
HAL Id: hal-02053261
https://hal.science/hal-02053261v1

Submitted on 1 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Set-Constrained Delivery Broadcast: Definition,
Abstraction Power, and Computability Limits

Damien Imbs, Achour Mostefaoui, Matthieu Perrin, Michel Raynal

To cite this version:
Damien Imbs, Achour Mostefaoui, Matthieu Perrin, Michel Raynal. Set-Constrained Delivery
Broadcast: Definition, Abstraction Power, and Computability Limits. ICDCN ’18 - 19th Interna-
tional Conference on Distributed Computing and Networking, Jan 2018, Varanasi, India. pp.1-10,
�10.1145/3154273.3154296�. �hal-02053261�

https://hal.science/hal-02053261v1
https://hal.archives-ouvertes.fr

Set-Constrained Delivery Broadcast:
Definition, Abstraction Power, and Computability Limits

Damien Imbs

LIF, Université Aix-Marseille

Marseille, France

damien.imbs@lif.univ-mrs.fr

Achour Mostéfaoui

LS2N, Université de Nantes

Nantes, France

achour.mostefaoui@univ-nantes.fr

Matthieu Perrin

LS2N, Université de Nantes

Nantes, France

matthieu.perrin@univ-nantes.fr

Michel Raynal

Institut Universitaire de France, IRISA, Université de

Rennes

Rennes, France

raynal@irisa.fr

ABSTRACT
This paper introduces a new communication abstraction, called

Set-Constrained Delivery Broadcast (SCD-broadcast), whose aim is

to provide its users with an appropriate abstraction level when they

have to implement objects or distributed tasks in an asynchronous

message-passing system prone to process crash failures. This ab-

straction allows each process to broadcast messages and deliver a

sequence of sets of messages in such a way that, if a process delivers

a set of messages including a messagem and later delivers a set of

messages including a messagem′, no process delivers first a set of

messages includingm′ and later a set of message includingm.

After having presented an algorithm implementing SCD-

broadcast, the paper investigates its programming power and its

computability limits. On the “power” side it presents SCD-broadcast-

based algorithms, which are both simple and efficient, building

objects (such as snapshot and conflict-free replicated data), and

distributed tasks. On the “computability limits” side it shows that

SCD-broadcast and read/write registers are computationally equiv-

alent.

CCS Concepts
C.2.4 [Computer-Communication Network]: Distributed

Systems -distributed applications, network operating systems; D.4.1
[Operating Systems] -concurrency; D.4.5 [Operating Systems]
Reliability; -fault-tolerance; F.1.1 [Computation by Abstract
Devices]: Models of Computation -Computability theory

General Terms:
Algorithms, Reliability, Theory

Keywords:
Abstraction, Asynchronous system, Communication abstraction,

Conflict-free replicated data type, Design simplicity, Distributed

task, Linearizability, Message-passing system, Process crash,

Read/write atomic register, Snapshot object.

1 INTRODUCTION
Programming abstractions. Informatics is a science of abstrac-

tions, and a main difficulty consists in providing users with a “de-

sired level of abstraction and generality – one that is broad enough

to encompass interesting new situations, yet specific enough to

address the crucial issues” as expressed in [18]. When considering

sequential computing, functional programming and object-oriented

programming are well-know examples of what means “desired level

of abstraction and generality”.

In the context of asynchronous distributed systems where the

computing entities (processes) communicate –at the basic level– by

sending and receiving messages through an underlying communi-

cation network, and where some of them can experience failures, a

main issue consists in finding appropriate communication-oriented

abstractions, where the meaning of the term “appropriate” is re-

lated to the problems we intend to solve. Solving a problem at the

send/receive abstraction level is similar to the writing of a pro-

gram in a low-level programming language. Programmers must

be provided with abstractions that allow them to concentrate on

the problem they solve and not on the specific features of the un-

derlying system. This is not new. Since a long time, high level

programming languages have proved the benefit of this approach.

From a synchronization point of view, this approach is the one

promoted in software transactional memory [34], whose aims is to

allow programmers to focus on the synchronization needed to solve

their problems and not on the way this synchronization must be

implemented (see the textbooks [19, 30]).

If we consider specific coordination/cooperation problems,

“matchings” between problems and specific communication

abstractions are known. One of the most famous examples

concerns the consensus problem whose solution rests on the total
order broadcast abstraction1. Another “matching” example is the

causal message delivery broadcast abstraction [11, 32], which allows

for a very simple implementation of a causal read/write memory [2].

Aim of the paper. The aim of this paper is to introduce and

investigate a high level communication abstraction which allows

for simple and efficient implementations of concurrent objects

and distributed tasks, in the context of asynchronous message-

passing systems prone to process crash failures. The concurrent

objects in which we are interested are defined by a sequential

specification [20] (e.g., a queue). Differently, a task extends to the

1
Total order broadcast is also called atomic broadcast. Actually, total order broadcast
and consensus have been shown to be computationally equivalent [12]. A more general

result is presented in [22], where is introduced a communication abstraction which

“captures” the k -set agreement problem [13, 31] (consensus is 1-set agreement).

distributed context the notion of a function [10, 28]. It is defined

by a mapping from a set of input vectors to a set of output vectors,

whose sizes are the number of processes. An input vector I defines
the input value I [i] of each process pi , and, similarly, an output

vector O defines the output O[j] of each process pj . Agreement

problems such as consensus and k-set agreement are distributed

tasks. What makes the implementation of a task difficult is the

fact that each process knows only its input, and, due to net effect

of asynchrony and process failures, no process can distinguish if

another process is very slow or crashed. The difficulty results in an

impossibility for consensus [17], even in a system in which at most

one process may crash.

Content of the paper: a broadcast abstraction. The SCD-

broadcast communication abstraction proposed in the paper allows

a process to broadcast messages, and to deliver sets of messages (in-

stead of a single message) in such a way that, if a process pi delivers
a message setmset containing a messagem, and later delivers a

message setmset ′ containing a messagem′, then no process pj can
deliver first a set containingm′ and later another set containingm.

Let us notice that pj is not prevented from deliveringm andm′ in
the same set. Moreover, SCD-broadcast imposes no constraint on

the order in which a process must process the messages it receives

in a given message set.

After having defined SCD-broadcast, the paper presents an

implementation of it in asynchronous systems where a minority

of processes may crash. This assumption is actually a necessary

and sufficient condition to cope with the net effect of asynchrony

and process failures (see below). Assuming an upper bound ∆ on

message transfer delays, and zero processing time, an invocation

of SCD-broadcast is upper bounded by 2∆ time units, and O(n2)
protocol messages (messages generated by the implementation

algorithm).

