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Abstract

We consider two variants of orthogonal colouring games on graphs. In these
games, two players alternate colouring vertices (from a choice of m ∈ N
colours) of a pair of isomorphic graphs while respecting the properness and
the orthogonality of the colouring. In the normal play variant, the player
who is unable to move loses. In the scoring variant, each player aims to
maximize her score which is the number of coloured vertices in the copy of
the graph she owns.

It is proven that, given an instance with a partial colouring, both the
normal play and the scoring variant of the game are PSPACE-complete.

An involution σ of a graph G is strictly matched if its fixed point set
induces a clique and vσ(v) is an edge for any non-fixed point v ∈ V (G).
Andres, Huggan, Mc Inerney, and Nowakowski (The orthogonal colouring

∗Corresponding author
Email addresses: dominique.andres@fernuni-hagen.de (Stephan Dominique

Andres), francois.dross@googlemail.com (François Dross), Melissa.Huggan@dal.ca
(Melissa Huggan), fmcinern@gmail.com (Fionn Mc Inerney), r.nowakowski@dal.ca
(Richard J. Nowakowski)

1This author is supported by the Natural Sciences and Engineering Research Council
of Canada and the Killam Trust.

2This author is supported by the Natural Sciences and Engineering Research Council
of Canada.

Preprint submitted to Theoretical Computer Science March 4, 2019



game. Submitted) gave a solution of the normal play variant played on
graphs that admit a strictly matched involution. We prove that recognising
graphs that admit a strictly matched involution is NP-complete.
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combinatorial game, scoring game, strictly matched involution,
NP-completeness, PSPACE-completeness
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1. Introduction

The concept of orthogonality in graph theory is motivated by the orthogo-
nality of Latin squares, which is a major topic in finite geometry. Orthogonal
edge colourings of graphs were already considered by Archdeacon et al. [2]
in 1985. In this paper, we consider orthogonal vertex colourings, introduced
by Caro and Yuster [6] in 1999, which strictly generalize the concept of or-
thogonality of Latin squares (cf. Ballif [3]). Recall that a partial colouring
of a graph G = (V,E) is proper if any two adjacent coloured vertices have
distinct colours. Two partial colourings cA and cB of G are orthogonal if, for
any two vertices v, w ∈ V that are coloured in both cA and cB, the ordered
pair of colours of v differs from the ordered pair of the colours of w, i.e.,

(cA(v), cB(v)) 6= (cA(w), cB(w)).

In this paper, we consider two game-theoretic variants of orthogonal graph
colouring. Both games are played on two isomorphic copies GA and GB of
a given graph G by two players, Alice and Bob. We identify the vertices of
GA and GB with their preimages in G. Initially, all vertices of the graphs
are uncoloured. Alternately, the players choose either GA or GB and colour
one of its uncoloured vertices with a colour from the set {1, . . . ,m}, thus
creating partial colourings cA and cB of G, such that the properness and the
orthogonality of the partial colourings are not violated. The game ends when
the players are unable to move. We call the general framework of this type
of game the orthogonal colouring game. The winning conventions of the two
variants of the game differ.

In the normal play variant NorMOCm(G) of the orthogonal colouring
game, the player who is unable to move loses. The other player wins. So
there is no draw.
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In the scoring variant MOCm(G) of the orthogonal colouring game, Alice
owns GA and Bob owns GB. The score of a player is the number of coloured
vertices in their copy of G. When no more vertices can be coloured, the
player with the higher score wins. If the scores are equal, there is a draw.

These games were introduced by Andres et al. [1] who called the scoring
variant simply orthogonal colouring game. Note that, in the scoring variant,
playing in the adversary’s copy of G may be advantageous in some cases. It
may even lead to a win, as the example of the game on the 4-cycle C4 played
with 2 colours shows, which is won by Bob [1].

Andres et al. [1] found a class of graphs, called graphs admitting a strictly
matched involution, where Bob has a strategy to guarantee a draw. Our
first main result is that this class of graphs is nontrivial, namely we prove
that the recognition of graphs admitting a strictly matched involution is an
NP-complete problem.

We also consider the complexity of the two variants of the game when
a partial colouring is given as part of the input. We prove the PSPACE-
completeness of the normal play variant NorMOCm(G) using the PSPACE-
completeness of the Proper m colouring game proved by Schaefer [10]
for m = 1 (in which case the game is known as Node Kayles) and by
Beaulieu et al [4] for every m ≥ 2. A reduction from QSAT (shown to be
PSPACE-complete by Schaefer [9]) is given to prove the scoring variant is
PSPACE- complete.

The paper is structured as follows. In Section 2, we introduce nota-
tion and define graphs that admit a strictly matched involution. The NP-
completeness of the recognition of such graphs is proven in Section 3. The
proof of the PSPACE-completeness of the normal play variant of the orthog-
onal colouring game with a partial colouring as part of the input is given in
Section 4, which is then followed by the proof of the PSPACE-completeness of
the scoring variant with a partial colouring as part of the input in Section 5.
In Section 6, we conclude with some open questions.

2. Notation and Definitions

First, we fix some general notation.
We use standard notation from complexity theory (see [8] for a standard

reference).
All graphs we consider are simple and undirected. We use standard nota-

tion from graph theory and we refer the reader to the book of Diestel [7] for
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standard terms. As usual, by Kn (Cn, respectively) we denote the complete
graph (cycle, respectively) on n vertices. The graph 2K2 consists of two dis-
joint copies of a K2 and the graph K1 ∪ K2 is the graph on three vertices
having exactly one edge.

Let G = (V,E) be a graph. An involution of G is a graph automorphism
σ : V −→ V of G that satisfies σ ◦ σ = idV , where idV is the identity on V .
An involution σ of G partitions the vertex set V into two sets: the fixed point
set

F1(G) = {v ∈ V | σ(v) = v}
and the set

F2(G) = V \ F1(G)

of vertices in 2-orbits of V under the action of σ. Andres et al. [1] defined
an involution σ of G to be strictly matched if

(SI 1) the set F1(G) induces a (possibly empty) complete graph and,

(SI 2) for every v ∈ F2(G), we have the (matching) edge vσ(v) ∈ E.

