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Abstract

We consider two variants of orthogonal colouring games on graphs. In these games, two
players alternate colouring uncoloured vertices (from a choice of m ∈ N colours) of a pair
of isomorphic graphs while respecting the properness and the orthogonality of the partial
colourings. In the normal play variant, the first player unable to move loses. In the scoring
variant, each player aims to maximise their score, which is the number of coloured vertices in
their copy of the graph. We prove that, given an instance with a partial colouring, both the
normal play and the scoring variant of the game are PSPACE-complete.

An involution σ of a graph G is strictly matched if its fixed point set induces a clique
and vσ(v) ∈ E(G) for any non-fixed point v ∈ V (G). Andres, Huggan, Mc Inerney, and
Nowakowski (The orthogonal colouring game. Theor. Comput. Sci., 795:312-325, 2019) gave
a solution of the normal play variant played on graphs that admit a strictly matched involution.
We prove that recognising graphs that admit a strictly matched involution is NP-complete.

Keywords: Orthogonal colouring game, orthogonal graph colouring, combinatorial game, scoring game,

strictly matched involution, PSPACE-complete, NP-complete.

1 Introduction

Graph colouring games have received significant attention since the early 1990’s when Bodlaender
reintroduced the vertex colouring game of Brams [14] under the name of the colouring construction
game [8]. In this game, there is a graph G whose vertices are initially uncoloured, and two players,
Alice and Bob, take turns colouring an uncoloured vertex of G from a set of k ≥ 1 colours, while
maintaining that the partial colouring is proper, i.e., any two adjacent coloured vertices have
distinct colours. Alice wins if all of the vertices of G are eventually coloured, while Bob wins
otherwise. The game chromatic number of a graph G, denoted by χg(G), is the minimum number
of colours k ≥ 1 such that Alice has a winning strategy in the colouring construction game. The
game chromatic number χg(G) of a non-empty class G of graphs is defined as

χg(G) = sup
G∈G

χg(G).
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Much is known about the game chromatic number for different graph classes such as the class F
of forests (χg(F) = 4) [13], the class C of cacti (χg(C) = 5) [25], the class O of outerplanar graphs
(6 ≤ χg(O) ≤ 7) [15], and the class P of planar graphs (7 ≤ χg(P) ≤ 17) [5, 27], to name a few.
The game has attracted significant attention due to its ties to graph colouring, which is one of the
classic problems in graph theory, but also due in part to two very interesting long-standing open
questions.

The first question was posed by Bodlaender in 1991 in [8]. Given a graph G and an integer
k ≥ 3, it asks to determine the computational complexity of deciding whether χg(G) ≤ k. It took
almost 30 years for any progress to be made on this question, with Costa et al. only recently
partially answering it in [10], where they showed that deciding if χg(G) ≤ k is PSPACE-complete
when k is part of the input. However, the question remains open when k is a fixed constant.

The second question, posed by Zhu in 1999 in [26], asks whether, for a given graph G, Alice has
a winning strategy with k+ 1 colours in G if she has a winning strategy with k colours in G. This
question is particularly intriguing since, intuitively, one would think that having more colours is
advantageous to Alice, but this question still remains open to this day.

There are also many other colouring games on graphs that have been studied. Some of them,
e.g., the edge colouring game [16] and the incidence colouring game [1], can be considered as
special cases of the vertex colouring game. Others, such as the colouring game [8, 23], the marking
game [26], and the orthogonal colouring game [2], rely on different colouring concepts. This paper
focuses on the latter game and a variant thereof.

The concept of orthogonality in graph theory is motivated by the orthogonality of Latin squares,
which is a major topic in finite geometry. Orthogonal edge colourings of graphs were already
considered by Archdeacon et al. [3] in 1985. In this paper, we consider orthogonal vertex colourings,
introduced by Caro and Yuster [9] in 1999, which strictly generalise the concept of orthogonality
of Latin squares (cf. Ballif [4]). Recall that a partial colouring of a graph G = (V,E) is proper if
any two adjacent coloured vertices have distinct colours. Two partial colourings cA and cB of G
are orthogonal if, for any two vertices v, w ∈ V that are coloured in both cA and cB , the ordered
pair of colours of v differs from the ordered pair of the colours of w, i.e.,

(cA(v), cB(v)) 6= (cA(w), cB(w)).

In this paper, we consider two game-theoretic variants of orthogonal graph colouring. Both
games are played on two isomorphic copies GA and GB of a given graph G by two players, Alice
and Bob. We identify the vertices of GA and GB with their preimages in G. Initially, every vertex
is uncoloured. Alternately, the players choose either GA or GB , and colour one of its uncoloured
vertices with a colour from the set {1, . . . ,m}, thus creating partial colourings cA and cB of G,
such that the properness and orthogonality of the partial colourings are not violated. The game
ends when the players are unable to move. We call the general framework of this type of game the
orthogonal colouring game. The winning conventions of the two variants of the game differ.

In the normal play variant NorMOCm(G) of the orthogonal colouring game, the first player
unable to move loses, and the other player wins. So, there is no possibility of a draw.

In the scoring variant MOCm(G) of the orthogonal colouring game, Alice owns GA and Bob
owns GB . A player’s score is the number of coloured vertices in their copy of G. When the players
are unable to move, the player with the higher score wins. If the scores are equal, there is a draw.

These games were introduced by Andres et al. [2] who called the scoring variant simply orthog-
onal colouring game. The scoring variant is particularly interesting since it is, to the best of our
knowledge, the first game that is both a graph colouring game and a scoring game. As we have
seen, graph colouring games have been vastly studied, but scoring games are also very well-studied
in combinatorial game theory. Scoring game theory was introduced in the 1950’s by Milnor [20],
but has only recently (in the last 10-20 years) gained a lot of attention. The papers [17, 18] intro-
duced some theory around scoring games in general, and there have been many papers as of late
focusing on different scoring games (see, e.g., [7, 12, 19, 24]).

In the scoring variant of the orthogonal colouring game, it is worth noting that playing in the
adversary’s copy of G may be advantageous in some cases. It may even lead to a win, as the
example of the game on the 4-cycle C4 played with two colours shows, which is won by Bob [2].
The main results of [2] are the introduction and characterisation of a class of graphs, called graphs
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admitting a strictly matched involution, where it is proven that Bob has a strategy to guarantee a
draw in the scoring variant.

In this paper, we answer several open questions regarding the complexity of the two variants of
the orthogonal colouring game. We first consider the complexity of the two variants of the game
when a partial colouring is given as part of the input before the game starts. Moreover, we denote
the normal play variant on a graph G with m colours and a given initial partial colouring c by
NorMOCm(G, c), and the scoring variant on a graph G with m colours and a given initial partial
colouring c is denoted by MOCm(G, c). Thus, an instance (G, c) of the games consists of a graph G
and an initial partial colouring c.

We prove the PSPACE-completeness of the normal play variant NorMOCm(G, c) using the
PSPACE-completeness of the Proper m colouring game proved by Schaefer [23] for m = 1 (in
which case the game is known as Node Kayles) and by Beaulieu et al. [6] for every m ≥ 2:

Theorem 1. Given an instance (G, c), the problem of determining the outcome of the normal
play variant NorMOCm(G, c) of the orthogonal colouring game under optimal play is PSPACE-
complete for all m ≥ 1.

