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ABSTRACT
A long-standing open question has been whether lock-freedom

and wait-freedom are fundamentally different progress conditions,

namely, can the former be provided in situations where the lat-

ter cannot? This paper answers the question in the affirmative,

by proving that there are objects with lock-free implementations,

but without wait-free implementations—using objects of any finite

power.

We precisely define an object called n-process long-lived approxi-
mate agreement (n-LLAA), in which two sets of processes associated
with two sides, 0 or 1, need to decide on a sequence of increasingly

closer outputs. We prove that 2-LLAA has a lock-free implemen-

tation using reads and writes only, while n-LLAA has a lock-free

implementation using reads, writes and (n − 1)-process consen-

sus objects. In contrast, we prove that there is no wait-free imple-

mentation of the n-LLAA object using reads, writes and specific

(n − 1)-process consensus objects, called (n − 1)-window registers.

CCS CONCEPTS
• Theory of computation → Shared memory algorithms;
Concurrent algorithms;

KEYWORDS
concurrency; shared memory; multi-core algorithms; wait-freedom;

lock-freedom; nonblocking.

1 INTRODUCTION
Asynchronous shared-memory algorithms capture the behavior of

concurrent systems, where failure-prone processes, each running at

its own speed, communicate by applying primitives to shared base

objects. Such algorithms are often used to implement higher-level
objects, supporting ongoing invocations. These implementations

withstand adverse system behavior, due to scheduling anomalies

and failures.

Two main progress conditions have been studied for asynchro-

nous shared-memory implementations [11]. The first, wait-freedom,

ensures individual progress to each process, i.e., its operations com-

plete as long as it takes an infinite number of steps. The second, lock-
freedom, requires only global progress, namely, if a process takes an
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infinite number of steps then some (possibly other) processes com-

plete their operations.
1
Clearly, every wait-free implementation is

also lock-free.

Many wait-free implementations, starting with the universal

construction [11] and recently [13], are derived by first presenting

a fairly simple lock-free implementation, which is then made wait-

free through sophisticated techniques. It is therefore natural to

ask whether every object with a lock-free implementation also

has a wait-free implementation. For one-shot (or bounded) objects,
which each process accesses at most once (or a bounded number of

times), the answer is trivially positive: Every lock-free algorithm is

also wait-free, since once a process completes its operation (or a

bounded number thereof), it takes no more steps, and the global

progress condition implies that other processes are guaranteed to

complete their operations.

The question, however, is challenging for long-lived objects, as

there are objects with a lock-free implementation but without a

known wait-free implementation using the same primitives (e.g.,
queues from test&set primitives [2]). The fundamental nature of

wait-freedom and lock-freedom, and their use in numerous papers,

makes this an important question.

The question was seemingly answered by Herlihy [10], who

argued that there is an object for which there is a lock-free imple-

mentation for two processes using only reads and writes, and there

is no wait-free algorithm in the same setting. Besides several inac-

curacies in the proofs (see below), the answer provided by [10] is

limited: it does not show a separation for more than two processes

and it does not show a separation when primitives stronger than

reads and writes can be used.

This paper paints a more complete picture of the separation

between lock-freedom and wait-freedom. We precisely define an

object called n-process long-lived approximate agreement (in short,

n-LLAA), supporting a single operation called output(), which has

no argument and returns a real number. Each of the n processes

is assigned a side, either 0 or 1. Let S be a sequential execution

with invocations of output(). The current position of side i in S is

the output value of the last operation of a process in side i , or i
if there are no operations of processes in side i . The sequential

specification of n-LLAA includes every sequential execution in

which the distance between the current positions of the two sides

is at most
1

2
r , where r is the total number of operations in the

execution.

1
Implementations of this kind were initially called nonblocking [11], but we use the

more contemporary terminology.



We present a lock-free linearizable implementation of 2-LLAA,

a restriction of n-LLAA for two processes, using reads and writes

only (Section 3). This implementation is extended to a lock-free

linearizable implementation of n-LLAA, using reads, writes and

(n − 1)-process consensus objects (Section 4).
2

A specific consensus object that can be used is a window regis-
ter. These registers support read and write primitives: the write

primitive is standard, but the read primitive, parameterized with

an integer k > 1, returns a k-tuple composed of the last k val-

ues written, in the order in which they were written. A k-window
register supports read primitives with parameter ≤ k ; note that a
1-window register is a standard register supporting read and write

primitives. This object was initially defined in [14] to illustrate

causal consistency. A similar object was defined concurrently in

the context of space lower bounds for concurrent objects [8]. It is

proved in [1] that a k-window register can solve consensus among

exactly k processes, i.e., its consensus number is k .
Our main impossibility result shows that there is no wait-free

implementation of the n-LLAA object, that uses only k-window
registers, for k < n (Section 5). Note that this includes read/write

registers.

Related Work: The 2-LLAA object is a stronger version of the

iterated approximate agreement object studied in [10], and its imple-

mentation is the same, except for a few small details. However, as

explained in Section 3.2, 2-LLAA requires a more elaborate correct-

ness proof, which determines the linearization points dynamically.