They proved that a graph G admits a strictly matched involution if and
only if its vertex set V (G) can be partitioned into a clique C and a set
inducing a graph that has a perfect matching M such that:

• for any two edges vw, xy ∈ M , the graph induced by v, w, x, y is iso-
morphic to a 2K2, a C4 or a K4;

• for any edge vw ∈M and any vertex z ∈ C, the graph induced by the
vertices v, w, z is isomorphic to a K1 ∪K2 or a K3.

We call such a partition an (M, C)-partition where M is the set of edges of
a (not necessarily induced) matching and C is the set of vertices of the clique.
Informally, we will say that a vertex is in M if it is incident to an edge of M .
The class of graphs that admit an (M, C)-partition or, equivalently, the class
of graphs that admit a strictly matched involution, is denoted by MI.

In an orthogonal colouring game played with m colours on copies GA and
GB of a graph G = (V,E), an orthogonal pair is an ordered pair (sA, sB)
of colours sA, sB ∈ {1, . . . ,m}, such that there exists a vertex v ∈ V with
cA(v) = sA and cB(v) = sB, where cA (cB respectively) corresponds to the
partial colouring of the isomorphic copy GA (GB respectively) of G.
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3. Complexity of Graphs Admitting a Strictly Matched Involution

In [1], it was proven that, if a graph G admits a strictly matched involu-
tion, then Bob has a drawing strategy in the scoring variant of the orthogonal
colouring game and thus, Bob has a winning strategy in the normal play vari-
ant of the same game. In this section, we show that recognizing whether a
graph admits a strictly matched involution is NP-complete. Our reduction
is from the 1-IN-3SAT problem, which is the following.

INSTANCE : A collection of clauses C1, . . . , Cm, m > 1 such that each
Ci is a disjunction of exactly three literals.

QUESTION : Does there exist a truth assignment to the variables such
that exactly one literal is true in each Ci?

It is known that 1-IN-3SAT is NP-complete [9].

Theorem 1. The problem of deciding whether a graph is in MI is NP-
complete.

Proof. It is clear that the problem is in NP (given the edges of the matching,
it is easy to check that we have indeed an (M, C)-partition). Let us now
prove that it is NP-hard. We reduce from 1-IN-3SAT. Recall that we say a
vertex is in M if it is an end vertex of an edge in M .

Let us define three gadgets. These gadgets will impose some specific
properties in graphs containing them. First, a clique gadget, which is the
graph depicted in Figure 1. Note that the clique gadget is inMI by putting
the white vertices in C and the thick edges in M . Note that, for any graph
G containing the clique gadget such that the black vertices do not have a
neighbour outside of the gadget, then in any (M, C)-partition (M,C) of G,
the white vertices are in C and the thick edges are in M . Indeed, due to
non-edges, either u1 and u2 or v1 and v2 (or all four vertices), say u1 and
u2, are in M , since their only neighbour besides themselves is u, and since
uu1 and uu2 cannot both be in M , we have u1u2 ∈ M and hence, u ∈ C.
Similarly then, v1v2 ∈M and v ∈ C.

Let us now define a second gadget, which we will call the variable gadget.
The gadget is as depicted in Figure 2. Note that putting the thick edges in
any of the two graphs (depicted in Figure 2) in M and the two remaining
vertices in C leads to an (M, C)-partition of the gadget. Now assume that a
graph G contains a copy of the clique gadget and a copy of the variable gadget
such that every white vertex of each gadget is adjacent to the white vertices
of the other gadget, and the black vertices of each gadget are not adjacent to
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u v

u1

u2

v1

v2

Figure 1: The clique gadget.

any vertex of another gadget. Consider an (M, C)-partition (M,C) of G. As
before, the white vertices of the clique gadget are in C, so the black vertices
of the variable gadget are in M . If an edge not incident to two black vertices,
say u1v12, is in M , since there is exactly one vertex (u2) that is adjacent to
u1 and v12, then u2 must be in C, a contradiction. Therefore, either u1u2
and u3u4 are in M , or u2u3 and u1u4 are in M . In the first case, since v14
is adjacent to u1 and not to u2, it must be in M . Since v23 is the only
remaining vertex adjacent to both u3 and v14 that is not already in M , we
have v14v23 ∈ M , and as v12 (respectively v34) is the only vertex adjacent
to both u1 and u2 (respectively u3 and u4), v12 and v34 are in C. This case
corresponds to Figure 2 (left). In the other case, u1u4, u2u3, and v12v34 are
in M , and v14 and v23 are in C. That case corresponds to Figure 2 (right).

u1 u2

u3u4

v12

v23v14

v34

u1 u2

u3u4

v12

v23v14

v34

Figure 2: The variable gadget, and the two possible sets of edges in M (the thick edges).

The third gadget, called the clause gadget, is the graph depicted in Fig-
ure 3. It is quite similar to the variable gadget. Putting u1u2, u3u4, v14v23,
and v13v24 in M , and v12 and v34 in C, leads to an (M, C)-partition of the
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gadget. By symmetry, we get two other (M, C)-partitions of the clause gad-
get.

Suppose that there is a graph G that contains a clique gadget, some
variable gadgets, and a clause gadget, such that the edges between vij’s in
the clause gadget are identified to edges between the vij’s in some variable
gadgets. Assume further that the white vertices in the clique gadget and the
different variable gadgets are all adjacent, and that the black vertices are
not adjacent to any vertex outside their respective gadgets. Note that some
white vertices in the same clause gadget can be adjacent even if they are not
adjacent in Figure 3. Let us consider an (M, C)-partition (M,C) of G. As
seen previously, each of the edges v14v23, v12v34, and v13v24 is either in M
or has both of its endpoints in C. Since they are not adjacent to the white
vertices of the clique gadget, the black vertices of the clause gadget are in M ,
and thus either u1u2 and u3u4 are in M , or u1u4 and u2u3 are in M , or u1u3
and u2u4 are in M . In the first case, we must have v14v23 and v13v24 in M ,
and v12 and v34 in C, which corresponds to the thick edges in Figure 3. The
two other cases are similar, with respectively v12v34 and v13v24 in M and v14
and v23 in C, and v14v23 and v12v34 in M and v13 and v24 in C.

u1 u2

u3u4

v12

v23v14

v34

v13

v24

Figure 3: The clause gadget, with one of the three possible sets of edges in M (the thick
edges).

