

component HI.

After the feature fusion step, the combined generic HI

is used in the health state division, which is explained in

Section II-C.

C. Segmentation-Based Health State Division

and Optimization

In this paper, the BUP time-series segmentation tech-

nique [43] is used in health state division. In a BUP

segmentation, which is a piecewise linear approximation tech-

nique, the two adjacent segments are merged by calculating the

cost function. The same procedure is repeated iteratively until

a stopping criterion is met. A detailed explanation of the BUP

time-series segmentation can be found in [43]. A pseudocode

for the BUP algorithm, which is used in this contribution,

is shown in Table I.

Since the BUP decomposes the given feature into homoge-

nous subsequences, each segment can be treated as a different

machine health state with different degradation levels. Thus,

the feature segments can be used in machine health assessment

for fault detection and prognostics.

Generally, segmentation techniques are supervised and they

need a predefined threshold or segment number prior to the

segmentation. Therefore, a segment evaluation is needed to

optimize the segment numbers and get the best homogeneous

segments. In this paper, the optimum segment evaluation is

carried out by using a well-known within cluster consistency

evaluation technique, which is the SC [34].

The SC, which measures the within-class data consistency,

is used to evaluate the optimal number of segments in the

health state division.

Let us consider a(i) as the within-segment mean distance

from a point Mi to the other points in the same segment.



If Mi ∈ Sk , (k = 1, . . . , K ), then we have

a(i) = 1

nk − 1
×

∑

i 6= j

d(Mi , M j ) (15)

where K is the total number of segments and nk is the length

of the segment Sk . Next, the mean distance δ(Mi , Sk′ ) of Mi

to the points of each of the other segments Sk′ is calculated as

δ(Mi , Sk′ ) = 1

nk′
×

∑

i ′∈Ik′

d(Mi , Mi ′ ) (16)

where Ik′ is the set of observation indices belonging to the

segment Sk′ . Then, the smallest mean distance is selected and

denoted as b(i), as given in (17). The silhouette width for each

point Mi is then calculated by using (18).

b(i) = min
k′=k

γ (Mi , Sk′ ) (17)

s(i) =
b(i) − a(i)

max(b(i), a(i))
(18)

s(i) takes the values between −1 and +1 (−1 ≤ s(i) ≤ 1).

A higher value of s(i) indicates that Mi is well matched to its

segment. If most data points have a higher silhouette value,

then the segmentation results are appropriate. Otherwise,

if they have a lower value, then the segmentation process may

have few or many segments. The final SC for a given segment

number is constructed by using the following equation:

SC =
1

K

K∑

k=1

µk (19)

where µk is the mean silhouette width for a given segment Sk .

The optimum number of segments in the health state division

is then calculated by taking the maximum of the SC in the

time-series segmentation.

D. Fault Detection

The SVM classifier is chosen for fault detection due to

its good accuracy and capability of performing linear and

nonlinear data classification [44], especially on small sample

data sets [45].

The initial principle of SVM is to separate given data

into distinct two classes by finding an optimum decision

hyperplane that maximizes the margin between two imaginary

parallel planes (support vectors). In SVM, the kernel function

describes the similarity measure of given data points. The ker-

nel selection has been accepted as one of the major problems in

SVM classification. There are several kernel functions used in

SVM-based classifications. In this paper, a polynomial kernel

with a degree of 3 is used in the health state detection due to

its good classification performance among the others such as

quadratic and Gaussian. Interested readers are referred to [46]

for more detailed information about SVM with different kernel

functions.

E. Failure Prognostics With Single Spectral Analysis

Recurrent Forecasting

This section will explain the steps of a basic SSA algorithm

for time-series forecasting. The interested readers are referred

to [37] for more information about the SSA.

Briefly, the algorithm principle is based on two stages:

decomposition and reconstruction, each with two steps. In the

first stage, the time series Ts = {tsn, n = 1, . . . , N} is

decomposed into several independent components (i.e., trend,

periodic oscillatory, and noise). In the second stage, Ts is

reconstructed by using the less noisy components.

1) Stage-1: Decomposition: The decomposition is accom-

plished in two steps; embedding and singular value decompo-

sition (SVD).

Embedding: in this step, the 1-D time series Ts is

transformed into a trajectory matrix composed of L-lagged

X i = (ts1, ts2, . . . , ts i+L−1)
T vectors, where K = N − L +1.