Content of the paper: implementing objects and tasks.
Then, the paper addresses two fundamental issues of SCD-

broadcast: its abstraction power and its computability limits. As far

as its abstraction power is concerned, i.e., its ability and easiness

to implement atomic (linearizable) or sequentially consistent con-

current objects [20, 27] and read/write solvable distributed tasks,

the paper presents, on the one side, two algorithms implementing

atomic objects (namely a snapshot object [1, 3], and a distributed

increasing/decreasing counter), and, on the other side, an algorithm

solving the lattice agreement task [6, 16].

The two concurrent objects (snapshot and counter) have been

chosen because they are encountered in many applications, and

are also good representative of the class of objects identified in [4].

The objects of this class are characterized by the fact that each pair

op1 and op2 of their operations either commute (i.e., in any state,

executing op1 before op2 leads to the same state as executing op2
before op1, as it is the case for a counter), or any of op1 and op2
can overwrite the other one (e.g., executing op1 before op2 leads
to the same state as executing op2 alone). Our implementation of a

counter can be adapted for all objects with commutative operations,

and our implementation of the snapshot object illustrates how over-

writing operations can be obtained directly from the SCD-broadcast

abstraction. Concerning these objects, it is also shown that a slight

change in the algorithms allows us to obtain implementations (with

a smaller cost) in which the consistency condition is weakened

from linearizability to sequential consistency [26].

In the case of read/write solvable tasks, SCD-broadcast shows

how the concurrency inherent (but hidden) in a task definition can

be easily mastered and solved.

Content of the paper: the computability limits of SCD-
broadcast. The paper also investigates the computability power of

the SCD-broadcast abstraction, namely it shows that SCD-broadcast

and atomic read/write registers (or equivalently snapshot objects)

have the same computability power in asynchronous systems prone

to process crash failures. Everything that can be implemented

with atomic read/write registers can be implemented with SCD-

broadcast, and vice versa.

As read/write registers (or snapshot objects) can be implemented

in asynchronous message-passing system where only a minority of

processes may crash [5], it follows that the proposed algorithm

implementing SCD-broadcast is resilience-optimal in these systems.

From a theoretical point of view, this means that the consensus

number of SCD-broadcast is 1 (the weakest possible).

Roadmap. The paper is composed of 8 sections. Section 2 de-

fines the SCD-broadcast abstraction. Section 3 presents a resilience-

optimal algorithm implementing SCD-broadcast in asynchronous

message-passing systems prone to process crash failures, while

Then, Sections 4-6 present SCD-broadcast-based algorithms for

concurrent objects and tasks. Section 7 focuses on the computabil-

ity limits of SCD-broadcast. Finally, Section 8 concludes the paper.

Due to page limitations, proofs are not given in the article, but they

can be found in [21].

2 THE SCD-BROADCAST
COMMUNICATION ABSTRACTION

Process model. The computing model is composed of a set of n
asynchronous sequential processes, denoted p1, ..., pn . “Asynchro-
nous” means that each process proceeds at its own speed, which can

be arbitrary and always remains unknown to the other processes.

A process may halt prematurely (crash failure), but it executes

its local algorithm correctly until it crashes (if it ever does). The

model parameter t denotes the maximal number of processes that

may crash in a run r . A process that crashes in a run is said to be

faulty in r . Otherwise, it is non-faulty.

Definition of SCD-broadcast. The set-constrained delivery

broadcast abstraction (SCD-broadcast) provides the processes with

an operation scd_broadcast(m) that takes a messagem to broadcast

as parameter, and triggers the event scd_deliver(mset) that provides
the process on which it was triggered with a non-empty set of mes-

sagesmset . Using a classical terminology, when a process invokes

the operation scd_broadcast(m), we say that it “scd-broadcasts a

message m”. Similarly, when the event scd_deliver(mset) is trig-
gered on this process, we say that it “scd-delivers the set of mes-

sagesmset”. By a slight abuse of language, when we are interested

in a messagem, we say that a process “scd-delivers the messagem”

when actually it scd-delivers the message setmset containingm.

2

SCD-broadcast is defined by the following set of properties,

where we assume –without loss of generality– that all the messages

that are scd-broadcast are different.
2

• Validity. If a process scd-delivers a set containing a message

m, thenm was scd-broadcast by a process.

• Integrity. A message is scd-delivered at most once by each

process.

• MS-Ordering. Let pi be a process that scd-delivers first a

message set mseti and later a message set mset ′i . For any
pair of messagesm ∈ mseti andm

′ ∈ mset ′i , no process pj
scd-delivers first a message setmset ′j containingm

′
and later

a message setmsetj containingm.

• Termination-1. If a non-faulty process scd-broadcasts a mes-

sagem, it terminates its scd-broadcast invocation and scd-

delivers a message set containingm.

• Termination-2. If a process scd-delivers a messagem, every

non-faulty process scd-delivers a message set containingm.

Termination-1 and Termination-2 are classical liveness proper-

ties (found for example in Uniform Reliable Broadcast [9, 29]). The

other ones are safety properties. Validity and Integrity are classical

communication-related properties. The first states that there is nei-

ther message creation nor message corruption, while the second

states that there is no message duplication.

The MS-Ordering property is new, and characterizes SCD-

broadcast. It states that the contents of the sets of messages scd-

delivered at any two processes are not totally independent: the

sequence of sets scd-delivered at a process pi and the sequence of

sets scd-delivered at a process pj must be mutually consistent in

the sense that a process pi cannot scd-deliver firstm ∈mseti and
later m′ ∈ mset ′i , mseti , while another process pj scd-delivers
firstm′ ∈ mset ′j and laterm ∈ msetj ,mset ′j . Let us nevertheless

observe that if pi scd-delivers firstm ∈ mseti and laterm′ ∈ mset ′i ,
pj may scd-deliverm andm′ in the same set of messages.

Let us remark that, if the MS-Ordering property is suppressed

and messages are scd-delivered one at a time, SCD-broadcast

boils down to the well-known Uniform Reliable Broadcast abstrac-
tion [12, 29].

Differently, if all message sets contain exactly one message,

SCD-broadcast is equivalent to the Atomic Broadcast abstraction.

An example. Letm1,m2,m3,m4,m5,m6,m7 andm8 be messages

that have been scd-broadcast by different processes. The following

scd-deliveries of message sets by p1, p2 and p3 respect the definition
of SCD-broadcast:

• at p1: {m1,m2}, {m3,m4,m5}, {m6}, {m7,m8}.

• at p2: {m1}, {m2,m3}, {m4,m5,m6}, {m7}, {m8}.

• at p3: {m1,m2,m3}, {m4,m5}, {m6,m7}, {m8}.

Differently, due to the scd-deliveries of the sets includingm2 and

m3, the following scd-deliveries by p1 and p2 do not satisfy the

MS-broadcast property:

• at p1: {m1,m2}, {m3,m4,m5}, ...

• at p2: {m1,m3}, {m2}, ...