Consider an instance I of 1-IN-3SAT. We will build an equivalent instance
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of our problem (i.e., the problem of recognizing graphs that admit a strictly
matched involution). Let G(I) be the graph obtained as follows:

• Start with a clique gadget.

• Add one variable gadget per variable of I, all disjoint and disjoint
from the clique gadget, and between any two white vertices of distinct
gadgets add an edge. For each variable xi, the literal xi corresponds
to the edge e(xi) = v14v23 and the literal x̄i corresponds to the edge
e(x̄i) = v12v34 in the variable gadget associated to xi.

• For each clause l1 ∨ l2 ∨ l3 of I, add a copy of the clause gadget such
that the black vertices are new vertices, the edge v14v23 is identified to
the edge e(l1), the edge v12v34 is identified to the edge e(l2), and the
edge v13v24 is identified to the edge e(l3).

If I is true, then there is a valuation of the variables of I that validates I.
For each true variable in this valuation, pick v12v34 in M in the corresponding
variable gadget, and for each false variable in this valuation, pick v14v23 in M
in the corresponding variable gadget. This imposes the other edges that are
in M in each variable gadget. Indeed, as was explained earlier and as can be
seen in Figure 2, if v12v34 is in M , then u2u3 and u1u4 must also be in M and
v14v23 must be in C for there to exist an (M, C)-partition of G(I). The edges
in M in the clique gadget are trivially imposed as can be seen in Figure 1.
Now in each clause gadget, there are exactly two literals that are false, and
their corresponding edges are in M , while the edge corresponding to the last
literal is not in M . Thus, M can also be extended to each clause gadget.
Now, in the resulting matching M , the adjacencies inside the gadgets have
already been checked. Note that each edge of M has its two endpoints with
the same colour (black or white) and in the same gadgets. Therefore, both
endpoints of each edge of M have the same adjacencies to other gadgets.
For the vertices that are not in M , they are all white vertices so they are
all adjacent, since we never have the vertices of a literal and of its negation.
Thus, we truly have an (M, C)-partition of G(I).

Suppose now that there exists an (M, C)-partition (M,C) of G(I). As
shown previously, there is exactly one edge in M among the vij’s of each
variable gadget. If that edge is v12v34, then we pick the corresponding variable
to be true, and otherwise, we pick it to be false. Now the clause gadgets imply
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that there is exactly one true literal in each clause. This completes the proof
of the theorem.

4. Complexity of the normal play orthogonal graph colouring game

In this section, we show that the normal play variant of the orthogonal
colouring game is PSPACE-complete when a partial colouring of the graph is
given as part of the input. The reduction is from the Proper m colouring
game under normal play convention, which is the following.

Two players, Alice and Bob, take turns colouring the vertices of a graph
with one of m ∈ N∗ colours while maintaining that the colouring is proper.
Alice goes first and only one vertex may be coloured by a player on their turn.
The first player who cannot colour a vertex loses. In [4], it was shown that,
given an instance of the proper m-colouring game under normal play conven-
tion that includes a partial colouring, it is PSPACE-complete to determine
the outcome.

Theorem 2. Given an instance NorMOCm(G) of the orthogonal colour-
ing game that includes a partial colouring, the problem of determining the
outcome of NorMOCm(G) under optimal play is PSPACE-complete for all
m ≥ 1.

Proof. Since the number of turns and possible plays is bounded above by the
number of uncoloured vertices remaining, the problem is in PSPACE. Now
we proceed to prove the PSPACE-hardness of the problem by a reduction
from the Proper m colouring game under normal play convention that
includes a partial colouring. The informal construction of G′ is as follows.
For one vertex, vn of G, add m + 1 new adjacent vertices and for the rest
of the vertices of G, add m new adjacent vertices. For one of these new
vertices adjacent to vn, vm+1

n , add m2 new adjacent vertices. In the copies
G′1 and G′2 of G′, the m2 new vertices adjacent to vm+1

n are all coloured such
that all possible ordered pairs of two colours exist between two corresponding
vertices in two different copies of G′ and thus, all possible ordered pairs (a, b)
of two colours of a vertex with colour a in G′1 and colour b in G′2 are used
(i.e., they are orthogonal pairs). For each vertex of G in G′2, all of the m
new adjacent vertices are coloured with the colours 1 through m and in the
case of vn, vm+1

n is left uncoloured. Lastly, the partial colouring of G given
in the instance is applied to the vertices of G in G′1.
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Now, none of the new vertices added may be coloured either because
they are already coloured or due to orthogonality. None of the vertices in G′2
may be coloured since they are already coloured or they are adjacent to every
other possible colour. The only vertices that may be coloured are the vertices
of G in G′1 that are not already coloured in the instance given. Note that
none of these vertices have been played on in G′2 and so, orthogonality may
not prevent any of these vertices from being coloured any of the m colours.
Thus, every move in the orthogonal colouring game is now equivalent to a
move in the Proper m colouring game.

Formally, given an instance of the Proper m colouring game under
normal play convention (that includes a partial colouring), G = (V,E), create
a new graph G′ = (V ′, E ′) as follows.

Let V = {v1, . . . , vn}.
Then,

V ′ = V ∪
n⋃

i=1

{v1i , . . . , vmi } ∪ {vm+1
n } ∪ {vm+1,1

n , . . . , vm+1,m2

n }.

E ′ = E ∪
n⋃

i=1

{(vi, vji ) : j ∈ {1, . . . ,m}}

∪{(vn, vm+1
n )} ∪ {(vm+1

n , vm+1,`
n ) : ` ∈ {1, . . . ,m2}}.

For all j, q ∈ N such that 1 ≤ j ≤ m and 0 ≤ q ≤ m − 1, the vertices
{vm+1,qm+1

n , . . . , vm+1,qm+m
n } are coloured q+1 in G′1 and the vertex vm+1,qm+j

n

is coloured j in G′2 (the other copy of G′). This results in every permutation
of a pair of colours being forbidden by orthogonality. Now, for all i, j (i ∈ N,
1 ≤ i ≤ n), the vertex vji is coloured j in G′2. Lastly, the vertices of G that are
already coloured in the partial colouring given in the instance are coloured
the same in G′1. Clearly, the construction of G′ is achieved in polynomial
time.