A reduction from QSAT (shown to be PSPACE-complete by Schaefer [22]) is given to prove
the scoring variant MOCm(G, c) is PSPACE-complete:

Theorem 2. Given an instance (G, c), the problem of determining the outcome of the scoring
variant MOCm(G, c) of the orthogonal colouring game under optimal play is PSPACE-complete
for all m ≥ 3.

Such results are quite interesting since, as we have seen with the colouring construction game,
determining the complexity of colouring games in general is very difficult. Moreover, the complexity
of many scoring games is not known, as they can be notoriously difficult to analyse, so our results
are novel with respect to this aspect as well. We conclude by proving that the recognition of graphs
admitting a strictly matched involution is an NP-complete problem.

The paper is structured as follows. In Section 2, we introduce notation and define graphs that
admit a strictly matched involution. The proof of the PSPACE-completeness of the normal play
variant of the orthogonal colouring game with a partial colouring as part of the input is given in
Section 3, which is then followed by the proof of the PSPACE-completeness of the scoring variant
with a partial colouring as part of the input in Section 4. The NP-completeness of the recognition
of graphs admitting a strictly matched involution is proven in Section 5. In Section 6, we conclude
with some open problems.

2 Notation and Definitions

First, we fix some general notation. We use standard notation from computational complexity
theory (see, e.g., [21]). All graphs we consider are simple and undirected, and we use standard
notation from graph theory (see, e.g., [11]). By Kn (Cn, respectively) we denote the complete
graph (cycle, respectively) on n vertices. The graph 2K2 consists of two disjoint copies of a K2,
and the graph K1 ∪K2 is the graph on three vertices with exactly one edge.

Let G = (V,E) be a graph. An involution of G is a graph automorphism σ : V −→ V of G
that satisfies

σ ◦ σ = idV ,

where idV is the identity on V . An involution σ of G partitions the vertex set V into two sets: the
fixed point set

F1(G) = {v ∈ V | σ(v) = v}
and the set

F2(G) = V \ F1(G)

of vertices in 2-orbits of V under the action of σ. Andres et al. [2] defined an involution σ of G to
be strictly matched if

(SI 1) the set F1(G) induces a (possibly empty) complete graph and,

(SI 2) for every v ∈ F2(G), we have the (matching) edge vσ(v) ∈ E.
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In an orthogonal colouring game played with m colours on copies GA and GB of a graph
G = (V,E), an orthogonal pair is an ordered pair (sA, sB) of colours sA, sB ∈ {1, . . . ,m}, such
that there exists a vertex v ∈ V with cA(v) = sA and cB(v) = sB , where cA (cB , respectively)
corresponds to the partial colouring of the isomorphic copy GA (GB , respectively) of G.

3 Complexity of the normal play orthogonal colouring game

In this section, we show that the normal play variant of the orthogonal colouring game is PSPACE-
complete when a partial colouring of the graph is given as part of the input. The reduction is from
the Proper m colouring game under normal play convention, which is the following:

Definition 3 (Proper m colouring game). Given an initially uncoloured graph G, two players,
Alice and Bob, take turns colouring the uncoloured vertices of G with one of m colours while
maintaining that the colouring is proper. Alice goes first and only one vertex may be coloured by
a player on their turn. The first player who cannot colour a vertex loses.

Definition 4 (Proper m colouring game with given partial colouring). Given a graph
G with an initial partial vertex colouring c, two players, Alice and Bob, take turns colouring the
uncoloured vertices of G with one of m colours while maintaining that the colouring is proper.
Alice goes first and only one vertex may be coloured by a player on their turn. The first player
who cannot colour a vertex loses.

For both games, the problem is to determine whether Alice has a winning strategy.
As already mentioned, the following is well-known.

Theorem 5 (Schaefer [23]). The Proper m colouring game is PSPACE-complete for m = 1.

Theorem 6 (Beaulieu et al. [6]). The Proper m colouring game is PSPACE-complete for
any m ≥ 2.

Corollary 7. The Proper m colouring game with given partial colouring is PSPACE-
complete for any m ≥ 1.

Proof. Since the Proper m colouring game with given partial colouring is in PSPACE
and the Proper m colouring game is its special case with an empty initial partial colouring,
the corollary follows immediately from Theorem 5 and Theorem 6.

The hardness proof of Theorem 1 is mainly by reducing the Proper m colouring game
with given partial colouring to the game NorMOCm(G, c), the normal play variant of the
orthogonal colouring game with given initial partial colouring.

Proof of Theorem 1. For fixed m, by a game-tree search, the problem NorMOC(G, c) can be
solved for any instance (G, c). We need only memorise the nodes on the path from the root to
the actual node. Since the number of turns and possible plays is bounded above by the number of
uncoloured vertices remaining, the problem is in PSPACE.

Now we proceed to prove the PSPACE-hardness of the problem by a reduction from the Proper
m colouring game with given partial colouring. Then the result follows by Corollary 7.
Let (G, c) be an instance of the Proper m colouring game with given partial colouring.
We construct an instance (G′, c′) for the problem NorMOCm(G′, c′). From G we construct a new
graph G′. The informal construction of G′ is as follows. For one vertex vn of G, add m + 1 new
adjacent vertices and, for the rest of the vertices of G, add m new adjacent vertices. For one
of these new vertices adjacent to vn, vm+1

n , add m2 new adjacent vertices. See Figure 1 for an
example. In the copies G′A and G′B of G′, the m2 new vertices adjacent to vm+1

n are all coloured
such that all possible ordered pairs of two colours exist between two corresponding vertices in two
different copies of G′, and thus, all possible ordered pairs (a, b) of two colours of a vertex with
colour a in G′A and colour b in G′B are used (i.e., they are orthogonal pairs). For each vertex of
G in G′B , all of the m new adjacent vertices are coloured with the colours 1 through m, and, in
the case of vn, vm+1

n is left uncoloured. Lastly, the partial colouring of G given in the instance is
applied to the vertices of G in G′A. See Figure 2 for an example.
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Figure 1: Example of the construction of G′ from a graph G for m = 3.
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Figure 2: The initial partial colouring of G′A and G′B .
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Now, none of the new vertices added may be coloured either because they are already coloured
or due to orthogonality. None of the vertices in G′B may be coloured since they are already coloured
or they are adjacent to every other possible colour. The only vertices that may be coloured are the
vertices of G in G′A that are not already coloured in the instance given. Note that none of these
vertices have been played on in G′B , and so, orthogonality may not prevent any of these vertices
from being coloured any of the m colours. Thus, every move in the orthogonal colouring game is
now equivalent to a move in the Proper m colouring game with given partial colouring.

Formally, given an instance of the Properm colouring game with given partial colour-
ing, G = (V,E) and an initial partial colouring c, create a new graph G′ = (V ′, E′) as follows. Let
V = {v1, . . . , vn}. Then,

V ′ = V ∪
n⋃

i=1

{v1i , . . . , vmi } ∪ {vm+1
n } ∪ {vm+1,1

n , . . . , vm+1,m2

n }.