2
The unicity of messages is not restrictive in practice, as one can assume the broadcast

operation tags messages with a unique identifer. This way, messages can be unique

even if their applicative content is not.

A containment property. Let msetℓi be the ℓ-th

message set scd-delivered by pi . Hence, at some time,

pi scd-delivered the sequence of message setsmset1i , . . . , msetxi .

Let MSetxi = mset1i ∪ . . . ∪ msetxi . The following Containment
property follows directly from the MS-Ordering and Termination-2

properties:

∀ i, j,x ,y: (MSetxi ⊆ MSetyj) ∨ (MSetyj ⊆ MSetxi).

Partial order on messages created by the message sets. The
MS-Ordering and Integrity properties establish a partial order on

the set of all the messages, defined as follows. Let 7→i be the local

message delivery order at process pi defined as follows:m 7→i m
′

if pi scd-delivers the message set containingm before the message

set containingm′. As no message is scd-delivered twice, it is easy to

see that 7→i is a partial order (locally know by pi). The containment

property implies that there is a total order (which remains unknown

to the processes) on the whole set of messages, that complies with

the partial order 7→= ∪1≤i≤n 7→i . This is where SCD-broadcast

can be seen as a weakening of total order broadcast.

3 IMPLEMENTATION OF
SCD-BROADCAST

This section shows that the SCD-broadcast communication abstrac-

tion is not an oracle-like object (oracles allow us to extend our under-

standing of computing, but cannot be implemented). It describes an

implementation of SCD-broadcast in an asynchronous send/receive

message-passing system in which any minority of processes may

crash. This system model is denoted CAMPn,t [t < n/2] (where
CAMPn,t stands for “Crash Asynchronous Message-Passing” and

t < n/2 is its restriction on failures). As t < n/2 is the weakest as-
sumption on process failures that allows a read/write register to be

built on top of an asynchronous message-passing system [5]
3
, and

SCD-broadcast and read/write registers are computationally equiv-

alent (as shown in Sections 4 and 7), the proposed implementation

is optimal from a resilience point of view.

3.1 Underlying communication network
Send/receive asynchronous network. Each pair of processes

communicate through two uni-directional channels on which they

send and receive messages. Hence, the communication network is

a complete network: any process pi can directly send a message to

any process pj (including itself). A process pi invokes the operation
“send type(m) to pj ” to send to pj the messagem, whose type is

type. The operation “receive type() from pj ” allows pi to receive

from pj a message whose type is type.

Each channel is reliable (no loss, corruption, nor creation of

messages), not necessarily FIFO, and asynchronous (while the

transit time of each message is finite, there is no upper bound

on message transit times). Let us notice that, due to process and

message asynchrony, no process can know if another process

crashed or is only very slow.

Uniform FIFO-broadcast abstraction. To simplify the presenta-

tion, and without loss of generality, we consider that the system is

3
From the point of view of the maximal number of process crashes that can be tolerated,

assuming failures are independent.

3

equipped with a FIFO-broadcast abstraction. Such an abstraction

can be built on top of the previous basic system model without

enriching it with additional assumptions (see e.g. [29]). It is defined

by the operations fifo_broadcast() and fifo_deliver(), which satisfy

the properties of Uniform Reliable Broadcast (Validity, Integrity,

Termination 1, and Termination 2), plus the following message

ordering property.

• FIFO-Order. For any pair of processes pi and pj , if pi fifo-
delivers first a messagem and later a messagem′, both from

pj , no process fifo-deliversm′ beforem.

3.2 Algorithm
This section describes Algorithm 1, which implements SCD-

broadcast in CAMPn,t [t < n/2]. From a terminology point

of view, an application message is a message that has been

scd-broadcast by a process, while a protocol message is an

implementation message generated by Algorithm 1.

Local metadata quadruplets. For each applica-

tion message m, each process stores a quadruplets

qdplt = ⟨qdplt .msд,qdplt .sd,qdplt . f ,qdplt .cl⟩ whose fields

have the following meaning.

• qdplt .msд contains an application messagem,

• qdplt .sd contains the id of the sender of qdplt .msд,
• qdplt .sn contains the local date (seq. number) associatedwith

m by its sender. Hence, ⟨qdplt .sd,qdplt .sn⟩ is the identity of

the application messagem.

• qdplt .cl is an array of size n, initialized to [+∞, . . . ,+∞].

Then, qdplt .cl[x] will contain the sequence number as-

sociated with m by px when it broadcast the message

forward_msg(msд.m,−,−,−,−). This last field is crucial

in the scd-delivery by the process pi of a message set con-

tainingm.

Local variables at a process pi . Each process pi manages the

following local variables.

• bufferi : buffer (init. empty) where are stored quadruplets

containing messages that have been fifo-delivered but not

yet scd-delivered in a message set.

• to_deliveri: set of quadruplets containing messages to be

scd-delivered.

• sni : local logical clock (initialized to 0), which increases by

step 1 and measures the local progress ofpi . Each application
message scd-broadcast by pi is identified by a pair ⟨i, sn⟩,
where sn is the current value of sni .
• clocki [1..n]: array of logical dates; clocki [j] is the greatest
date x such that the application messagem identified ⟨x , j⟩
has been scd-delivered by pi .

Protocol message. The algorithm uses a single type of proto-

col message denoted forward_msg(m, sd, sn, f , snf). Such a mes-

sage is made up of five fields: the first field is an associated ap-

plication message m, the second and third form a pair ⟨sd, sn⟩
that is the identity of the application message and the fourth

and fifth form a pair ⟨f , snf ⟩ that describes the local progress

(as captured by snf) of the forwarder process pf when it for-

warded this protocol message to the other processes by invoking

fifo_broadcast forward_msg(m, sd, snsd , f , snf) (line 11).

Operation scd_broadcast(). When pi invokes the operation

scd_broadcast(m), wherem is an application message, it sends the

protocol message forward_msg(m, i, sni , i, sni) to itself (this sim-

plifies the writing of the algorithm), and waits until it has no more

message from itself pending in bufferi , which means it has scd-

delivered a set containingm (lines 19 and 20).

Uniform fifo-broadcast of a message forward_msg.
When a process pi fifo-delivers a protocol message

forward_msg(m, sd, snsd , f , snf), it first invokes the inter-

nal operation forward(m, sd, snsd , f , snf). In addition to other

statements, the first fifo-delivery of such a message by a process

pi entails its participation in the uniform reliable fifo-broadcast

of this message (lines 5 and 11). In addition to the invocation

of forward(), the fifo-delivery of forward_msg() invokes also

try_deliver(), which strives to scd-deliver a message set (lines 4).

The core of the algorithm. Expressed with the relations 7→i , 1 ≤

i ≤ n, introduced in Section 2, the main issue of the algorithm is

to ensure that, if there are two messagem andm′ and a process pi
such thatm 7→i m

′
, then there is no pj such thatm′ 7→j m.