Note that both G′1 and G′2 have partial colourings that are proper and
their colourings are mutually orthogonal. Also, it is no longer possible to
colour any vertices of G′2 since the remainder of the uncoloured vertices are
adjacent to at least one vertex of each of the m possible colours. Finally,
it is not possible to colour any more of the new vertices added in G′1 due
to orthogonality and only the new vertices non-adjacent to the vertices of
G in G′1 have been coloured. Therefore, only the uncoloured vertices of G
in G′1 may be coloured and orthogonality cannot prevent any of the m colours
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from being used on these vertices as none of these vertices have been coloured
in G′2. Thus, every move in this instance of the orthogonal colouring game is
now equivalent to a move in the given instance of the Proper m colouring
game.

5. Complexity of the scoring version of the orthogonal graph colour-
ing game

In this section, we show that the scoring variant of the orthogonal colour-
ing game is PSPACE-complete when a partial colouring of the graph is given
as part of the input. The reduction is from the QSAT problem which is the
following.

INSTANCE : A set of boolean variables x1, . . . , xn, a boolean formula
F = C1 ∧ C2 ∧ . . . Cp where each Ci is a disjunction of literals, and an
expression φ = Q1x1Q2x2 . . . QnxnF where each Qj is either ∃ or ∀.

QUESTION : Is φ true?
It is known that QSAT is PSPACE-complete [9]. Moreover, by trivially

adding dummy variables, the following variant of QSAT, which is well-known
and which we will call the Alternating QSAT problem, is also PSPACE-
complete. Note that we assume that the quantifiers alternate and that the
number of quantifiers is even.

INSTANCE : A set of boolean variables x1, . . . , xn where n is an even
non-negative integer, a boolean formula F = C1 ∧ C2 ∧ . . . Cp where each Ci

is a disjunction of literals, and an expression φ = Q1x1Q2x2 . . . QnxnF where
Qj ≡ ∃ for all odd j and Qj ≡ ∀ for all even j where j ∈ N, 1 ≤ j ≤ n.

QUESTION : Is φ true?

Theorem 3. Given an instance MOCm(G) of the orthogonal colouring game
that includes a partial colouring, the problem of determining the outcome of
MOCm(G) under optimal play is PSPACE-complete for all m ≥ 3.

Before proceeding with the proof of the PSPACE-completeness of the
scoring variant of the orthogonal colouring game, we give some intuition on
how reductions from Alternating QSAT to games work in general and how
it will apply to our reduction. We suggest that the reader reads this section
first and then refers back to it after going through the construction of G′ in
the proof.

To be precise, in what follows, a truth value is either True or False. So,
what one is looking for is: does there exist a truth value (T or F ) for x1 such
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that for all truth values (T and F ) for x2, there exists a truth value (T or
F ) for x3 such that for all truth values (T and F ) of x4, etc. such that the
formula F is true.

For φ to be true, it is equivalent to a two-player game where the player
(player 1, let’s say) who wants to make φ true decides the values of the
variables with the “there exists” quantifiers and the adversary (player 2,
let’s say) (who wants to make φ false) decides the values of the variables
with the ”for all” quantifiers and they do it in order (that is, from left to
right and thus, in increasing order of index of the variables).

If φ is true, then player 1 can always find a truth value for his variable
such that whatever player 2 chooses as the truth value for his variable, player
1 can find a truth value for his next variable such that . . ., and so on, such
that φ is true.

If φ is false, then it means that, at some point, player 2 can choose a truth
value for his variable that will make it impossible for φ to be true and/or
player 1 will not be able to find a truth value for his variable to make φ true.

In our reduction, the Bob gadgets correspond to the variables that player 1
chooses the truth values for and the Alice gadgets correspond to the variables
that player 2 chooses the truth values for. The players are “roughly” forced
to colour vertices in their gadgets, which corresponds to choosing the truth
value of the associated variable. The gadgets are of decreasing size to ensure
that the players play in the same order given by the formula. Also, especially
in Bob gadgets, we ensure that Alice has to play again in the same gadget,
which forces Bob to play in the same one again, so that now it is Alice’s turn
and she wants to play in her gadget. It is not exactly the same for the Alice
gadgets because of the difference between ensuring vertices can be coloured
and ensuring vertices cannot be coloured.

The idea at the end is that if φ is true, then the clause vertices cannot be
coloured and so Bob wins (player 1 in the general setting described above).
Otherwise, φ is false, and so at least one clause is false and so the clause,
which is represented by a set of k vertices, can be coloured and so Alice wins
(player 2 in the general setting described above).

Proof of Theorem 3. Since the number of turns and possible plays is bounded
above by the number of uncoloured vertices remaining, the problem is in
PSPACE. To show the problem is PSPACE-hard, we reduce from the Al-
ternating QSAT problem. The proof is done for the case m = 3, and it
is straightforward to generalize it to any m > 3. The three colours used
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AliceBob AliceBob AliceBob

Alice’s

first

move

F (x1, x2, . . . , xn)

m210k7 − 1

∀x2∃x1 ∀x4∃x3 ∀xn∃xn−1

C1 C2 Cp

e

Figure 4: The general construction of G′ from an Alternating QSAT instance using the
clause sets Ci and Bob and Alice gadgets. The Bob and the Alice gadgets are connected to
the clause sets according to the formula F , but note that the details of this construction
are more complicated: only a certain subset of the vertices of the Bob or Alice gadget
corresponding to variable xj is connected to the clause sets in which xj appears, and
another subset of vertices is connected to the clause sets in which xj appears, with the
rest of the vertices in the gadget not being connected to any clause set. See the details
of the construction on page 14. This construction is made to guarantee that, in the first
phase of the game, the players are forced to play in the Alice and Bob gadgets from left
to right (three moves in a Bob gadget by Bob, Alice, and then Bob again, and one move
in an Alice gadget by Alice) and not to play in a clause set, unless they would like to lose
immediately. See Figures 5 and 6 for the details of the Bob and Alice gadgets.