E′ = E ∪
n⋃

i=1

{(vi, vji ) : j ∈ {1, . . . ,m}} ∪ {(vn, vm+1
n )} ∪ {(vm+1

n , vm+1,`
n ) : ` ∈ {1, . . . ,m2}}.

For all j, q ∈ N with 1 ≤ j ≤ m and 0 ≤ q ≤ m− 1, the vertices {vm+1,qm+1
n , . . . , vm+1,qm+m

n }
are coloured q+1 in G′A and the vertex vm+1,qm+j

n is coloured j in G′B (the other copy of G′). This
results in every permutation of a pair of colours being forbidden by orthogonality. Now, for all i, j
(i ∈ N, 1 ≤ i ≤ n), the vertex vji is coloured j in G′B . Lastly, the vertices of G that are already
coloured in the partial colouring given in the instance are coloured the same in G′A. Clearly, the
construction of G′ is achieved in polynomial time.

Note that both G′A and G′B have partial colourings that are proper and their partial colourings
are orthogonal. Also, it is no longer possible to colour any vertices of G′B since the remainder of the
uncoloured vertices are adjacent to at least one vertex of each of the m possible colours. Finally,
it is not possible to colour any more of the new vertices added in G′A due to orthogonality, and
only the new vertices non-adjacent to the vertices of G in G′A have been coloured. Therefore, only
the uncoloured vertices of G in G′A may be coloured, and orthogonality cannot prevent any of the
m colours from being used on these vertices as none of these vertices have been coloured in G′B .
Thus, every move in this instance of the orthogonal colouring game is now equivalent to a move in
the given instance of the Proper m colouring game with given partial colouring.

4 Complexity of the scoring orthogonal colouring game

In this section, we show that the scoring variant of the orthogonal colouring game is PSPACE-
complete when a partial colouring of the graph is given as part of the input. The reduction is from
the QSAT problem which is the following.

Definition 8 (QSAT). Given a set of boolean variables x1, . . . , xn, a boolean formula

F = C1 ∧ C2 ∧ . . . Cp,

where each Ci is a disjunction of literals, and an expression

φ = Q1x1Q2x2 . . . QnxnF,

where each Qj is either ∃ or ∀, determine whether φ is true.

Theorem 9 (Schaefer [22]). QSAT is PSPACE-complete.

Moreover, by trivially adding dummy variables, the following variant of QSAT, which is well-
known and which we will call the Alternating QSAT problem, is also PSPACE-complete. Note
that we assume that the quantifiers alternate and that the number of quantifiers is even.
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Definition 10 (Alternating QSAT). Given a set of boolean variables x1, . . . , xn, where n is an
even non-negative integer, a boolean formula

F = C1 ∧ C2 ∧ . . . Cp,

where each Ci is a disjunction of literals, and an expression

φ = Q1x1Q2x2 . . . QnxnF,

where Qj ≡ ∃ for all odd j and Qj ≡ ∀ for all even j, where j ∈ N, 1 ≤ j ≤ n, determine whether
φ is true.

Corollary 11. Alternating QSAT is PSPACE-complete.

Before proceeding with the proof of the PSPACE-completeness of the scoring variant of the
orthogonal colouring game, we give some intuition on how reductions from Alternating QSAT to
games work in general, and how it will apply to our reduction. We suggest that the reader reads
this section first, and then refers back to it after going through the construction of G′ in the proof.

To be precise, in what follows, a truth value is either True or False. So, what one is looking for
is: does there exist a truth value (T or F ) for x1 such that for all truth values (T and F ) for x2,
there exists a truth value (T or F ) for x3 such that for all truth values (T and F ) of x4, etc. such
that the formula F is true.

For φ to be true, it is equivalent to a two-player game where the player (player 1, let’s say) who
wants to make φ true decides the values of the variables with the “there exists” quantifiers and the
adversary (player 2, let’s say) (who wants to make φ false) decides the values of the variables with
the “for all” quantifiers and they do it in order; that is, from left to right, and thus, in increasing
order of index of the variables.

If φ is true, then player 1 can always find a truth value for his variable such that whatever
player 2 chooses as the truth value for her variable, player 1 can find a truth value for his next
variable such that . . ., and so on, such that φ is true.

If φ is false, then it means that, at some point, player 2 can choose a truth value for her variable
that will make it impossible for φ to be true and/or player 1 will not be able to find a truth value
for his variable to make φ true.

In our reduction, the Bob gadgets correspond to the variables that player 1 chooses the truth
values for, and the Alice gadgets correspond to the variables that player 2 chooses the truth values
for. The players are “roughly” forced to colour vertices in their gadgets, which corresponds to
choosing the truth value of the associated variable. The gadgets are of decreasing size to ensure
that the players play in the same order given by the formula. Also, especially in Bob gadgets, we
ensure that Alice has to play again in the same gadget, which forces Bob to play in the same one
again, so that now it is Alice’s turn and she wants to play in her gadget. It is not exactly the
same for the Alice gadgets because of the difference between ensuring vertices can be coloured and
ensuring vertices cannot be coloured.

The idea at the end is that if φ is true, then the clause vertices cannot be coloured, and so, Bob
wins (player 1 in the general setting described above). Otherwise, φ is false, and so, at least one
clause is false, and thus, the clause, which is represented by a set of k vertices, can be coloured,
and hence, Alice wins (player 2 in the general setting described above).

Proof of Theorem 2. Since the number of turns and possible plays is bounded above by the number
of uncoloured vertices remaining, the problem MOCm(G, c) is in PSPACE. To show the problem
is PSPACE-hard, we reduce from the Alternating QSAT problem where n is even. Then the
result follows from Corollary 11. The proof is done for the case m = 3, and it is straightforward
to generalise it to any m > 3. The three colours used are called T , F , and X, with T and F
corresponding to “true” and “false”, respectively.

General idea of the construction of G. We first describe the construction of G from an
instance of the Alternating QSAT problem and recall that n is even. Let GA (GB , respectively) be
Alice’s (Bob’s, respectively) copy of G. Note that in general, for any vertex v ∈ V (G), since we
have a partial colouring, we can add pre-coloured vertices of degree 1 adjacent to v so as to restrict
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AliceBob AliceBob AliceBob

Alice’s

first

move

F (x1, x2, . . . , xn)

m210k7 − 1

∀x2∃x1 ∀x4∃x3 ∀xn∃xn−1

C1 C2 Cp

e

Figure 3: The general construction of G from an Alternating QSAT instance using the clause sets
Ci and Bob and Alice gadgets. The Bob and the Alice gadgets are connected to the clause sets
according to the formula F , but note that the details of this construction are more complicated:
only a certain subset of the vertices of the Bob or Alice gadget corresponding to variable xj is
connected to the clause sets in which xj appears, and another subset of vertices is connected to
the clause sets in which xj appears, with the rest of the vertices in the gadget not being connected
to any clause set. See the details of the construction on page 8. This construction is made to
guarantee that, in the first phase of the game, the players are forced to play in the Alice and Bob
gadgets from left to right (three moves in a Bob gadget by Bob, Alice, and then Bob again, and
one move in an Alice gadget by Alice) and not to play in a clause set, unless they would like to
lose immediately. See Figures 4 and 5 for the details of the Bob and Alice gadgets.