To this end, a process pi is allowed to scd-deliver a mes-

sage m before a message m′ only if it knows that a ma-

jority of processes pj have fifo-delivered a protocol mes-

sage forward_msg(m,−,−,−,−) before a protocol message

forward_msg(m′,−,−,−,−); pi knows it either (i) because it

fifo-delivered from pj a message forward_msg(m,−,−,−,−) but
not yet a message forward_msg(m′,−,−,−,−), or (ii) because
it fifo-delivered from pj both forward_msg(m,−,−,−, snm) and
forward_msg(m′,−,−,−, snm′) and the sending date smn is

smaller than the sending date snm′. The MS-Ordering property

follows then from the impossibility that a majority of processes

“seesm beforem′”, while another majority “seesm′ beforem”.

Internal operation forward(). This operation can be seen

as an enrichment (with the fields f and snf) of the re-

liable fifo-broadcast implemented by the protocol messages

forward_msg(m, sd, snsd ,−,−). Considering such a message

forward_msg(m, sd, snsd , f , snf),m was scd-broadcast by psd at

its local time snsd , and relayed by the forwarding process pf at its

local time snf . If snsd ≤ clocki [sd], pi has already scd-delivered a

message set containingm (see lines 18 and 20). If snsd > clocki [sd],
there are two cases defined by the predicate of line 6.

• No quadruplet qdplt in bufferi is such that qdplt .msд = m.

In this case, pi creates a quadruplet associated withm, and

adds it to bufferi (lines 8-10). Then, pi participates in the

fifo-broadcast ofm (line 11) and records its local progress by

increasing sni (line 12).
• There is a quadruplet qdplt in bufferi associated withm, i.e.,

qdplt = ⟨m,−,−,−⟩ ∈ bufferi . In this case, pi assigns snf to
qdplt .cl[f] (line 7), thereby indicating that m was known

and forwarded by pf at its local time snf .

4

operation scd_broadcast(m) is
(1) send forward_msg(m, sni , i, sni , i) to itself;

(2) wait(∄ qdplt ∈ bufferi : qdplt .sd = i).

when the message forward_msg(m, sd, snsd, f , snf) is fifo-delivered do % from pf
(3) forward(m, sd, snsd, f , snf);
(4) try_deliver().

procedure forward(m, sd, snsd, f , snf) is
(5) if (snsd > clocki [sd])
(6) then if (∃ qdplt ∈ bufferi : qdplt .sd = sd ∧ qdplt .sn = snsd)
(7) then qdplt .cl [f] ← snf
(8) else threshold [1..n] ← [∞, . . . , ∞]; threshold [f] ← snf ;
(9) let qdplt ← ⟨m, sd, snsd, threshold [1..n]⟩;
(10) bufferi ← bufferi ∪ {qdplt };
(11) fifo_broadcast forward_msg(m, sd, snsd, i, sni);
(12) sni ← sni + 1
(13) end if
(14) end if.

procedure try_deliver() is
(15) let to_deliveri ← {qdplt ∈ bufferi : | {f : qdplt .cl [f] < ∞} | > n

2
};

(16) while (∃ qdplt ∈ to_deliveri, ∃ qdplt ′ ∈ bufferi \ to_deliveri : | {f : qdplt .cl [f] < qdplt ′ .cl [f]} | ≤ n
2
) do

to_deliveri ← to_deliveri \ {qdplt } end while;
(17) if (to_deliveri , ∅)
(18) then for each qdplt ∈ to_deliveri do clocki [qdplt .sd] ← max(clocki [qdplt .sd], qdplt .sn) end for;
(19) bufferi ← bufferi \ to_deliveri ;
(20) mset ← {m : ∃ qdplt ∈ to_deliveri : qdplt .msд =m }; scd_deliver(mset)
(21) end if.

Algorithm 1: An implementation of SCD-broadcast in CAMPn,t [t < n/2] (code for pi)

Internal operation try_deliver(). When a process pi executes

try_deliver(), it first computes the set to_deliveri of the quadru-

plets qdplt containing application messages m which have been

seen by a majority of processes (line 15). From pi ’s point of view, a
message has been seen by a process pf if qdplt .cl[f] has been set

to a finite value (line 7).

As indicated in a previous paragraph, if a majority of processes

received first a message forward_msg carryingm′ and later an-

other message forward_msg carryingm, it might be that some

process pj scd-delivered a set containingm′ before scd-delivering
a set containingm. Therefore, pi must avoid scd-delivering a set

containingm before scd-delivering a set containingm′. This is done
at line 16, where pi withdraws the quadruplet qdplt corresponding
tom if it can not deliverm′ yet (i.e. the corresponding qdplt ′ is not
in to_deliveri) or it does not have the proof that the situation cannot
happen, i.e. no majority of processes saw the message correspond-

ing to qdplt before the message corresponding to qdplt ′ (this is
captured by the predicate |{ f : qdplt .cl[f] < qdplt ′.cl[f]}| ≤ n

2
).

If to_deliveri is not empty after it has been purged (lines 16-17),

pi computes a message set to scd-deliver. This setmset contains all
the application messages in the quadruplets of to_deliveri (line 20).
These quadruplets are withdrawn from bufferi (line 18). Moreover,

before this scd-delivery, pi needs to updates clocki [x] for all the
entries such that x = qdplt .sd where qdplt ∈ to_deliveri (line 18).
This update is needed to ensure that the future uses of the predicate

of line 17 are correct.

Theorem 1. Algorithm 1 implements the SCD-broadcast com-
munication abstraction in CAMPn,t [t < n/2]. Moreover, each
invocation of the operation scd_broadcast() requires O(n2) protocol
messages. If there is an upper bound ∆ on messages transfer delays

(and local computation times are equal to zero), each SCD-broadcast

costs at most 2∆ time units.

4 SCD-BROADCAST IN ACTION
(ITS POWER): SNAPSHOT OBJECT

4.1 Snapshot object
Definition. The snapshot object was introduced in [1, 3]. A snap-

shot object is an array REG[1..m] of atomic read/write regis-

ters which provides the processes with two operations, denoted

write(r ,−) and snapshot(). The invocation of write(r ,v), where
1 ≤ r ≤ m, by a process pi assigns atomically v to REG[r]. The
invocation of snapshot() returns the value of REG[1..m] as if it was
executed instantaneously. Hence, in any execution of a snapshot

object, its operations write() and snapshot() are linearizable.
The underlying atomic registers can be Single-Reader (SR) or

Multi-Reader (MR) and Single-Writer (SR) or Multi-Writer (MW).

We consider only SWMR and MWMR registers. If the registers

are SWMR the snapshot is called SWMR snapshot (and we have

then m = n). Moreover, we always have r = i , when pi invokes
write(r ,−). If the registers are MWMR, the snapshot object is called

MWMR.