The window length L should be assigned with an integer from

the range of 2 ≤ L ≤ N
/
2. The trajectory matrix X , which

is an output of the embedding step, takes the form of Hankel

matrix (20):

X = [X1, . . . X K ]

=




ts1 ts2 ts3 . . . tsk

ts2 ts3 ts4 . . . tsk+1

ts3 ts4
...

...
...

...
...

...
...

...

ts L ts L+1 tsL+2 . . . ts N




. (20)

The Hankel matrix has equal elements on the diagonals,

i.e., i + j = constant, i , j are the row and column

indices.

Singular value decomposition (SVD): This step expands the

matrix X by using SVD into a sum of weighted orthogonal

matrices. The expansion of the X(L × K ) matrix is obtained

through the eigen decomposition of the covariance matrix C =
X X

T . After the eigen decomposition, a set of L eigenvalues

(λ1 ≥ λ2 ≥ λ3 ≥ . . . ≥ λL ≥ λ0) and the corresponding

U1, U2, . . . UL eigenvectors are obtained. If d = maxi, λi >

0, i.e., the number of nonzero eigenvalues is equal to the

rank(X), then the SVD of the trajectory matrix X can be

written as X = E1 + E1 + . . . Ed , where Ei =
√

λiUi V
T

i and

Vi = X T Ui√
λi

, (i = 1, . . . , d) is the principal components. The

collection of (
√

λi Ui Vi ) is defined as the eigentriple of the

trajectory matrix X .

2) Stage-2: Reconstruction: The reconstruction stage of the

SSA is accomplished in two steps: grouping and averaging.

Grouping: This step splits the X i matrices into several

X I = X i1 + . . .+ X ip group matrices, where I = {i1, . . . , i p}.
After getting the SVD of X , the split of the 1, . . . , d indices

into the disjoint I1, . . . , Im subsets gives the following form:

X = X I1 + . . . + X Im (21)

Averaging: In this step, X I j is transformed into a Hankel

matrix to reconstruct the original time series through the

diagonal averaging or by the “Hankelization” process H().



Let us assume that si j is an element of the generic matrix S,

then the nth term of the reconstructed series is obtained by

averaging the si j over all i, j , such that i + j = n + 2.

H(S) can be referred as the reconstructed time series from

S matrix with the size of N . By applying the “Hankelization”

to all X = X I1 + . . . + X Im , we obtain the expanded X =
H (X I1) + . . . + H (X Im

). This procedure is equivalent to the

decomposition of the original series T s = {tsn, n = 1 . . . N}
into a sum of m series: ts t =

∑m
k=1 T̃ s

k

t (t = 1, . . . N),

where T̃ s
(k)

N = { ˜ts(k)
1 , ˜ts(k)

2 , . . . , ˜ts(k)
N corresponds to the matrix

H (X Ik
).

The SSA-R algorithm, which is used in forecasting, will be

presented hereafter.

a) SSA-R forecasting: The main principle of the SSA-R

forecasting tool is based on the linear recurrent relation (LRR).

To perform the SSA-R forecasting, the given time series

T s = {tsn, n = 1 . . . N} satisfies an LRR of order d if

there exist the coefficients a1, . . . ad , such that: T si+d =∑d
k=1 ak T s i−d+k , N − d ≥ i ≥ a, ak 6= 0 and d < N .

The coefficients (weights), which are used in the SSA-R

forecasting, are obtained from the eigenvectors in the SVD

step [47]. The future values of the reconstructed time series

can be predicted by choosing the first r eigentriples.

Let E be the chosen numbers of eigentriples, Ui ∈ R
L and

i ∈ E are the eigenvectors, Ūi ∈ R
L−1 is the L−1 component

vector of the Ui , ρi be the last component of Pi ,v
2 =∑

i∈E ρ2
i , and T̃ sN = {t̃ s1, . . . ,̃ tsn be the reconstructed series

by E . We define L = span(Ui , i ∈ E) as the linear space

spanned by Ui in an orthonormal base (i.e., which is not a

vertical space). Suppose that /∈ eLL, eL = (0, 0, . . . , 1)T and

v2 < 1. Then, it can be proven that the last component yL of

any vector F = ( f1, f2, . . . , fL )T ∈ L is a linear combination

of the first components, i.e., f1, f2, . . . , fL−1(yL = a1 fL−1 +
. . . + aL−1 f1), where R = (aL−1, . . . , a1)

T is defined as:

R = 1

1 − v2

∑

i∈E

ρi Ūi . (22)

The h-step ahead prediction of the time series Z N+h =
{z1, z2, . . . , zN+h } can be obtained by:

zi =





˜ts i , i = 1, . . . , N
L−1∑

j=1

a j zi− j , i = N + 1, . . . , N + h.
(23)

The zN+1, . . . , zN+h values are the h-step ahead predictions

of the time series Z .