the colours that can be given to v. By forbidding all colours but T , F , and X in this way, the
proof can be generalised to any m > 3, and so, as mentioned before, we focus on the case m = 3.
From here on, when we say that only certain colours can be given to a vertex v, it is implied that
we have added the vertices of degree 1 adjacent to v and given them the appropriate colours in
the same copy of G. First, start with a star with m2 + 1 leaves such that its centre is the vertex
e and colour the first m2 leaves in both copies of G such that all permutations of any two colours
are used in terms of orthogonality. From here on, for all new vertices that are not pre-coloured in
GA, we make them uncolourable in GB (by forbidding every colour). For the last uncoloured leaf,
for some k ∈ N such that k > max(n,m, p), add 10k7 − 1 vertices of degree 1 adjacent to it that
can only be coloured X. For each clause Ci ∈ {C1, . . . , Cp}, add an independent set of size k, that
we will call the clause set Ci. Make e adjacent to all the vertices of the clause sets (this is just to
guarantee that the graph we construct is connected) and note that e is not colourable. Also, make
it so that all the vertices of the clause sets can only be coloured T . Let us now define two gadgets
for the variable vertices x1, . . . , xn.

Gadgets - Bob gadget. First, we define the variable gadget for Bob, called the Bob gadget.
For each j ∈ {1, . . . , n} such that j is odd, there is a Bob gadget constructed as follows. There are
four independent sets Sj,1, Sj,2, Sj,3, and Sj,4 of sizes 2, 10k7, 2(k − j)k5, and 1, respectively. For
each i in {1, 2, 3}, each vertex of Sj,i is adjacent to every vertex of Sj,i+1. Denote by xj and x′j the
vertices of Sj,1, by xj,1, . . . , xj,10k7 the vertices of Sj,2, by yj,1, . . . , yj,2(k−j)k5 the vertices of Sj,3,
and by yj the vertex of Sj,4. Let xj = xj,1. For each 1 ≤ i ≤ p such that the literal xj is in the
clause Ci, make the vertex xj adjacent to all the vertices of Ci, and, for each 1 ≤ i ≤ p such that
the literal xj is in the clause Ci, make the vertices xj,1, xj,2, . . . , xj,k2 adjacent to every vertex of
Ci. Finally, make it so that xj is colourable with X, T or F , and all other vertices in the gadget
are only colourable with T or F . See Figure 4.
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xj

x′j

xj,1 = xj

xj,2

xj,3

xj,10k7
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yj,2(k−j)k5

yj

Figure 4: A Bob gadget.
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xj

xj,1

xj,2

xj,3

xj,2(k−j)k5

xj

x′j

x′j,1 x′j,2 x′j,3 x′j,2(k−j)k3

x∗j

x∗j,1 x∗j,2 x∗j,3 x∗j,2(k−j)k3

Figure 5: An Alice gadget.

Gadgets - Alice gadget. Secondly, we define the variable gadget for Alice, called the Alice
gadget. For each j ∈ {1, . . . , n} such that j is even, there is an Alice gadget constructed as follows.
There are two vertices xj and xj , such that xj is adjacent to 2(k−j)k5 vertices xj,1, . . . , xj,2(k−j)k5

and to xj . Moreover, xj is one of the two vertices in the maximal independent set of size 2 of
two K2,2(k−j)k3 ’s that are vertex-disjoint except for xj , with x′j (x∗j , respectively) being the other
vertex in the maximal independent set of size 2 of the first (second, respectively) K2,2(k−j)k3 . Let
x′j,1, . . . , x

′
j,2(k−j)k3 (x∗j,1, . . . , x

∗
j,2(k−j)k3 , respectively) be the 2(k − j)k3 vertices in the maximal

independent set of size 2(k− j)k3 of the first (second, respectively) K2,2(k−j)k3 . For each 1 ≤ i ≤ p
such that the literal xj is in the clause Ci, make the vertex xj adjacent to every vertex of Ci, and,
for each 1 ≤ i ≤ p such that the literal xj is in the clause Ci, make xj adjacent to every vertex
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of Ci. Finally, make it so that xj is colourable with X, T or F , the vertices xj,1, . . . , xj,2(k−j)k5

are only colourable with X, the vertices x′j,1, . . . , x
′
j,2(k−j)k3 (x∗j,1, . . . , x

∗
j,2(k−j)k3 , respectively) are

only colourable with T (F , respectively), and all other vertices in the gadget are only colourable
with T or F . See Figure 5. The graph G constructed so far is depicted schematically in Figure 3.

Refining the construction. More pre-coloured leaves adjacent to e may be added to either of
the copies of G to ensure there are exactly

α = 10k7 + k − 1 +
n

2
(10k7 + 3) +

∑
j even, j≤n

(2(k − j)k5 + 2(k − j)k3 + 3)

more vertices coloured in GB . Essentially, α corresponds more or less to the number of vertices
that are not coloured, but will be at the end of the game. Those vertices are those of the large star
with 10k7 neighbours (one of which is e and is not colourable), the vertices in Sj,1, Sj,2, and Sj,4 for
each Bob gadget, which totals to 10k7+3 vertices for each Bob gadget, and the vertices xj , xj,i, x

′
j ,

x∗j , and either the x′j,i or the x∗j,i for each Alice gadget, which totals to 2(k− j)k5 + 2(k− j)k3 + 3
or 2(k− j)k5 + 2(k− j)k3 + 4 (since one vertex may not be coloured, and hence, why we say more
or less) for the Alice gadget j for each even j ≤ n. To this, k − 1 vertices are added, so that α
vertices may always be coloured if a clause set can always be coloured, and so, that α vertices can
never be coloured if a clause set cannot be coloured. The construction of G is now complete and
it is clearly achieved in polynomial time.

Winning strategy for Bob if and only if φ is true. We will now show that φ is true if and
only if Bob has a winning strategy in GA∪GB . We will also show that there cannot be an equality,
and thus, that φ is false if and only if Alice has a winning strategy in GA ∪GB .

Outline of the proof of the equivalence above. The game will be split into two phases
called the first and second phase, respectively, with all the turns of the first phase coming before
all the turns of the second phase, as expected. We will describe strategies for Alice and Bob for
both phases, which we will call standard. These strategies are optimal in terms of the outcome
of the game and not necessarily the scores at the end, i.e., any strategy for a player is considered
optimal if it results in that player winning even if there exists another strategy that results in that
player winning with an even higher score or a larger difference in score. The first phase consists
of the players playing in each of the gadgets until all gadgets have at least one coloured vertex
in them, and in doing so, essentially assigning truth values to the variables x1, . . . , xn with Bob
assigning the truth values to the xj where j is odd and Alice to the xj where j is even, 1 ≤ j ≤ n.
The structure of G ensures that, in the first phase, the players have to play on the Alice and Bob
gadgets corresponding to the variables xj in ascending order of the index j. See Figure 3. The
second phase consists of the players finishing colouring the rest of the colourable vertices with the
strategies being simpler in this phase. Finally, it is shown that both the players’ strategies are
optimal, giving the desired result.