are called T , F , and X, with T and F corresponding to “true” and “false”
respectively.
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General idea of the construction of G′. We first describe the construc-
tion of G′ from an instance of the Alternating QSAT problem and recall that
n is even. Let G′1 (G′2 respectively) be Alice’s (Bob’s respectively) copy of G′.
Note that in general, for any vertex v ∈ G′, since we have a partial colouring,
we can add pre-coloured vertices of degree 1 adjacent to v so as to restrict
the colours that can be given to v. By forbidding all colours but T , F , and
X in this way, the proof can be generalized to any m > 3 and so, as men-
tioned before, we focus on the case m = 3. From here on, when we say that
only certain colours can be given to a vertex v, it is implied that we have
added the vertices of degree 1 adjacent to v and given them the appropriate
colours in the same copy of G′. First, start with a star with m2 + 1 leaves
such that its centre is the vertex e and colour the first m2 leaves in both
copies of G′ such that all permutations of any two colours are used in terms
of orthogonality. From here on, for all new vertices that are not pre-coloured
in G′1, we make them uncolourable in G′2 (by forbidding every colour). For
the last uncoloured leaf, for some k ∈ N such that k > max(n,m, p), add
10k7− 1 vertices of degree 1 adjacent to it that can only be coloured X. For
each clause Ci ∈ {C1, . . . , Cp}, add an independent set of size k, that we will
call the clause set Ci. Make e adjacent to all the vertices of the clause sets
(this is just to guarantee that the graph we construct is connected) and note
that e is not colourable. Also, make it so that all the vertices of the clause
sets can only be coloured T . Let us now define two gadgets for the variable
vertices x1, . . . , xn.

Gadgets - Bob gadget. First, we define the variable gadget for Bob, called
the Bob gadget. For each j ∈ {1, . . . , n} such that j is odd, there is a Bob
gadget constructed as follows. There are four independent sets Sj,1, Sj,2, Sj,3

and Sj,4 of sizes 2, 10k7, 2(k−j)k5, and 1 respectively. For each i in {1, 2, 3},
each vertex of Sj,i is adjacent to every vertex of Sj,i+1. Denote by xj and
x′j the vertices of Sj,1, by xj,1, . . . , xj,10k7 the vertices of Sj,2, by yj,1, . . . ,
yj,2(k−j)k5 the vertices of Sj,3, and by yj the vertex of Sj,4. Let xj = xj,1. For
each 1 ≤ i ≤ p such that the literal xj is in the clause Ci, make the vertex
xj adjacent to all the vertices of Ci, and for each 1 ≤ i ≤ p such that the
literal xj is in the clause Ci, make the vertices xj,1, xj,2, . . . , xj,k2 adjacent
to every vertex of Ci. Finally, make it so that xj is colourable with X, T or
F , and all other vertices in the gadget are only colourable with T or F . See
Figure 5.

14



. . .

. . .

xj

x′j

xj,1 = xj

xj,2

xj,3

xj,10k7

yj,1

yj,2

yj,2(k−j)k5

yj

Figure 5: A Bob gadget.

Gadgets - Alice gadget. Secondly, we define the variable gadget for Al-
ice, called the Alice gadget. For each j ∈ {1, . . . , n} such that j is even,
there is an Alice gadget constructed as follows. There are two vertices xj
and xj, such that xj is adjacent to 2(k − j)k5 vertices xj,1, . . . , xj,2(k−j)k5
and to xj. xj is one of the two vertices in the maximal independent set
of size 2 of two K2,2(k−j)k3 ’s that are vertex-disjoint except for xj, with x′j
(x∗j respectively) being the other vertex in the maximal independent set of
size 2 of the first (second respectively) K2,2(k−j)k3 . Let x′j,1, . . . , x

′
j,2(k−j)k3

(x∗j,1, . . . , x
∗
j,2(k−j)k3 respectively) be the 2(k − j)k3 vertices in the maximal

independent set of size 2(k−j)k3 of the first (second respectively) K2,2(k−j)k3 .
For each 1 ≤ i ≤ p such that the literal xj is in the clause Ci, make the vertex
xj adjacent to every vertex of Ci, and for each 1 ≤ i ≤ p such that the literal
xj is in the clause Ci, make xj adjacent to every vertex of Ci. Finally, make
it so that xj is colourable with X, T or F , the vertices xj,1, . . . , xj,2(k−j)k5 are
only colourable with X, the vertices x′j,1, . . . , x

′
j,2(k−j)k3 (x∗j,1, . . . , x

∗
j,2(k−j)k3
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. . .

. . .

xj

xj,1

xj,2

xj,3

xj,2(k−j)k5

xj

x′j

x′j,1 x′j,2 x′j,3 x′j,2(k−j)k3

x∗j

x∗j,1 x∗j,2 x∗j,3 x∗j,2(k−j)k3

Figure 6: An Alice gadget.

respectively) are only colourable with T (F respectively), and all other ver-
tices in the gadget are only colourable with T or F . See Figure 6. The graph
G′ constructed so far is depicted schematically in Figure 4.

More pre-coloured vertices may be added to either of the copies of G′ to
ensure that there are exactly

α = 10k7 + k − 1 +
n

2
(10k7 + 3) +

∑
j even, j≤n

(2(k − j)k5 + 2(k − j)k3 + 3)

more vertices coloured in G′2. α corresponds more or less to the number of
vertices that are not coloured but will be at the end of the game. Those
vertices are those of the large star with 10k7 neighbours (one of which is e
and is not colourable), the vertices in Sj,1, Sj,2, and Sj,4 for each Bob gadget
(which totals to 10k7 + 3 vertices for each Bob gadget), and the vertices xj,
xj,i, x

′
j, x

∗
j , and either the x′j,i or the x∗j,i for each Alice gadget (which totals

(2(k − j)k5 + 2(k − j)k3 + 3) or (2(k − j)k5 + 2(k − j)k3 + 4) (in case one
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vertex may not be coloured and hence, why we say more or less) for the Alice
gadget j for each even j ≤ n). To this, k − 1 vertices are added, so that α
vertices may always be coloured if a clause set can always be coloured and so,
that α vertices can never be coloured if a clause set cannot be coloured. The
construction of G′ is now complete and it is clearly achieved in polynomial
time.