Implementations based on read/write registers. Implemen-

tations of both SWMR and MWMR snapshot objects on top of

read/write atomic registers have been proposed (e.g., [1, 3, 23, 24]).

The “hardness” to build snapshot objects in read/write systems and

associated lower bounds are presented in the survey [15]. The best

algorithm known ([7]) to implement an SWMR snapshot requires

O(n logn) read/write on the base SWMR registers for both write()

5

operation snapshot() is
(1) donei ← false; scd_broadcast sync(i); wait(donei);
(2) return(regi [1..m]).

operation write(r, v) is
(3) donei ← false; scd_broadcast sync(i); wait(donei);
(4) donei ← false; scd_broadcast write(r, v, ⟨tsai [r].date + 1, i ⟩); wait(donei).

when the message set { write(r j
1
, vj

1
, ⟨datej

1
, j1 ⟩), . . . , write(r jx , vjx , ⟨datejx , jx ⟩),

sync(jx+1), . . . , sync(jy) } is scd-delivered do
(5) for each r such that write(r, −, −) ∈ scd-delivered message set do
(6) let ⟨date, writer ⟩ be the greatest timestamp in the messages write(r, −, −);
(7) if (tsai [r] <ts ⟨date, writer ⟩)
(8) then let v the value in write(r, −, ⟨date, writer ⟩);
(9) r eдi [r] ← v ; tsai [r] ← ⟨date, writer ⟩
(10) end if;
(11) end for;
(12) if ∃ℓ : jℓ = i then donei ← true end if.

Algorithm 2: Construction of an MWMR snapshot object CAMPn,t [SCD-broadcast] (code for pi)

and snapshot(). As far as MWMR snapshot objects are concerned,

there are implementations where each operation has an O(n) cost4.
As far as the construction of an SWMR (or MWMR) snapshot ob-

ject in crash-prone asynchronous message-passing systems where

t < n/2 is concerned, it is possible to stack two constructions: first

an algorithm implementing SWMR (or MWMR) atomic read/write

registers (e.g., [5])), and, on top of it, an algorithm implementing

an SWMR (or MWMR) snapshot object. This stacking approach

provides objects whose operation cost is O(n2 logn) messages for

SWMR snapshot, and O(n2) messages for MWMR snapshot. An

algorithm based on the same low level communication pattern as

the one used in [5], which builds an atomic SWMR snapshot object

“directly” (i.e., without stacking algorithms) was recently presented

in [14] (the aim of this algorithm is to perform better than the

stacking approach in concurrency-free executions).

4.2 An algorithm for atomic MWMR
snapshot in CAMPn,t [SCD-broadcast]

Local representation of REG at a process pi . At each register pi ,
REG[1..m] is represented by three local variables reдi [1..m] (data
part), plus tsai [1..m] and donei (control part).

• donei is a Boolean variable.

• regi [1..m] contains the current value of REG[1..m], as known
by pi .
• tsai [1..m] is an array of timestamps associated with the val-

ues stored in regi [1..m]. A timestamp is a pair made of a

local clock value and a process identity. Its initial value

is ⟨0,−⟩. The fields associated with tsai [r] are denoted

⟨tsai [r].date, tsai [r].proc⟩.

Timestamp-based order relation.We consider the classical lexi-

cographical total order relation on timestamps, denoted <ts . Let

ts1 = ⟨h1, i1⟩ and ts2 = ⟨h2, i2⟩. We have ts1 <ts ts2
def
= (h1 <

h2) ∨ ((h1 = h2) ∧ (i1 < i2)).

4
Snapshot objects built in read/write models enriched with operations such as Com-

pare&Swap, or LL/SC, have also been considered, e.g., [23, 25]. Here we are interested

in pure read/write models.

Algorithm 2: snapshot operation. In this algorithm, a message

sync(i) is scd-broadcast (line 1) and after reception of this mes-

sage (line 12), the local value of regi [1..m] is returned (line 2). The

message sync(i) which is scd-broadcast is a pure synchronization

message, whose aim is to entail the refreshment of the value of

regi [1..m] (lines 5-11) which occurs before the setting of donei to
true (line 12).

Algorithm 2: write operation. (Lines 3-4) When a process pi
wants to assign a value v to REG[r], it invokes REG.write(r ,v).
This operation starts by a re-synchronization, as in the snapshot

operation, whose side effect is here to provide pi with an up-to-

date value of tsai [r].date (line 3). Then, pi associates the timestamp

⟨tsai [r].date + 1, i⟩ with v , and scd-broadcasts the data/control

message write(r ,v, ⟨tsai [r].date + 1, i⟩). In addition to informing

the other processes on its write of REG[r], this message write()

acts as a re-synchronization message, exactly as a message sync(i).
When this synchronization terminates (i.e., when the Boolean donei
is set to true), pi returns from the write operation.

Algorithm 2: scd-delivery of a set of messages.
When process pi scd-delivers a message set, namely,

{write(r j1 ,vj1 , ⟨datej1 , j1⟩), . . . ,write(r jx ,vjx , ⟨datejx , jx ⟩),
sync(jx+1), . . . , sync(jy)} it first looks if there are messages

write(). If it is the case, for each register REG[r] for which there

are messages write(r ,−,−) (line 5), pi computes the maximal

timestamp carried by these messages (line 6), and updates

accordingly its local representation of REG[r] (lines 7-10). Finally,
if pi is the sender of one of these messages (write() or sync()),

donei is set to true, which terminates pi ’s re-synchronization

(line 12).

Time andMessage costs.An invocation of snapshot() involves
one invocation of scd_broadcast(), while an invocation of write()
involves two. As scd_broadcast() costs O(n2) protocol messages

and 2∆ time units, snapshot() cost the same, and write() costs the
double.

Theorem 2. Algorithm 2 builds anMWMR atomic snapshot object
in the model CAMPn,t [SCD-broadcast]. The operation snapshot
costs one SCD-broaddast, the write() operation costs two.

6

operation increase() is
(1) donei ← false; scd_broadcast plus(i); wait(donei);
(2) return().

operation decrease() is the same as increase() where plus(i) is replaced by minus(i).

operation read() is
(3) donei ← false; scd_broadcast sync(i); wait(donei);
(4) return(counteri).

when the message set { plus(j1), . . . ,minus(jx), . . . , sync(jy), . . . } is scd-delivered do
(5) let p = number of messages plus() in the message set;

(6) letm = number of messages minus() in the message set;

(7) counteri ← counteri + p −m;

(8) if ∃ℓ : jℓ = i then donei ← true end if.