Standard strategies for the first phase. Let us consider some strategies for Alice and Bob,
and we will try to find the best strategies possible; that is, the strategy that colours as many
vertices in GA as possible for Alice and as few as possible for Bob. Recall that no more vertices
in GB may be coloured so the following all takes place in GA. When referring to the number
of coloured vertices from here on in the proof, we refer to the number of vertices coloured not
including the precoloured vertices. The strategy will ensure that at most α− 1 uncoloured vertices
of GA will become coloured. At the start, there are

α+ k(p− 1) + 1 +
∑

j odd, j≤n

(2(k − j)k5) +
∑

j even, j≤n

(2(k − j)k3 + 1)

uncoloured vertices that are colourable. Alice cannot allow 10k7−1 of them to become uncolourable,
otherwise, she loses immediately. Therefore, Alice must colour the center of the star with 10k7
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neighbours (one of which is e) with either T or F (or one of the neighbours, that is not e, with X)
on her first turn as otherwise, Bob will colour it X, rendering 10k7 − 1 vertices uncolourable.

For a colour C ∈ {T, F}, we define the complementary colour as

C :=

{
F if C = T,
T if C = F.

We call a Bob gadget free if either no one coloured in it or if Bob coloured in the gadget once
and Alice coloured in it after Bob. An Alice gadget is free if no one coloured in it. Let us first
describe a strategy for Bob. While there is a free gadget, consider the first such gadget j.

• Suppose first that this gadget is a Bob gadget. If the gadget is uncoloured, then Bob colours
a vertex of Sj,1 with C ∈ {T, F}. Note that he can always at least colour xj with F since
the vertices of the clause sets can only be coloured T . If Alice does not then colour a vertex
of Sj,2 with the complementary colour C, then Bob can colour a vertex of Sj,3 (if Alice did
not colour yj) or the remaining vertex of Sj,1 (if she did colour yj) with C, thus, rendering
the 10k7 vertices of Sj,2 uncolourable. In that case, Alice has already lost since there are too
few colourable vertices remaining. Thus, we can assume that Alice colours a vertex of Sj,2

with C, and then, in the case of a free Bob gadget with exactly two coloured vertices, Bob
colours yj with colour C.

• Suppose now that the gadget is an Alice gadget. Bob colours xj with X.

Let us now describe a strategy for Alice. We distinguish three cases.

Case 1: Whenever Bob colours a vertex in a Bob gadget j where Alice did not colour any vertex
yet, she answers by colouring a vertex of Sj,2. If the vertex coloured by Bob is yj or a vertex of
Sj,2, then she gives the same colour to the vertex of Sj,2 she colours. Note that this can always
be done since most of the vertices of Sj,2 (all except the first k2) are not adjacent to any vertex
outside of the gadget.

Case 2: Whenever Bob colours a vertex in a Bob gadget such that the sole move made by
Alice in the gadget was to colour xj with X, she does the following: If Bob colours x′j (yj ,
respectively) with colour C ∈ {T, F}, then Alice answers by colouring yj (x′j , respectively) with

the complementary colour C, in which case every vertex of the gadget except the first k2 vertices
of Sj,2 can no longer become uncolourable. If Bob colours a vertex of Sj,2 (Sj,3, respectively) with
colour C ∈ {T, F}, then Alice answers by colouring a vertex of Sj,3 (Sj,2, respectively) with the
complementary colour C, and again every vertex of the gadget except the first k2 vertices of Sj,2

can no longer become uncolourable.

Case 3: Whenever Bob does not do such a move as in Case 1 or Case 2, consider the free gadget
j with the smallest number j.

• Suppose first that this gadget is a Bob gadget. If no vertex of gadget j has been coloured,
then Alice colours xj with X. If exactly two vertices of gadget j have been coloured, then
one of them must be a vertex of Sj,2 coloured with C ∈ {T, F}, and Alice colours a vertex of
Sj,3 with the complementary colour C. Note that this is possible since in an optimal strategy,
Alice has never coloured yj since then Bob could have coloured x′j with the same colour and
Alice loses.

• Suppose now that the gadget is an Alice gadget. Alice colours xj with T or F , or X on one
of the xj,i’s. Note that at least colouring xj with F is always possible.

We will call the strategies above the standard strategies of Alice and Bob.

Counting. In the following we will often count those coloured vertices that, at the end of the
game, have been coloured by Alice and Bob and, thus, are not the precoloured vertices. We will
call them played coloured vertices.
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Standard strategies of the first phase are forced. Let us assume that Bob plays according
to his standard strategy. In every gadget j where Bob plays first, at least 2(k−j)k5 vertices cannot
be coloured (the vertices of Sj,3 for a Bob gadget and the xj,i’s for an Alice gadget). Thus, the
most vertices that can theoretically become played coloured vertices is

α+ k(p− 1) + 1 +
∑

j even, j ≤n

(2(k − j)k3 + 1) < α+ 2k5.

That value is only obtainable if, other than answering the first moves of Bob in Bob gadgets so as
not to lose immediately, Alice always plays on the first gadget where no vertex is coloured, which,
in that case, will always be an Alice gadget. If Alice does not always play exactly on those gadgets,
then Bob will be able to play first in an earlier gadget than in the previous analysis, and there will
be at most

α− 2k5 + k(p− 1) + 1 +
∑

j even, j ≤n

(2(k − j)k3 + 1) < α

played coloured vertices in the end, so Alice loses. Therefore, while Bob plays the previous strategy,
Alice must answer in Bob gadgets after the first time Bob plays in them, and must answer in the
following Alice gadget after the second time Bob plays in a Bob gadget.

Let us now assume that Alice plays according to her standard strategy. In every Bob gadget
where Alice plays first, or where Bob played only once before she plays twice, she can make sure
that all the vertices except at most k2 (the first k2 vertices of Sj,2) will eventually be coloured.
In Bob gadgets where Bob plays first, she still makes sure that all the vertices except at most
2(k− j)k5 + k2 (the first k2 vertices of Sj,2 and the vertices of Sj,3) will eventually be coloured. In
every Alice gadget where Alice plays first, she can make sure that all the vertices except at most
4(k − j)k3 + 1 (the x′j,i’s, the x∗j,i’s, and xj) will eventually be coloured. In every Alice gadget
where Bob plays first, at least four vertices will still eventually be coloured (in the worst case, xj ,
xj , x

′
j , and x∗j ). Therefore, if Bob plays first in every Bob gadget, and plays a second time in every

Bob gadget before Alice plays a second time in them, the number of played coloured vertices will
be at least

α− k + 1− n

2
k2 −

∑
j even, j ≤n

(2(k − j)k3) > α− 2k5.

Again, if Bob does not do that, the number of played coloured vertices will be at least

α+ 2k5 − k + 1− n

2
k2 −

∑
j even, j ≤n

(2(k − j)k3) > α,

and Alice wins.
We will call the strategies above the standard strategies of Alice and Bob. Until no gadget is

free, if Bob plays his standard strategy, then Alice always needs to either directly answer Bob in a
Bob gadget, or to play in the first free gadget. Similarly, until no gadget is free, if Alice plays her
standard strategy, then Bob always needs to play in the first free gadget.