Winning strategy for Bob if and only if φ is true. We will now show
that φ is true if and only if Bob has a winning strategy in G′1 ∪G′2. We will
also show that there cannot be an equality, and thus, that φ is false if and
only if Alice has a winning strategy in G′1 ∪G′2.

Outline of the proof of the equivalence above. The game will be split
into two phases called the first and second phase respectively, with all the
turns of the first phase coming before all the turns of the second phase, as
expected. We will describe strategies for Alice and Bob for both phases,
which we will call standard. These strategies are optimal in terms of the
outcome of the game and not necessarily the scores at the end, i.e., any
strategy for a player is considered optimal if it results in that player winning
even if there exists another strategy that results in that player winning with
an even higher score or a larger difference in score. The first phase consists of
the players playing in each of the gadgets until all gadgets have at least one
coloured vertex in them and in doing so, essentially assigning truth values to
the variables x1, . . . , xn with Bob assigning the truth values to the xj where
j is odd and Alice to the xj where j is even, 1 ≤ j ≤ n. The structure of G′

ensures that, in the first phase, the players have to play on the Alice and Bob
gadgets corresponding to the variables xj in ascending order of the index j.
See Figure 4. The second phase consists of the players finishing colouring the
rest of the colourable vertices with the strategies being simpler in this phase.
Finally, it is shown that both the players’ strategies are optimal, giving the
desired result.

Standard strategies for the first phase. Let us consider some strategies
for Alice and Bob, and we will try to find the best strategies possible (that is
the strategy that colours as many vertices in G′1 as possible for Alice and as
few as possible for Bob). Recall that no more vertices in G′2 may be coloured
so the following all takes place in G′1. When referring to the number of
coloured vertices from here on in the proof, we refer to the number of vertices
coloured not including the precoloured vertices. The strategy will ensure that
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at most α− 1 uncoloured vertices of G′1 will become coloured. At the start,
there are

α + k(p− 1) + 1 +
∑

j odd, j≤n

(2(k − j)k5) +
∑

j even, j≤n

(2(k − j)k3 + 1)

uncoloured vertices that are colourable. Alice cannot allow 10k7− 1 of them
to become uncolourable, otherwise, she loses immediately. Therefore, Alice
must colour the center of the star with 10k7 neighbours (one of which is e)
with either T or F (or one of the neighbours, that is not e, with X) on
her first turn as otherwise, Bob will colour it X rendering 10k7 − 1 vertices
uncolourable.

We call a Bob gadget free if either no one coloured in it or if Bob coloured
in the gadget once and Alice coloured in it after Bob. An Alice gadget is free
if no one coloured in it. Let us first describe a strategy for Bob. While there
is a free gadget, consider the first such gadget j.

• Suppose first that this gadget is a Bob gadget. If the gadget is un-
coloured, then Bob colours a vertex of Sj,1 with F or T , say F (he
can always at least colour xj with F since the vertices of the clause
sets can only be coloured T ). If Alice does not then colour a vertex
of Sj,2 with the other colour (T here), then Bob can colour a vertex of
Sj,3 (if Alice did not colour yj) or the remaining vertex of Sj,1 (if she
did colour yj) with the other colour (T here), thus, rendering the 10k7

vertices of Sj,2 uncolourable. In that case, Alice has already lost since
there are too few colourable vertices remaining. Thus, we can assume
that Alice colours a vertex of Sj,2 with T (F respectively), and then, in
the case of a free Bob gadget with exactly two coloured vertices, Bob
colours yj with F (T respectively).

• Suppose now that the gadget is an Alice gadget. Bob colours xj with X.

Let us now describe a strategy for Alice. We distinguish three cases.

Case 1: Whenever Bob colours a vertex in a Bob gadget j where Alice didn’t
colour any vertex yet, she answers by colouring a vertex of Sj,2. If the vertex
coloured by Bob is yj or a vertex of Sj,2, then she gives the same colour to
the vertex of Sj,2 she colours. Note that this can always be done since most
of the vertices of Sj,2 (all except the first k2) are not adjacent to any vertex
outside of the gadget.
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Case 2: Whenever Bob colours a vertex in a Bob gadget such that the
sole move made by Alice in the gadget was to colour xj with X, she does the
following: If Bob colours x′j (yj respectively), then Alice answers by colouring
yj (x′j respectively) with the other colour, in which case every vertex of the
gadget except the first k2 vertices of Sj,2 can no longer become uncolourable.
If Bob colours a vertex of Sj,2 (Sj,3 respectively), then Alice answers by
colouring a vertex of Sj,3 (Sj,2 respectively) with the other colour, and again
every vertex of the gadget except the first k2 vertices of Sj,2 can no longer
become uncolourable.

Case 3: Whenever Bob does not do such a move as in Case 1 or Case 2,
consider the free gadget j with the smallest number j.

• Suppose first that this gadget is a Bob gadget. If no vertex of gadget j
has been coloured, then Alice colours xj with X. If exactly two vertices
of gadget j have been coloured, then one of them must be a vertex of
Sj,2, and Alice colours a vertex of Sj,3 with the other colour. Note that
this is possible since in an optimal strategy, Alice has never coloured yj
since then Bob could have coloured x′j with the same colour and Alice
loses.

• Suppose now that the gadget is an Alice gadget. Alice colours xj with
T or F (at least colouring with F is always possible), or X on one of
the xj,i’s.

We will call the strategies above the standard strategies of Alice and Bob.

Standard strategies of the first phase are forced. Let us assume that
Bob plays according to his standard strategy. In every gadget j where Bob
plays first, at least 2(k− j)k5 vertices cannot be coloured (the vertices of Sj,3

for a Bob gadget and the xj,i’s for an Alice gadget). Thus, the most vertices
that can theoretically be coloured (recall that only vertices not precoloured
are considered here) is

α + k(p− 1) + 1 +
∑

j even, j ≤n

(2(k − j)k3 + 1) < α + 2k5.