Algorithm 3: Construction of an atomic counter in CAMPn,t [SCD-broadcast] (code for pi)

operation increase() is
(1) lsci ← lsci + 1;
(2) scd_broadcast plus(i);
(3) return().

operation decrease() is the same as increase() where plus(i) is replaced by minus(i).

operation read() is
(4) wait(lsci = 0);

(5) return(counteri).

when the message set { plus(j1), . . . ,minus(jx), . . . } is scd-delivered do
(6) let p = number of messages plus() in the message set;

(7) letm = number of messages minus() in the message set;

(8) counteri ← counteri + p −m;

(9) let c = number of messages plus(i) and minus(i) in the message set;

(10) lsci ← lsci − c .

Algorithm 4: Construction of a seq. consistent counter in CAMPn,t [SCD-broadcast] (code for pi)

Comparison with other algorithms. Interestingly, Algorithm 2

is more efficient (from both time and message point of views) than

the stacking of a read/write snapshot algorithm running on top of

a message-passing emulation of a read/write atomic memory (such

a stacking would costs O(n2 logn) messages and O(n∆) time units,

see Section 4.1).

Sequentially consistent snapshot object.When considering Al-

gorithm 2, let us suppress line 1 and line 3 (i.e., the messages sync

are suppressed). The resulting algorithm implements a sequentially

consistent snapshot object. This results from the suppression of

the real-time compliance due to the messages sync. The operation

snapshot() is purely local, hence its cost is 0. The cost of the op-

eration write() is one SCD-broadcast, i.e., 2∆ time units and O(n2)
protocol messages. The proof of this algorithm is left to the reader.

5 SCD-BROADCAST IN ACTION
(ITS POWER): COUNTER OBJECT

Definition. Let a counter be an object which can be manipulated

by three parameterless operations denoted increase(), decrease(),
and read(). Let C be a counter. From a sequential specification

point of view C .increase() adds 1 to C , C .decrease() subtracts
1 from C , C .read() returns the value of C . As indicated in the

Introduction, due to its commutative operations, this object is

a good representative of a class of CRDT objects (conflict-free

replicated data type as defined in [33]).

An algorithm satisfying linearizability. Algorithm 3 imple-

ments an atomic counter C . Each process manages a local copy

of it denoted counteri . The text of the algorithm is self-explanatory.

The operation read() is similar to the operation snapshot() of the
snapshot object. Differently from the write() operation on a snap-

shot object (which requires a synchronization message sync() and

a data/synchronization message write()), the update operations

increase() and decrease() require only one data/synchronization

message plus() or minus(). This is the gain obtained from the fact

that, from a process pi point of view, the operations increase()
and decrease() which appear between two consecutive of its read()
invocations are commutative.

Theorem 3. Algorithm 3 implements an atomic counter.

An algorithm satisfying sequential consistency. The previous
algorithm can be easily modified to obtain a sequentially consistent

counter. To this end, a technique similar to the one introduced in [8]

can be used to allow the operations increase() and decrease() to
have a fast implementation. “Fast” means here that these operations

are purely local: they do not require the invoking process to wait in

the algorithm implementing them. Differently, the operation read()
issued by a process pi cannot be fast, namely, all the previous

increase() and decrease() operations issued by pi must be applied

7

operation propose(ini) is
(1) donei ← false; scd_broadcast msg(i, ini); wait(donei);
(2) return(lub(r eci)).

when the message set { msg(j1, vj
1
), . . . , msg(jx , vjx)} is scd-delivered do

(3) r eci ← r eci ∪ {vj
1
, . . . , vjx };

(4) if ∃ℓ : jℓ = i then donei ← true end if.

Algorithm 5: Solving Lattice Agreement in CAMPn,t [SCD-broadcast] (code for pi)

to its local copy of the counter for its invocation of read() terminates

(this is the rule known under the name “read your writes”).

Algorithm 4 is the resulting algorithm. In addition to counteri ,
each process manages a synchronization counter lsci initialized to

0, which counts the number of increase() and decrease() executed
by pi and not yet locally applied to counteri . Only when lsci is
equal to 0, pi is allowed to read counteri .

The cost of an operation increase() and decrease() is 0 time units

plus theO(n2) protocol messages of the underlying SCD-broadcast.

The time cost of the operation read() by a process pi depends on
the value of lsci . It is 0whenpi has no “pending” counter operations.

RemarkAs in [8], using the same technique, it is possible to design

a sequentially consistent counter in which the operation read() is
fast, while the operations increase() and decrease() are not.

6 SCD-BROADCAST IN ACTION (ITS
POWER): LATTICE AGREEMENT
TASK

Definition. Let S be a partially ordered set, and ≤ its partial order

relation. Given S ′ ⊆ S , an upper bound of S ′ is an element x of S
such that ∀ y ∈ S ′ : y ≤ x . The least upper bound of S ′ is an upper

bound z of S ′ such that, for all upper bounds y of S ′, z ≤ y. S is

called a semilattice if all its finite subsets have a least upper bound.
Let lub(S ′) denotes the least upper bound of S ′.

Let us assume that each process pi has an input value ini that
is an element of a semilattice S . The lattice agreement task was

introduced in [6] and generalized in [16]. It provides each process

with an operation denoted propose(), such that a process pi invokes
propose(ini) (we say that pi proposes ini); this operation returns

an element z ∈ S (we say that it decides z). The task is defined by

the following properties, where it is assumed that each non-faulty

process invokes propose().
• Validity. If process pi decides outi , we have
ini ≤ outi ≤ lub({in1, . . . , inn }).
• Containment. If pi decides outi and pj decides outj , we have
outi ≤ outj or outj ≤ outj .
• Termination. If a non-faulty proposes a value, it decides a

value.

Algorithm. Algorithm 5 implements the lattice agreement task.

It is a very simple algorithm, which scd-broadcasts one message

and waits for its local rception. The text of the algorithm is self-

explanatory.

Theorem 4. Algorithm 5 solves lattice agreement.

Remark 1. SCD-broadcast can be built on top of read/write

registers (see below Theorem 5). It follows that the combination of

Algorithm 5 and Algorithm 6 provides us with a pure read/write

algorithm solving the lattice agreement task. As far as we know,

this is the first algorithm solving lattice agreement, based only on

read/write registers.

Remark 2. Similarly to the algorithms implementing snapshot

objects and counters satisfying sequential consistency (instead of

linearizability), Algorithm 5 uses no message sync().

Let us also notice the following. Objects are specified by “witness”

correct executions, which are defined by sequential specifications.

According to the time notion associated with these sequences we

have two consistency conditions: linearizability (the same “physical”

time for all the objects) or sequential consistency (a logical time is

associated with each object, independently from the other objects).

Differently, as distributed tasks are defined by relations from input

vectors to output vectors (i.e., without referring to specific execution

patterns or a time notion), the notion of a consistency condition

(such as linearizability or sequential consistency) is meaningless

for tasks.