Optimality of standard strategies in the first phase. Assume that Alice and Bob played
according to their standard strategies until the current move. Note that this implies that no vertex
of a clause set has been coloured up until now. We consider two cases.

• It is Bob’s turn, the first free gadget j is thus a Bob gadget. Assume no one played in it.

If Bob plays X on xj , since that is Alice’s standard strategy, the situation would be as if Alice
played first in the gadget. She can then continue with her standard strategy and win.

If Bob plays in Sj,2 or Sj,3, then Alice can play on the other one, making sure that every
vertex of the gadget except k2 vertices will eventually be coloured, as if Alice played first in
this gadget using her standard strategy. Alice can then proceed with her standard strategy,
and again she wins. Therefore, Bob cannot play on Sj,2 or Sj,3.

If he colours yj , Alice can answer by colouring a vertex in Sj,2 with the same colour, at which
point the situation is similar to what it would have been if Bob first played on x′j (Bob can
colour a vertex of Sj,2 with the other colour to make sure the vertices of Sj,3 are uncolourable,
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and if he does not, then Alice can colour a vertex of Sj,3 to make sure all of these vertices will
eventually be coloured).

We can thus assume that Bob colours a vertex in Sj,1 with F or T , and that Alice answers in
Sj,2 with colour C ∈ {T, F}.
Lastly, Bob still needs to make a move in the gadget j since it is still free, and he needs to
play his standard move, that is, colour yj with the complementary colour C.

• It is Alice’s turn, the first free gadget j is thus an Alice gadget, and no one played on it.

Alice should not colour xj with X as it is according to Bob’s standard strategy, and Bob can
then proceed with his standard strategy and win.

If Alice colours neither one of the xj,i’s with X, nor xj with T or F , then Bob can colour xj
with X, thus rendering all the xj,i’s uncolourable, as if Bob had played first in gadget j. Bob
can then play his standard strategy and win.

Therefore, Alice needs to colour one of the xj,i’s with X or colour xj with T or F .

Therefore, until no gadget is free, Alice and Bob both need to play their standard strategy.
Let us call what happens while there is a free gadget the first phase. Since the last gadget is an
Alice gadget, at the end of the first phase, it’s Bob’s turn. The only remaining vertices that may
be colourable and may become uncolourable are the vertices of the clause sets, the first k2 vertices
of Sj,2 for j odd, and xj , the x′j,i’s, and the x∗j,i’s for j even. Let us now extend the standard
strategies as follows for the second phase.

Standard strategies for the second phase. Here is the strategy for Bob: while there exists
an Alice gadget j where the x′j,i’s or the x∗j,i’s are uncoloured and may still become uncolourable,
consider the first such Alice gadget. Bob colours xj , x

′
j or x∗j with an appropriate colour from

{T, F} to make sure either the x′j,i’s or the x∗j,i’s are uncolourable.
Here is the strategy for Alice: while there exists an Alice gadget j where the x′j,i’s or the x∗j,i’s

are uncoloured and may still become uncolourable, consider the first such Alice gadget. Alice
colours xj , x

′
j , x

∗
j , one of the x′j,i’s or one of the x∗j,i’s with an appropriate colour to make sure

either the x′j,i’s or the x∗j,i’s will eventually be coloured.
It is clear that colouring only one vertex cannot cause both the x∗j,i’s and the x∗j,i’s to be

uncolourable, since that vertex would need to have colour F and T . Moreover, whatever one
vertex has been coloured, it is always possible to colour x′j or x∗j so that either the x′j,i’s or the
x∗j,i’s are uncolourable. Lastly, whatever one vertex is coloured, it is always possible to colour one
of the x′j,i’s or one of the x∗j,i’s to make sure either the x′j,i’s or the x∗j,i’s will eventually be coloured.

Standard strategy in second phase is forced for Alice. If both Alice and Bob play according
to their standard strategy, then the number of vertices that will eventually be coloured is at least
α − k + 1 − n

2 k
2 and at most α + k(p − 1) + 1 + n

2 (the n
2 here is from the xj ’s of each of the

Alice gadgets). If Bob plays the standard strategy, then Alice needs to play the standard strategy,
otherwise, there will be at most

α+ k(p− 1) + 1 +
n

2
− 2k3 < α

played coloured vertices in the end, and Alice loses. Even if Alice plays according to the standard
strategy, Bob may play once not according to the standard strategy (since it has one step in
advance), and continue to follow the standard strategy. If he does so, then Alice can also play
once not according to the standard strategy, and so on. However, since neither can play two moves
first in an Alice gadget without letting the other one play twice first in a previous Alice gadget,
eventually they will both have played once in each Alice gadget (in addition to the first time Alice
had already played in each of them during the first phase).

Winning situations. If Bob can make sure that k2 vertices in a Sj,2 of a Bob gadget are not
colourable, then at most α+ k(p− 1) + 1 + n

2 − k2 < α can be coloured, and Bob wins. But Alice
can make sure that this never happens. Indeed, when she played in that Bob gadget during the
first phase, she played on a vertex of Sj,2. As at that time, no vertex of a clause gadget had been
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played, she could have played that move on one of the first k2 vertices, with the only additional
effect of preventing those k2 vertices from becoming uncolourable (and preventing any play that
would make them uncolourable). Therefore, we can assume that Alice always played on one of the
first k2 vertices of the Sj,2’s, say xj without loss of generality, and thus, that all of these vertices
will eventually be coloured.

Thus, the number of vertices that will eventually become played coloured vertices is at least

α− k + 1

and at most
α+ k(p− 1) + 1 +

n

2
.

Now, if at least one vertex of a clause set is eventually coloured, then all of the vertices of that
clause set will eventually be coloured, and the number of played coloured vertices is at least

α− k + 1 + k = α+ 1,

and Alice wins. If no vertex of a clause set is eventually coloured, then the number of played
coloured vertices is at most

α− k + 1 +
n

2
< α,

and Bob wins. Therefore, Bob wins if and only if no vertex in a clause set is eventually coloured,
and otherwise, Alice wins.

Proof that Bob wins if and only if φ is true. Assume that φ is true. We will describe a
winning strategy for Bob in GA ∪GB with this assumption. Bob plays according to the standard
strategy (unless Alice does not play according to her standard strategy, in which case Bob wins as
shown before), with the following additional specifications. In the first phase, in each Bob gadget,
Bob colours the vertex xj with the colour corresponding to the truth assignment of the variable
xj that ensures φ is true. For the values of the other xj ’s (for j even), that correspond to the
∀ variables, take the colour that Alice gave to xj if she coloured xj , and F if she did not. In
the second phase, in each Alice gadget that Bob colours in for the first time in the second phase
according to his strategy, Bob colours xj with T if that colour is available (i.e., if Alice did not
colour xj with T and with F otherwise). Finally, Bob continues to colour arbitrarily until no vertex
remains colourable.