That value is only obtainable if, other than answering the first moves of
Bob in Bob gadgets so as not to lose immediately, Alice always plays on
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the first gadget where no vertex is coloured, which, in that case, will always
be an Alice gadget. If Alice does not always play exactly on those gadgets,
then Bob will be able to play first in an earlier gadget than in the previous
analysis, and there will be at most

α− 2k5 + k(p− 1) + 1 +
∑

j even, j ≤n

(2(k − j)k3 + 1) < α

coloured vertices in the end, so Alice loses. Therefore, while Bob plays the
previous strategy, Alice must answer in Bob gadgets after the first time Bob
plays in them, and must answer in the following Alice gadget after the second
time Bob plays in a Bob gadget.

Let us now assume that Alice plays according to her standard strategy.
In every Bob gadget where Alice plays first, or where Bob played only once
before she plays twice, she can make sure that all the vertices except at most
k2 (the first k2 vertices of Sj,2) will eventually be coloured. In Bob gadgets
where Bob plays first, she still makes sure that all the vertices except at
most 2(k− j)k5 + k2 (the first k2 vertices of Sj,2 and the vertices of Sj,3) will
eventually be coloured. In every Alice gadget where Alice plays first, she can
make sure that all the vertices except at most 4(k − j)k3 + 1 (the x′j,i’s, the
x∗j,i’s, and xj) will eventually be coloured. In every Alice gadget where Bob
plays first, at least four vertices will still eventually be coloured (in the worst
case, xj, xj, x

′
j, and x∗j). Therefore, if Bob plays first in every Bob gadget,

and plays a second time in every Bob gadget before Alice plays a second time
in them, the number of coloured vertices will be at least

α− k + 1− n

2
k2 −

∑
j even, j ≤n

(2(k − j)k3) > α− 2k5.

Again, if Bob does not do that, the number of coloured vertices will be at
least

α + 2k5 − k + 1− n

2
k2 −

∑
j even, j ≤n

(2(k − j)k3) > α,

and Alice wins.
We will call the strategies above the standard strategies of Alice and Bob.

Until no gadget is free, if Bob plays his standard strategy, then Alice always
needs to either directly answer Bob in a Bob gadget, or to play in the first
free gadget. Similarly, until no gadget is free, if Alice plays her standard
strategy, then Bob always needs to play in the first free gadget.
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Optimality of standard strategies in the first phase. Assume that
Alice and Bob played according to their standard strategies until the current
move. Note that this implies that no vertex of a clause set has been coloured
up until now. We consider two cases.

• It is Bob’s turn, the first free gadget j is thus a Bob gadget. Assume
no one played in it.

If Bob plays X on xj, since that is Alice’s standard strategy, the sit-
uation would be as if Alice played first in the gadget. She can then
continue with her standard strategy and win.

If Bob plays in Sj,2 or Sj,3, then Alice can play on the other one, making
sure that every vertex of the gadget except k2 vertices will eventually
be coloured, as if Alice played first in this gadget using her standard
strategy. Alice can then proceed with her standard strategy, and again
she wins. Therefore, Bob cannot play on Sj,2 or Sj,3.

If he colours yj, Alice can answer by colouring a vertex in Sj,2 with the
same colour, at which point the situation is similar to what it would
have been if Bob first played on x′j (Bob can colour a vertex of Sj,2 with
the other colour to make sure the vertices of Sj,3 are uncolourable, and
if he does not, then Alice can colour a vertex of Sj,3 to make sure all of
these vertices will eventually be coloured).

We can thus assume that Bob colours a vertex in Sj,1 with F or T , and
that Alice answers in Sj,2.

Lastly, Bob still needs to make a move in the gadget j since it is still
free, and he needs to play his standard move (that is colour yj with a
colour from {T, F} different from the colour Alice just used), otherwise,
Alice can play her standard strategy and win.

• It is Alice’s turn, the first free gadget j is thus an Alice gadget, and no
one played on it.

Alice should not colour xj with X as it is according to Bob’s standard
strategy, and Bob can then proceed with his standard strategy and win.

If Alice colours neither one of the xj,i’s with X, nor xj with T or F , then
Bob can colour xj with X, thus rendering all the xj,i’s uncolourable,
as if Bob had played first in gadget j. Bob can then play his standard
strategy and win.
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Therefore, Alice needs to colour one of the xj,i’s with X or colour xj
with T or F .

Therefore, until no gadget is free, Alice and Bob both need to play their
standard strategy. Let us call what happens while there is a free gadget the
first phase. Since the last gadget is an Alice gadget, at the end of the first
phase, it’s Bob’s turn. The only remaining vertices that may be colourable
and may become uncolourable are the vertices of the clause sets, the first k2

vertices of Sj,2 for j odd, and xj, the x′j,i’s, and the x∗j,i’s for j even. Let us
now extend the standard strategies as follows for the second phase.

Standard strategies for the second phase. Here is the strategy for Bob:
While there exists an Alice gadget j where the x′j,i’s or the x∗j,i’s are un-
coloured and may still become uncolourable, consider the first such Alice
gadget. Bob colours xj, x

′
j or x∗j with an appropriate colour from {T, F} to

make sure either the x′j,i’s or the x∗j,i’s are uncolourable.
Here is the strategy for Alice: While there exists an Alice gadget j where

the x′j,i’s or the x∗j,i’s are uncoloured and may still become uncolourable,
consider the first such Alice gadget. Alice colours xj, x

′
j, x

∗
j , one of the x′j,i’s

or one of the x∗j,i’s with an appropriate colour to make sure either the x′j,i’s
or the x∗j,i’s will eventually be coloured.

It is clear that colouring only one vertex cannot cause both the x∗j,i’s and
the x∗j,i’s to be uncolourable, since that vertex would need to have colour F
and T . Moreover, whatever one vertex has been coloured, it is always possible
to colour x′j or x∗j so that either the x′j,i’s or the x∗j,i’s are uncolourable. Lastly,
whatever one vertex is coloured, it is always possible to colour one of the x′j,i’s
or one of the x∗j,i’s to make sure either the x′j,i’s or the x∗j,i’s will eventually
be coloured.