Note that the selection of the parameters L (window length)

and r (number of components) is very important in the SSA.

A detailed information about the selection of the parameters

can be found in [47].

b) RUL prediction: Before the RUL prediction, the HI,

taken as a time series, is divided into two sets: training and

testing. The training set is used to tune the SSA-R algorithm,

while the testing set is used to estimate the RUL. In this paper,

the training sample includes the healthy state time series,

whereas the testing sample includes the faulty and the critical

state time series.

The estimated RUL (eRULp) of the sliding-chair plate

degradation, at each prediction point (p = N, N +1, . . . N +i ;
p ≤ CEOL), is calculated as:

eRULp = CEOL −
M∑

m

(Fm ≤ EOLT ) (24)

where N is the initial prediction time, CEOL is the component

failure time, Fm is the predicted series with length m, EOLT

is the failure threshold, and i is the prediction step. The RUL

estimation is based on the one-step-ahead prediction.

III. APPLICATION AND RESULTS

A. System Description and Data Collection

Since point machines are one of the complex systems of

the railway infrastructure, they have many failure modes such

as the dry sliding chair, locking system, motor state, clutch

slipping, and electric peripheral wear [48].

This paper investigates the dry sliding-chair failure mode

of the point machine, which has been generated by an accel-

erated aging procedure. Briefly, this aging can be defined

as a manual contamination process (i.e., soiling or scratch-

ing out the grease) of the sliding-chair plates to obtain the

slowly progressive failure modes in a short period of time.

Fig. 4 shows the in-field experimental test-rig setup [Fig. 4(a)],

the point machine [Fig. 4(b)], and the accelerated sliding-chair

degradation modeling procedure [Fig. 4(c)] on the turnout with

12 wooden traverses (Tr.).

Sliding-chair plates are the metal assets of the turnout

system that assist the point machine drive rods in moving

the rail blades easily. The sliding-chair degradation data were

collected from the real Turkish State Railways point machine

in Tekirdağ, Turkey. This turnout system has 12 sliding-chair

plates in total. At first, all the 12 plates were individually

lubricated and the point machine was run 10 times in each

movement to get the first healthy (fault-free) CM sensory

data. Afterward, the contamination (sprinkling dust or sand)

process took place by soiling three farthest (10th, 11th, and

12th) sliding-chair plates from the point machine to get an

initial faulty state. The second faulty state was created by

soiling the ninth sliding-chair plate after the first contamination

process. The accelerated failure process was repeated until a

final and complete sliding-chair failure state was created. After

each step of the contamination process, the point machine

was run 10 times from normal-to-reverse (forth) and reverse-

to-normal (back) positions to collect the sensory data. The

contamination on the sliding-chair plates results in a variation

of the performance measurement signals (e.g., force, current,

voltage, and so on) due to the increasing friction force against

the turnout driving rod force applied to move the blades

from normal-to-reverse (forth) or reverse-to-normal (back)

positions. The total number of degradation data collected in

each state is 20 (10 in back and 10 in forth movements).

Note that no trains went through the turnout system during the

data acquisition operation. The turnout system was temporarily

reserved as an experimental point machine for the sliding-chair

failure modeling and data collection purposes only.



Fig. 4. (a) Experimental test-rig installation, (b) Point Machine and (c) Degradation modeling.

Different sensors (see Fig. 5) were installed on the electro-

mechanical point machine components (e.g., drive rods,

cables, rails, and so on) to monitor and collect degradation

data. Fig. 5 shows the collected force, DC current, voltage,

and proximity sensor data from the point machine. The CM

data collected by the force and current sensors are the most

commonly used sensors in the literature for point machine

diagnostics and prognostics [48]. In this paper, the force

degradation data are used to validate the proposed approach.