If Alice does not play according to her standard strategy, then Bob wins, as seen above. Other-
wise, note that, in the end, each vertex xj or xj will be coloured with the colour that corresponds
to the truth assignment of its literal. That is immediate for every case except when Alice coloured
a vertex with X in an Alice gadget j during the first phase. In that case, we fixed that xj = F ,
and since Bob coloured xj with T during the second phase, xj cannot become uncolourable and
will eventually be coloured F . Now since every clause contains at least one literal that is true, no
vertex of a clause set can be coloured, and Bob wins.

Assume now that φ is false. We will describe a winning strategy for Alice in GA ∪GB with this
assumption. Alice plays according to the standard strategy (unless Bob does not play according
to his standard strategy during the first phase, in which case Alice wins as shown before), with
the following additional specification. Consider that the odd variables, which correspond to the ∃
variables, have a truth assignment corresponding to the first colour given by Bob to a vertex of
gadget j during the first phase. In every Alice gadget j during the first phase, Alice colours xj
with the colour corresponding to the truth assignment of variable xj that assures that φ is false.
In the end, Alice continues to colour arbitrarily until no vertex remains colourable.

First, note that because of Alice’s answers to Bob’s plays in the first phase, if x′j is coloured
F (T , respectively) in a Bob gadget during the first phase, then xj cannot be coloured T (F ,
respectively). Similarly, for all j odd, all of the vertices in Sj,2 will eventually be coloured the
same. Therefore, no literal vertex is coloured T while the corresponding literal is false. In the
end, there is at least one clause that is false, and thus, no vertex adjacent to a vertex of the
corresponding clause set will be coloured T . Thus, all of the vertices of this set are coloured and
Alice wins.
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5 Recognising Graphs Admitting a Strictly Matched Invo-
lution

In [2], it was proven that, if a graph G admits a strictly matched involution, then Bob has a
drawing strategy in the scoring variant of the orthogonal colouring game, and thus, Bob has a
winning strategy in the normal play variant of the same game. In this section, we show that
recognising whether a graph admits a strictly matched involution is NP-complete. Our reduction
is from the 1-IN-3SAT problem, which was proven to be NP-complete in [22], and is the following.

Definition 12 (1-IN-3SAT). Given a collection of clauses C1, . . . , Cm, with m > 1, such that each
Ci is a disjunction of exactly three literals, determine whether there exist a truth assignment to
the variables such that exactly one literal is true in each Ci?

Theorem 13 (Schaefer [22]). 1-IN-3SAT is NP-complete.

Andres et al. [2] proved that a graph G admits a strictly matched involution if and only if its
vertex set V (G) can be partitioned into a clique C and a set inducing a graph that has a perfect
matching M such that:

• for any two edges vw, xy ∈ M , the graph induced by v, w, x, y is isomorphic to a 2K2, a C4

or a K4;

• for any edge vw ∈ M and any vertex z ∈ C, the graph induced by the vertices v, w, z is
isomorphic to a K1 ∪K2 or a K3.

We call such a partition an (M, C)-partition, where M is the set of edges of a (not necessarily
induced) matching and C is the set of vertices of the clique. Informally, we will say that a vertex
is in M if it is incident to an edge of M . The class of graphs that admit an (M, C)-partition or,
equivalently, the class of graphs that admit a strictly matched involution, is denoted by MI.

Theorem 14. The problem of deciding whether a graph is in MI is NP-complete.

Proof. It is clear that the problem is in NP (given the edges of the matching, it is easy to check
that we indeed have an (M, C)-partition). Let us now prove that it is NP-hard. We reduce from
1-IN-3SAT. Then the result follows from Theorem 13. Recall that we say a vertex is in M if it is
an end vertex of an edge in M .

Let us define three gadgets. These gadgets will impose some specific properties in graphs
containing them. First, we define a clique gadget, which is the graph depicted in Figure 6. Note
that the clique gadget is in MI by putting the white vertices in C and the thick edges in M .
Note that, for any graph G containing the clique gadget such that the black vertices do not have a
neighbour outside of the gadget, then in any (M, C)-partition (M,C) of G, the white vertices are
in C and the thick edges are in M . Indeed, due to non-edges, either u1 and u2 or v1 and v2 (or
all four vertices), say u1 and u2, are end vertices of edges in M , since their only neighbour besides
themselves is u, and since uu1 and uu2 cannot both be in M , we have u1u2 ∈M , and hence, u ∈ C.
Similarly then, v1v2 ∈M and v ∈ C.

u v

u1

u2

v1

v2

Figure 6: The clique gadget.

Let us now define a second gadget, which we will call the variable gadget. The gadget is as
depicted in Figure 7. Note that putting the thick edges in any of the two graphs (depicted in
Figure 7) in M and the two remaining vertices in C leads to an (M, C)-partition of the gadget.
Now assume that a graph G contains a copy of the clique gadget and a copy of the variable gadget
such that every white vertex of each gadget is adjacent to the white vertices of the other gadget,
and the black vertices of each gadget are not adjacent to any vertex of another gadget. Consider
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an (M, C)-partition (M,C) of G. As before, the white vertices of the clique gadget are in C, so
the black vertices of the variable gadget are in M . If an edge not incident to two black vertices,
say u1v12, is in M , since there is exactly one vertex (u2) that is adjacent to u1 and v12, then u2
must be in C, a contradiction. Therefore, either u1u2 and u3u4 are in M , or u2u3 and u1u4 are in
M . In the first case, since v14 is adjacent to u1 and not to u2, it must be an end vertex of an edge
in M . Since v23 is the only remaining vertex adjacent to both u3 and v14 that is not already an
end vertex of an edge in M , we have v14v23 ∈ M , and as v12 (v34, respectively) is the only vertex
adjacent to both u1 and u2 (u3 and u4, respectively), v12 and v34 are in C. This case corresponds
to Figure 7 (left). In the other case, u1u4, u2u3, and v12v34 are in M , and v14 and v23 are in C.
That case corresponds to Figure 7 (right).

u1 u2

u3u4

v12

v23v14

v34

u1 u2

u3u4

v12

v23v14

v34

Figure 7: The variable gadget and the two possible sets of edges in M (the thick edges).

The third gadget, called the clause gadget, is the graph depicted in Figure 8. It is quite similar
to the variable gadget. Defined by the three maximal matchings of the complete graph K4 on the
black vertices, we obtain three (M, C)-partitions of the clause gadget:

• u1u2, u3u4, v14v23, v13v24 ∈M and v12, v34 ∈ C (see the thick edges in Figure 8);

• u1u4, u2u3, v13v24, v12v34 ∈M and v14, v23 ∈ C; and

• u1u3, u2u4, v12v34, v14v23 ∈M and v13, v24 ∈ C.