7 THE COMPUTABILITY POWER OF
SCD-BROADCAST (ITS LIMITS)

This section presents an algorithm building SCD-broadcast on top

of SWMR snapshot objects. (Such snapshot objects can be easily

obtained from MWMR snapshot objects.) Hence, it follows from (a)

this algorithm, (b) Algorithm 1, and (c) the impossibility proof to

build an atomic register on top of asynchronous message-passing

systems where t ≥ n/2 process may crash [5], that SCD-broadcast

cannot be implemented in CAMPn,t [t ≥ n/2], and snapshot

objects and SCD-broadcast are computationally equivalent.

7.1 From snapshot to SCD-broadcast
Shared objects. The shared memory is composed of two SWMR

snapshot objects. Let ϵ denote the empty sequence.

• SENT [1..n]: snapshot object (initialized to [∅, . . . , ∅]), such

that SENT [i] contains the messages scd-broadcast by pi .
• SETS_SEQ[1..n]: snapshot object (init. to [ϵ, . . . , ϵ]), such
that SETS_SEQ[i] contains the sequence of the sets of mes-

sages scd-delivered by pi .

The notation ⊕ is used for the concatenation of a message set at

the end of a sequence of message sets.

Local objects. Each process pi manages the following local

objects.

• senti : local copy of the snapshot object SENT .
• sets_seqi : local copy of the object SETS_SEQ.

8

operation scd_broadcast(m) is
(1) senti [i] ← senti [i] ∪ {m }; SENT .write(senti [i]); progress().

(2) background task T is repeat forever progress() end repeat.

procedure progress() is
(3) enter_mutex();
(4) catchup();
(5) senti ← SENT .snapshot();
(6) to_deliveri ← (∪1≤j≤n senti [j]) \members(sets_seqi [i]);
(7) if (to_deliveri , ∅)
(8) then sets_seqi [i] ← sets_seqi [i] ⊕ to_deliveri ; SETS_SEQ.write(sets_seqi [i]);
(9) scd_deliver(to_deliveri)
(10) end if;
(11) exit_mutex().

procedure catchup() is
(12) sets_seqi ← SETS_SEQ.snapshot();
(13) while (∃j, set : set is the first set in sets_seqi [j] : set ⊈ members(sets_seqi [i]) do
(14) to_deliveri ← set \members(sets_seqi [i]);
(15) sets_seqi [i] ← sets_seqi [i] ⊕ to_deliveri ; SETS_SEQ.write(sets_seqi [i]);
(16) scd_deliver(to_deliveri)
(17) end while.

Algorithm 6: An implementation of SCD-broadcast on top of snapshot objects (code for pi)

• to_deliveri: auxiliary variable whose aim is to contain the

next message set that pi has to scd-deliver.

The function members(set_seq) returns the set of all the messages

contained in set_seq.

Description of Algorithm 6. When a process pi invokes

scd_broadcast(m), it addsm to senti [i] and SENT [i] to inform all

the processes on the scd-broadcast ofm. It then invokes the internal

procedure progress() fromwhich it exits once it has a set containing

m (line 1).

A background task T ensures that all messages will be scd-

delivered (line 2). This task invokes repeatedly the internal proce-

dure progress(). As, locally, both the application process and the

underlying task T can invoke progress(), which accesses the local

variables of pi , those variables are protected by a local fair mutual

exclusion algorithm providing the operations enter_mutex() and
exit_mutex() (lines 3 and 11).

The procedure progress() first invokes the internal procedure
catchup(), whose aim is to allow pi to scd-deliver sets of messages

which have been scd-broadcast and not yet locally scd-delivered.

To this end, catchup() works as follows (lines 12-17). Process
pi first obtains a snapshot of SETS_SEQ, and saves it in sets_seqi
(line 12). This allows pi to know which message sets have been

scd-delivered by all the processes; pi then enters a “while” loop to

scd-deliver as many message sets as possible according to what

was scd-delivered by the other processes. For each process pj that
has scd-delivered a message set set containing messages not yet

scd-delivered by pi (predicate of line 13), pi builds a set to_deliveri
containing the messages in set that it has not yet scd-delivered
(line 14), and locally scd-delivers it (line 16). This local scd-delivery

needs to update accordingly both sets_seqi [i] (local update) and
SETS_SEQ[i] (global update).

When it returns from catchup(), pi strives to scd-deliver mes-

sages not yet scd-delivered by the other processes. To this end, it

first obtains a snapshot of SENT , which it stores in senti (line 5).

If there are messages that can be scd-delivered (computation of

to_deliveri at line 6, and predicate at line 7), pi scd-delivers them
and updates sets_seqi [i] and SETS_SEQ[i] (lines 7-9) accordingly.

Theorem 5. Algorithm 6 implements SCD-Broadcast in the clas-
sical wait-free read/write model CARWn,t [t < n].

8 CONCLUSION
What was the paper on? This paper has introduced a new com-

munication abstraction, suited to asynchronous message-passing

systems where computing entities (processes) may crash. Denoted

SCD-broadcast, it allows processes to broadcast messages and de-

liver sets of messages (instead of delivering each message one after

the other). More precisely, if a process pi delivers a set of messages

containing a messagem, and later delivers a set of messages con-

taining a messagem′, no process pj can deliver a set of messages

containing m′ before a set of messages containing m. Moreover,

there is no local constraint imposed on the processing order of the

messages belonging to a same message set. SCD-broadcast has the

following noteworthy features:

• It can be implemented in asynchronous message passing

systems where any minority of processes may crash. Its

costs are upper bounded by twice the network latency (from

a time point of view) and O(n2) (from a message point of

view).

• Its computability power is the same as the one of atomic

read/write register (anything that can be implemented in

asynchronous read/write systems can be implemented with

SCD-broadcast).

• When interested in the implementation of a concurrent ob-

ject O , a simple weakening of the SCD-broadcast-based

atomic implementation of O provides us with an SCD-

broadcast-based implementation satisfying sequential consis-

tency (moreover, the sequentially consistent implementation

is more efficient than the atomic one).

9

On programming languages for distributed computing. Dif-
ferently from sequential computing for which there are plenty

of high level languages (each with its idiosyncrasies), there is no

specific language for distributed computing. Instead, addressing

distributed settings is done by the enrichment of sequential comput-

ing languages with high level communication abstractions. When

considering asynchronous systems with process crash failures, to-
tal order broadcast is one of them. SCD-broadcast is a candidate to

be one of them, when one has to implement read/write solvable

objects and distributed tasks.

ACKNOWLEDGMENTS
This work was partially supported by the Franco-German DFG-

ANR Project 14-CE35-0010-02 DISCMAT (devoted to connections

mathematics/distributed computing) and the French ANR project

16-CE40-0023-03 DESCARTES (devoted to layered and modular

structures in distributed computing).