Standard strategy in second phase is forced for Alice. If both Alice
and Bob play according to their standard strategy, then the number of ver-
tices that will eventually be coloured is at least α− k+ 1− n

2
k2 and at most

α+k(p−1) + 1 + n
2

(the n
2

here is from the xj’s of each of the Alice gadgets).
If Bob plays the standard strategy, then Alice needs to play the standard
strategy, otherwise, there will be at most

α + k(p− 1) + 1 +
n

2
− 2k3 < α

coloured vertices in the end, and Alice loses. Even if Alice plays according
to the standard strategy, Bob may play once not according to the standard
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strategy (since it has one step in advance), and continue to follow the stan-
dard strategy. If he does so, then Alice can also play once not according to
the standard strategy, and so on. However, since neither can play two moves
first in an Alice gadget without letting the other one play twice first in a
previous Alice gadget, eventually they will both have played once in each
Alice gadget (in addition to the first time Alice had already played in each
of them during the first phase).

Winning situations. If Bob can make sure that k2 vertices in a Sj,2 of a
Bob gadget are not colourable, then at most α+k(p−1)+1+ n

2
−k2 < α can

be coloured, and Bob wins. But Alice can make sure that this never happens.
Indeed, when she played in that Bob gadget during the first phase, she played
on a vertex of Sj,2. As at that time, no vertex of a clause gadget had been
played, she could have played that move on one of the first k2 vertices,
with the only additional effect of preventing those k2 vertices from becoming
uncolourable (and preventing any play that would make them uncolourable).
Therefore, we can assume that Alice always played on one of the first k2

vertices of the Sj,2’s, say xj without loss of generality, and thus that all of
these vertices will eventually be coloured.

Thus, the number of vertices that will eventually be coloured is at least
α − k + 1 and at most α + k(p − 1) + 1 + n

2
. Now, if at least a vertex of

a clause set is eventually coloured, then all of the vertices of that clause set
will eventually be coloured, and the number of coloured vertices is at least
α−k+1+k = α+1, and Alice wins. If no vertex of a clause set is eventually
coloured, then the number of coloured vertices is at most α− k+ 1 + n

2
< α,

and Bob wins. Therefore, Bob wins if and only if no vertex in a clause set is
eventually coloured, and otherwise, Alice wins.

Proof that Bob wins if and only if φ is true. Assume that φ is true.
We will describe a winning strategy for Bob in G′1∪G′2 with this assumption.
Bob plays according to the standard strategy (unless Alice does not play
according to her standard strategy, in which case Bob wins as shown before),
with the following additional specifications. In the first phase, in each Bob
gadget, Bob colours the vertex xj with the colour corresponding to the truth
assignment of the variable xj that ensures φ is true. For the values of the
other xj’s (for j even), that correspond to the ∀ variables, take the colour that
Alice gave to xj if she coloured xj, and F if she did not. In the second phase,
in each Alice gadget that Bob colours in for the first time in the second phase
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according to his strategy, Bob colours xj with T if that colour is available
(i.e., if Alice did not colour xj with T and with F otherwise). Finally, Bob
continues to colour arbitrarily until no vertex remains colourable.

If Alice does not play according to her standard strategy, then Bob wins,
as seen above. Otherwise, note that, in the end, each vertex xj or xj will
be coloured with the colour that corresponds to the truth assignment of its
literal. That is immediate for every case except when Alice coloured a vertex
with X in an Alice gadget j during the first phase. In that case, we fixed
that xj = F , and since Bob coloured xj with T during the second phase, xj
cannot become uncolourable and will eventually be coloured F . Now since
every clause contains at least one literal that is true, no vertex of a clause
set can be coloured, and Bob wins.

Assume now that φ is false. We will describe a winning strategy for Alice
in G′1 ∪ G′2 with this assumption. Alice plays according to the standard
strategy (unless Bob does not play according to his standard strategy during
the first phase, in which case Alice wins as shown before), with the following
additional specification. Consider that the odd variables, which correspond
to the ∃ variables, have a truth assignment corresponding to the first colour
given by Bob to a vertex of gadget j during the first phase. In every Alice
gadget j during the first phase, Alice colours xj with the colour corresponding
to the truth assignment of variable xj that assures that φ is false. In the end,
Alice continues to colour arbitrarily until no vertex remains colourable.

First, note that because of Alice’s answers to Bob’s plays in the first
phase, if x′j is coloured F (T respectively) in a Bob gadget during the first
phase, then xj cannot be coloured T (F respectively). Similarly, for all j odd,
all of the vertices in Sj,2 will eventually be coloured the same. Therefore, no
literal vertex is coloured T while the corresponding literal is false. In the
end, there is at least one clause that is false, and thus, no vertex adjacent to
a vertex of the corresponding clause set will be coloured T . Thus, all of the
vertices of this set are coloured and Alice wins.

6. Conclusion and Further Work

We have proven that the normal play (scoring respectively) variant of
the orthogonal colouring game introduced by Andres et al [1] is PSPACE-
complete when a partial colouring is part of the input for m ≥ 1 (m ≥ 3
respectively) colours. Moreover, the proof of the PSPACE-completeness of
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the scoring variant can be easily altered to prove that the same colouring
scoring game played just on one graph G and thus, without the orthogo-
nality condition is also PSPACE-complete which may be of interest to the
reader. We have not studied the misère variant of the orthogonal colouring
game (first player who cannot colour a vertex wins) but this could be an
interesting direction for future work. We have also shown that recognizing
graphs that admit a strictly matched involution is NP-complete. Lastly, the
complexity of the very much related colouring construction game introduced
by Bodlaender [5] is still unknown and has been for almost 30 years now.
With this in mind we give the following open problems.

Problem 1. Determine the complexity of the scoring variant of the orthog-
onal colouring game when a partial colouring is given for m = 1 (m = 2
respectively) colours.

Problem 2. Determine the complexity of both variants of the orthogonal
colouring game when no partial colouring is given initially.

Problem 3. For which class of graphs does Alice or Bob have a winning
strategy in the misère variant of the orthogonal colouring game and what is
the complexity of this variant?

Problem 4 (Bodlaender [5]). Determine the complexity of the colouring con-
struction game.

Problem 5. Determine the complexity of counting graphs that admit a strictly
matched involution.

Any answer to Problem 5 leaves the possibility open that it might be
easy to count graphs admitting a strictly matched involution asymptotically.
Upper and lower bounds for the number of such graphs are known, however,
there is an exponential asymptotic gap between those two bounds [1].

Problem 6. Determine the number of graphs admitting a strictly matched
involution asymptotically (apart from “moderately” exponential factors).
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