Suppose that there is a graph G that contains a clique gadget, some variable gadgets, and a
clause gadget, such that the edges between vij ’s in the clause gadget are identified to edges between
the vij ’s in some variable gadgets. Assume further that the white vertices in the clique gadget and
the different variable gadgets are all adjacent, and that the black vertices are not adjacent to any
vertex outside their respective gadgets. Note that some white vertices in the same clause gadget
can be adjacent even if they are not adjacent in Figure 8. Let us consider an (M, C)-partition
(M,C) of G. As seen previously, each of the edges v14v23, v12v34, and v13v24 is either in M or has
both of its endpoints in C. Since they are not adjacent to the white vertices of the clique gadget,
the black vertices of the clause gadget are in M , and thus either u1u2 and u3u4 are in M , or u1u4
and u2u3 are in M , or u1u3 and u2u4 are in M . In the first case, we must have v14v23 and v13v24
in M , and v12 and v34 in C, which corresponds to the thick edges in Figure 8. The two other cases
are similar, with respectively v12v34 and v13v24 in M and v14 and v23 in C, and v14v23 and v12v34
in M and v13 and v24 in C.

Consider an instance I of 1-IN-3SAT. We will build an equivalent instance of our problem (i.e.,
the problem of recognising graphs that admit a strictly matched involution). Let G(I) be the graph
obtained as follows:

• Start with a clique gadget.

• Add one variable gadget per variable of I, all disjoint and disjoint from the clique gadget,
and between any two white vertices of distinct gadgets add an edge. For each variable xi, the
literal xi corresponds to the edge e(xi) = v14v23 and the literal x̄i corresponds to the edge
e(x̄i) = v12v34 in the variable gadget associated to xi.
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u1 u2
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v12

v23v14

v34

v13

v24

Figure 8: The clause gadget, with one of the three possible sets of edges in M (the thick edges).

• For each clause l1 ∨ l2 ∨ l3 of I with

l1, l2, l3 ∈ {x1, . . . , xn, x1, . . . , xn},

add a copy of the clause gadget such that the black vertices are new vertices, the edge v14v23
is identified to the edge e(l1), the edge v12v34 is identified to the edge e(l2), and the edge
v13v24 is identified to the edge e(l3).

If I is true, then there is a valuation of the variables of I that validates I. For each true variable
in this valuation, pick v12v34 in M in the corresponding variable gadget, and, for each false variable
in this valuation, pick v14v23 in M in the corresponding variable gadget. This imposes the other
edges that are in M in each variable gadget. Indeed, as was explained earlier, and as can be seen
in Figure 7, if v12v34 is in M , then u2u3 and u1u4 must also be in M and v14v23 must be in C
for there to exist an (M, C)-partition of G(I). The edges in M in the clique gadget are trivially
imposed as can be seen in Figure 6. Now in each clause gadget, there are exactly two literals that
are false, and their corresponding edges are in M , while the edge corresponding to the last literal
is not in M . Thus, M can also be extended to each clause gadget. Now, in the resulting matching
M , the adjacencies inside the gadgets have already been checked. Note that each edge of M has
its two endpoints with the same colour (black or white) and in the same gadgets. Therefore, both
endpoints of each edge of M have the same adjacencies to other gadgets. For the vertices that are
not in M , they are all white vertices so they are all adjacent, since we never have the vertices of a
literal and of its negation. Thus, we truly have an (M, C)-partition of G(I).

Suppose now that there exists an (M, C)-partition (M,C) of G(I). As shown previously, there
is exactly one edge in M among the vij ’s of each variable gadget. If that edge is v12v34, then we
pick the corresponding variable to be true, and otherwise, we pick it to be false. Now the clause
gadgets imply that there is exactly one true literal in each clause. This completes the proof of the
theorem.

6 Conclusion and Further Work

We have proven that the normal play (scoring, respectively) variant of the orthogonal colouring
game introduced by Andres et al. [2] is PSPACE-complete when a partial colouring is part of the
input for m ≥ 1 (m ≥ 3, respectively) colours. Moreover, the proof of the PSPACE-completeness
of the scoring variant can be easily altered to prove that the same colouring scoring game played
just on one graph G, and thus, without the orthogonality condition, is also PSPACE-complete,
which may be of interest to the reader. In the misère variant of a combinatorial game, the first
player who cannot colour a vertex wins. We have not studied the misère variant of the orthogonal
colouring game, but this could be an interesting direction for future work. We have also shown that
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recognising graphs that admit a strictly matched involution is NP-complete. Lastly, the complexity
of the very much related colouring construction game introduced by Bodlaender [8] is still unknown
when k is a fixed constant, and has been for almost 30 years now. With this in mind we give the
following open problems.

Problem 1. Determine the complexity of the scoring variant of the orthogonal colouring game
when a partial colouring is given for m = 1 (m = 2, respectively) colours.

Problem 2. Determine the complexity of both variants of the orthogonal colouring game when no
partial colouring is given initially.

Problem 3. For which class of graphs does Alice or Bob have a winning strategy in the misère
variant of the orthogonal colouring game and what is the complexity of this variant?

Problem 4 (Bodlaender [8]). Determine the complexity of the colouring construction game when
k is a fixed constant.
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[12] É. Duchêne, S. Gonzalez, A. Parreau, E. Rémila, and P. Solal. INFLUENCE: a partizan scoring game
on graphs. Theor. Comput. Sci., 878-879:26–46, 2021.

[13] U. Faigle, W. Kern, H. Kierstead, and W. T. Trotter. On the game chromatic number of some classes
of graphs. Ars Combin., 35:143–150, 1993.

[14] M. Gardner. Mathematical games. Scientific American, 244:23–26, 1981.

[15] D. J. Guan and X. Zhu. Game chromatic number of outerplanar graphs. J. Graph Theory, 30(1):67–70,
1999.

18



[16] P. C. B. Lam, W. C. Shiu, and B. Xu. Edge game coloring of graphs. Graph Theory Notes N. Y.,
37:17–19, 1999.

[17] U. Larsson, R. J. Nowakowski, J. P. Neto, and C. P. Santos. Guaranteed scoring games. Electron. J.
Combin., 23, 2016. Paper 3.27.

[18] U. Larsson, R. J. Nowakowski, and C. P. Santos. Games with guaranteed scores and waiting moves.
Internat. J. Game Theory, 47:653–671, 2018.

[19] P. Micek and B. Walczak. A graph-grabbing game. Combinatorics, Probability, and Computing,
20(4):623–629, 2011.

[20] J. Milnor. Sums of positional games. In Contributions to the theory of games, volume 2 of Annals of
Mathematical Studies, pages 291–301. Princeton, 1953.

[21] C. H. Papadimitriou. Computational complexity. Addison Wesley, 1993.

[22] T. J. Schaefer. The complexity of satisfiability problems. In Proceedings of the tenth annual ACM
symposium on Theory of computing, pages 216–226, 1978.

[23] T. J. Schaefer. On the complexity of some two-person perfect-information games. J. Comput. Syst.
Sci., 16:185–225, 1978.

[24] A. Shapovalov. Occupation games on graphs in which the second player takes almost all vertices.
Discrete Applied Math., 159(15):1526–1527, 2011.

[25] E. Sidorowicz. The game chromatic number and the game colouring number of cactuses. Information
Processing Letters, 102(4):147–151, 2007.

[26] X. Zhu. The game coloring number of planar graphs. J. Comb. Theory Ser. B, 75(2):245–258, 1999.

[27] X. Zhu. Refined activation strategy for the marking game. J. Comb. Theory Ser. B, 98(1):1–18, 2008.

19