REFERENCES
[1] Afek Y., Attiya H., Dolev D., Gafni E., Merritt M. and Shavit N., Atomic

snapshots of shared memory. JACM, 40(4):873-890 (1993)

[2] Ahamad M., Neiger G., Burns J.E., Hutto P.W., and Kohli P. Causal

memory: definitions, implementation and programming. Distributed
Computing, 9:37-49 (1995)

[3] Anderson J., Multi-writer composite registers. Distributed Computing,
7(4):175-195 (1994)

[4] Aspnes J. and HerlihyM.,Wait-free data structures in the asynchronous

PRAM model. Proc. 2nd ACM Symposium on Parallel algorithms and
architectures (SPAA’00), ACM Press, pp. 340-349 (1990)

[5] Attiya H., Bar-Noy A. and Dolev D., Sharing memory robustly in mes-

sage passing systems. JACM, 42(1):121-132 (1995)

[6] Attiya H., Herlihy M., and Rachman O., Atomic snapshots using lattice

agreement. Distr. Comp., 8:121-132 (1995)
[7] Attiya H. and Rachman O., Atomic snapshots inO (n logn) operations.

SIAM JC, 27(2):319-340 (1998)
[8] Attiya H. and Welch J.L., Sequential consistency versus linearizability.

ACM TOCS, 12(2):91-12 (1994)
[9] Attiya H. and Welch J.L., Distributed computing: fundamentals, simula-

tions and advanced topics, (2d Edition), Wiley-Interscience, 414 pages

(2004)

[10] Biran O., Moran S., and Zaks S., A combinatorial characterization

of the distributed tasks which are solvable in the presence of one

faulty processor. Proc. 7th ACM Symposium on Principles of Distributed
Computing (PODC’88), ACM Press, pp. 263-275 (1988)

[11] Birman K. and Joseph T. Reliable communication in the presence of

failures. ACM TOCS, 5(1):47–76 (1987)
[12] Chandra T. and Toueg S., Unreliable failure detectors for reliable dis-

tributed systems. JACM, 43(2):225-267 (1996)

[13] Chaudhuri S., More choices allow more faults: set consensus prob-

lems in totally asynchronous systems. Information and Computation,
105(1):132-158 (1993)

[14] Delporte-Gallet C., Fauconnier H., Rajsbaum S., and Raynal M., Imple-

menting snapshot objects on top of crash-prone asynchronousmessage-

passing systems. Proc. 16th Int’l Conf. on Alg. and Arch. for Par. Proc.
(ICA3PP’16), Springer LNCS 10048, pp. 341-355 (2016)

[15] Ellen F., How hard is it to take a snapshot? Proc. 31th Conf. on Current
Trends in Theory & Prac. of Comp. S. (SOFSEM’05), Springer LNCS 3381,
pp. 27-35 (2005)

[16] Faleiro J.M., Rajamani S., Rajan K., Ramalingam G., and Vaswani K.,

Generalized lattice agreement. Proc. 31th ACM Symposium on Principles

of Distributed Computing (PODC’12), ACM Press, pp. 125-134 (2012)

[17] Fischer M.J., Lynch N.A. and Paterson M.S., Impossibility of distributed

consensus with one faulty process. JACM, 32(2):374-382 (1985)

[18] Fischer M.J. and Merritt M., Appraising two decades of distributed

computing theory research. Distributed Computing, 16(2-3):239-247
(2003)

[19] Herlihy M.P. and Shavit N., The Art of Multiprocessor Programming.

Morgan Kaufmann Pub., 508 pages (2008)
[20] Herlihy M. P. and Wing J. M., Linearizability: a correctness condition

for concurrent objects. ACM TOPLAS, 12(3):463-492 (1990)
[21] Imbs D., Mostéfaoui A., Perrin M., and Raynal M., Set-Constrained

Delivery Broadcast: Definition, Abstraction Power, and Computability

Limits. [Research Report] LIF, UniversitÃľ Aix-Marseille; LINA-University
of Nantes; IMDEA Software Institute; Institut Universitaire de France;
IRISA, UniversitÃľ de Rennes., 2017. ãĂĹhal-01540010ãĂĽ

[22] Imbs D., Mostéfaoui A., Perrin M., and Raynal M., Which broadcast

abstraction captures k-set agreement?

Proc. 31th Int’l Symposium on Distributed Computing (DISC’17), to ap-

pear in LIPICs (2017)

[23] Imbs D. and Raynal M., Help when needed, but no more: efficient

read/write partial snapshot. Journal of Parallel and Distributed Com-
puting, 72(1):1-12 (2012)

[24] Inoue I., Chen W., Masuzawa T. and Tokura N., Linear time snapshots

using multi-writer multi-reader registers. Proc. 8th Int’l Workshop on
Distributed Algorithms (WDAG’94), Springer LNCS 857, pp. 130-140

(1994)

[25] Jayanti P., An optimal multiwriter snapshot algorithm. Proc. 37th ACM
Symposium on Theory of Computing (STOC’05), ACM Press, pp. 723-732

(2005)

[26] Lamport L., How to make a multiprocessor computer that correctly

executes multiprocess programs. IEEE Transactions on Computers,
C28(9):690–691 (1979)

[27] Lamport L., On interprocess communication, Part I: basic formalism.

Distributed Computing, 1(2):77-85 (1986)
[28] Moran S. andWolfstahl Y., Extended impossibility results for asynchro-

nous complete networks. Information Processing Letters, 26(3):145-151
(1987)

[29] Raynal M., Communication and agreement abstractions for fault-tolerant
asynchronous distributed systems.Morgan & Claypool, 251 pages (2010)

[30] Raynal M., Concurrent programming: algorithms, principles and foun-
dations. Springer, 515 pages (2013)

[31] Raynal M., Set agreement. Encyclopedia of Algorithms, Springer,
pp. 1956-1959 (2016)

[32] Raynal M., Schiper A., and Toueg S., The causal ordering abstraction

and a simple way to implement it. Information Processing Letters, 39:343-
351 (1991)

[33] Shapiro M., Preguiça N., Baquero C., and Zawirski M., Conflict-free

replicated data types. Proc. 13th Int’l Symp. on Stabilization, Safety, and
Security of Distr. Systems (SSS’11), Springer LNCS 6976, pp. 386-400

(2011)

[34] Shavit N. and Touitou D., Software transactional memory. Distributed
Computing, 10(2):99-116 (1997)

10

	Abstract
	1 Introduction
	2 The SCD-broadcast Communication Abstraction
	3 Implementation of SCD-broadcast
	3.1 Underlying communication network
	3.2 Algorithm

	4 SCD-broadcast in Action (its Power): Snapshot Object
	4.1 Snapshot object
	4.2 An algorithm for atomic MWMR snapshot in CAMPn,t[SCD-broadcast]

	5 SCD-broadcast in Action (its Power): Counter Object
	6 SCD-broadcast in Action (its Power): Lattice Agreement Task
	7 The Computability Power of SCD-broadcast (its Limits)
	7.1 From snapshot to SCD-broadcast

	8 Conclusion
	References