B. Results and Discussion

1) Feature Selection and Fusion: Fig. 6 shows the extracted

time-domain-based statistical features from the raw force

measurements, and Fig. 7 illustrates the normalized features

by using (1) and (2).

The hybrid feature selection was carried out in two steps.

In Step 1 (Table II), the affinity matrix and the relative

features importance weights were calculated using (4) and (5).

In Step 2 (Table III), inherent metrics such as monotonicity,

correlation, and robustness were calculated using (6), (7), and

(9). Before calculating the monotonicity metric, the features

TABLE II

INTERCLASS FEATURE ANALYSIS AND THE CALCULATED

RELATIVE IMPORTANCE WEIGHTS (w) (STEP 1)

are smoothed by utilizing the moving average (MA) technique.

Step 1 results are shown in Table II, and Table III presents

the ranked features (F1{skewness}, F2{kurtosis}, F3{rms},

F4{mean}, F5{stdev}, F6{var}, F7{crfactor}, and F8{p2p})

after the hybrid ranking (hybRanking). Then, the ranked fea-

tures were fed into the consistency evaluation step to select

the best-correlated feature class.



Fig. 5. Sensors and collected measurements.

TABLE III

INTRACLASS FEATURE ANALYSIS AND THE CALCULATED HYBRID FIT-
NESS FUNCTION (hybRanking) RESULTS (STEP 2)

In the consistency evaluation step, the first k = 2 number

of features, i.e., F3 and F5, were selected and the parameter

Conk=2 was calculated. In each iteration, the same procedure

was repeated by incrementing the value of k by one until

the whole feature set was evaluated. Then, the feature subset

with the maximum consistency metric (11) was selected as

the best-correlated feature subset. The calculated consistency

parameters are given in Fig. 8(a), whereas Fig. 8(b) shows the

selected feature class, which has the highest Con.

Afterward, the selected feature class was used to build an

HI by using the AFF algorithm. Fig. 8(e) shows the fused HI

result, whereas Fig. 8(c) and (d) shows the distance values and

the dynamically adapted weights for the given HI observations.

In summary, the AFF algorithm can detect the features’ local

variations adaptively while constructing the global HI of the

degrading component.

2) Health State Assessment: Health State Division and

Labeling: The constructed HI is then fed into the BUP,

and silhouette segment evaluation to divide and optimize the

sliding-chair health states. First of all, the fused HI was

denoised by utilizing the MA technique to reduce the noise

impact on the segmentation and optimization steps. The BUP

segmentation algorithm was run several times using different

segment numbers, starting from 2 up to 10. After each seg-

mentation process, the SC was calculated. The maximum SC

was obtained in the second segmentation process, by initial-

izing the BUP with the number 3. Fig. 9 shows the health

state division and optimization results. The SC results are

shown in Fig. 9(a), and the segmentation results with fault

severity information (S1—no fault, S2—incipient fault, and

S3—severe fault) are shown in Fig. 9(b). The sliding-chair

degradation state transitions in the representation space [35]

are shown in Fig. 9(c), whereas the raw data samples from

each health state are shown in Fig. 9(d).

After the segment evaluation process, the raw force time

series were labeled. The assigned data labels to the force

measurements are shown in Table IV. The first 72 force mea-

surements were labeled as “healthy”, measurements between

73 and 78 as “faulty” and measurements between 79 and

100 as “critical” health states for the sliding-chair degrada-

tion. Then, the fault detection algorithm was trained. Note

that the proposed autonomous health state assessment method

does not need any prior knowledge of the data labels in fault

detection.

3) Fault Detection and Prognostics: By using the labeled

force measurements, the SVM was trained in the offline phase

and was tested in the online phase for fault detection. The main

focus of this step is to perform multiclass classification using

the SVM to detect the faulty force time series and identify the

triggering point for prognostics.



Fig. 6. Extracted time-domain features from force time series.

Fig. 7. Normalized time-domain features.

The fault detection was performed using two different

scenarios. Scenario-1 includes the healthy, the faulty, and the

critical force data classes. Scenario-2 includes only the healthy

and the faulty force data classes. By using these scenarios,

TABLE IV

DEGRADATION STATES AND THE CORRESPONDING LABELS

TABLE V

MULTISTATE CLASSIFICATION RESULTS FOR FAULT DETECTION

the fault detection based on the learned SVM was performed

and its performance in two cases was compared. To do this,

a 10-fold cross-validation was used in the SVM model training

step. The raw force data set was split into different training

(50% and 70%) and testing (50% and 30%) samples. The

data samples used in model training (MTr) and testing (MTs)

were selected randomly in each trial. The training (MTr_acc)

and testing (MTs_acc) accuracy values are the mean values

of 10 iterations for the corresponding training and testing

steps.

The sliding-chair fault detection results are shown

in Table V. In Scenario-1, due to less variance between the

health state transitions such as healthy, faulty, and critical

classes, the classification results are not as accurate as in

Scenario-2. Indeed, in Scenario-2, the healthy and faulty

classes were classified very accurately by the SVM in both

training samples. The Scenario-1 results can be evaluated in a

component fault severity assessment and prognostics, whereas

Scenario-2 results can be only used to detect an incipient

fault to trigger the prognostics algorithm for RUL prediction.

In summary, multistate classification based on the SVM for

fault detection could classify the states easily by using the

raw force data. Once the faulty state is detected by SVM, the

SSA-R forecasting is triggered to predict the RUL of the point

machine sliding-chair plates.

First of all, before the forecasting step, the L and r

parameters in the decomposition and reconstruction stages of

the SSA-R algorithm are initialized. The window length L

was initialized to 10, and r was initialized to 5. Fig. 10(a)

shows the first two reconstructed components of the HI, and

Fig. 10(b) shows the completely reconstructed HI by using the

initialized parameters. Note that using all the components in

the HI reconstruction decreases the information contribution

while increasing the noise impact. Therefore, in this paper,

only the first five-components were used in the reconstruction

and prediction.

Initially, the first 72-time series, i.e., series in the healthy

state, of the fused HI were considered as the training data



Fig. 8. (a) Consistency (Con). (b) Selected feature class. (c) Distance. (d) Weights (w). (e) Fused HI.

Fig. 9. (a) Silhouette (SC). (b) Optimum segments. (c) Space representation of health state transitions. (d) Force measurements from each state.

set, and the rest as the testing (28-time series) data sets,

i.e., series in the faulty and critical states, for RUL estimation.

Since the RUL estimation is based on one-step (cycle) ahead

prediction, the length of the training sample is increased in

each prediction, and the SSA-R was trained again as new

data points are added. Fig. 11 shows the RUL estimation



Fig. 10. (a) First two reconstructed components.(b) Reconstructed HI by
using the r = 5.

Fig. 11. RUL estimation results at each prediction (p = 73, . . . 100) time
for the sliding-chair degradation.

results at each prediction time (p = 73, 74, . . . , 100) for the

sliding-chair degradation. As shown in Fig. 11(b), the RUL

estimation errors (rRUL − eRUL) in the health state-2 (i.e.,

the degradation stage of the sliding chairs) is higher than

the estimated RULs in the health state-3. This is due to less

information that was provided to the SSA-R in the training

step. But, again data are available to train the SSA-R, the RUL

estimation error decreases [dashed line in Fig. 11(a) and (b)]

and the estimated RUL (eRUL) converges to the real RUL

(rRUL). Despite the poor RUL estimation results in the health

state-2 by the SSA-R, the RUL estimation results are improved

in the health state-3.

IV. CONCLUSION

In this paper, a CM approach for fault detection and

prognostics of sliding-chair failure was proposed.

In the offline phase, a goodness of prognostics features was

evaluated by the proposed hybrid and consistency evaluation

metrics to select the best feature class for fusion. Then,

the selected feature class was fused by the proposed AFF

fusion algorithm to build a generic component HI. After

fusion, the HI was fed into the health state assessment for

health state division and data labeling steps. The health states

were segmented by using the BUP time-series segmentation

algorithm, whereas the segments were optimized by using the

SC. After the data labeling process, the labeled force time

series were used in the training and testing steps of the SVM

for fault detection.

In the online phase, once the faulty state is detected by the

SVM classifier, the SSA-R algorithm was triggered to predict

the point machine RUL by using the fused HI. The results

show that the proposed approach for railway point machine

CM can be effectively used in the evaluation of prognostics

features and can be applied for online fault detection and

prognostics.

As a future work, it is planned to use different prognostics

tools in the RUL estimation problem. Furthermore, the results

will be integrated with the development of a post-prognostics

method to support better decision making in component main-

tenance planning.
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