Differently from 2-LLAA, the convergence requirement of the iter-

ated approximate agreement object is that the r -th output operation
of pi is at distance at most 1/2r from the the current position of the

other process. Furthermore, the impossibility result for wait-free

implementations in [10] relies on an unstated assumption (in the

second paragraph of the proof of Lemma 14) that an infinite num-

ber of steps by one process must eventually fix the decision of the

other process. Although this behavior, often referred to as helping,
is a common way to turn lock-free implementations into wait-free

ones, it is not a priori known to be a necessary condition for wait-

freedom. The notion of helping was recently formalized [5, 6] and

was shown to be a nontrivial property, allowing to prove nontrivial

results not known to hold otherwise. Additionally, the final step of

the impossibility proof in [10] (in the proof of Theorem 15) needs

a stronger convergence requirement than the one required by the

iterated approximate agreement object. Our impossibility proof ad-

dresses these challenges and extends to the general case of systems

with (n − 1)-consensus objects.
Aspnes and Herlihy [4] defined a class of objects for which there

are wait-free implementations from read/write objects, as well as

lock-free ones. Another class of objects, called Common2, includes
the set of objects that have a wait-free implementation from objects

with consensus number 2, e.g., test&set [2, 3].

Strong linearizability [9] was introduced as a way to circumvent

some anomalies when used with randomized implementations. It

was shown that there are deterministic lock-free and strongly lin-

earizable implementations of snapshot, max-register or counter

2
The separation question is trivial if n-process consensus objects are available since

they support a wait-free implementation for n-processes of every object with a se-

quential specification [11].

from multi-writer multi-reader registers, while there are no such

wait-free implementations [7].

2 MODEL OF COMPUTATION
We consider a standard sharedmemory systemwithn asynchronous
processes, p0, . . . ,pn−1, which may crash at any time during an

execution. Processes communicate with each other by applying

atomic primitives to base objects. The base objects we consider are
window registers of size k ∈ {1, . . . ,n − 1} (in short, k-window
registers) to which read and write primitives are applied. The write
primitive has a single parameter, the value to be written. The read
primitive returns a k-tuple composed of the last k values written, in

the order in which they were written. Missing values are replaced

by a default value ⊥. Each window register can be read and written

to by all processes, i.e., they aremulti-reader multi-writer. Note that
a 1-window register is the standard register, supporting ordinary

read and write operations.

A (high-level) concurrent object, or data type, is defined by a state

machine consisting of a set of states, a set of operations, and a set of

transitions between states. Such a specification is known as sequen-
tial. An implementation of a data type T is a distributed algorithm

A consisting of a local state machine Ap , for each process p. For
any process p, Ap specifies which primitives p applies in order to

return a response when it invokes an operation of T . Each of these

primitive invocations is a step. For the rest of this section, fix an

implementation A of some data type T .
A configurationC of the system contains the states of all registers

and processes. In an initial configuration, registers and processes

are in their initial states. Given a configuration C and process p,
p(C) is the configuration after p takes its next step in C . Moreover,

p0(C) = C and for every n ∈ N, pn+1(C) = p(pn (C)).
An execution ofA is a possibly infinite sequence of steps (namely,

invocations of primitives) and invocations and responses of high-

level operations in A, with the following properties: (1) Each pro-

cess first invokes a high-level operation, and only when it has a

corresponding response, it can invoke another high-level opera-

tion, i.e., executions are well-formed. (2) A process takes steps only

between an invocation and a response. (3) For any invocation of

process p, the steps of p between that invocation and the follow-

ing response of p, if there is one, correspond to steps of p that are

specified by A.

An operation in an execution is complete if both its invocation

and response appear in the execution. An operation is pending if

only its invocation appears in the execution. An implementation

is wait-free if every process completes each of its operations in a

finite number of its steps. Formally, if a process executes infinitely

many steps in an execution, all its operations are complete. An

implementation is lock-free if whenever processes execute steps, at
least one of the operations terminates. Formally, in every infinite

execution, infinitely many operations are complete. Thus, a wait-

free implementation is lock-free but not necessarily vice versa.

An operationOP precedes another operationOP ′ ifOP completes

before OP ′ starts. OP and OP ′ are concurrent (or overlapping) if
neitherOP precedesOP ′ norOP ′ precedesOP .OP does not precede
OP ′ if either OP is concurrent with OP ′ or OP ′ precedes OP .
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Linearizability [12] is the standard notion used to identify a

correct implementation. Roughly speaking, an implementation is

linearizable if each operation appears to take effect atomically at

some time between its invocation and response, hence operations’

real-time order is maintained. Formally, letA be an implementation

of a data type T . An execution α of A is linearizable if there is a
sequential execution S ofT (i.e., a sequence of matching invocation-

response pairs, starting with an invocation) such that: (1) S contains
every complete operation of α and some pending operations. Hence,

the output value in the matching responses of an invocation in S
and α are the same. (2) For every pair of operations op and op′ in α ,
if the response of op precedes the invocation of op′ in α , then op
appears before op′ in S ; namely, S respects the real-time order in α .
A is linearizable if each of its executions is linearizable.

3 READ/WRITE LOCK-FREE 2-LLAA
This section presents a read/write lock-free 2-LLAA implementa-

tion, as well as a sketch of its correctness proofs. Some proofs are

deferred to the appendix.

Definition 1. Let S be a sequential execution with invocations of
two processes p0 and p1 to an operation output(), each returning a
real number. The current position of pi in S is the output value of the
last operation of pi , or i if there are no operations of pi . We say that
S satisfies the convergence requirement if the distance between the
current positions of the processes is at most 1/2r , where r is the total
number of operations in the execution. The sequential specification of
the 2-LLAA object contains every sequential execution of output()
operations by p0 and p1 such that each of its prefixes satisfies the
convergence requirement.

The algorithm in Figure 1 is a lock-free implementation of 2-

LLAA using read/write primitives. Each process pi locally stores

its current position and round (number of complete and pending

operations of pi , so far) in its local variable me , and stores the

position and round of the other process, denoted pj , in you. The
initial position and round of pi are i and 0. Processes communicate

through the shared arrayM by writing and reading positions and

rounds. Additionally, pi uses two (closed) intervals prev and ranдe :
prev stores the interval committed inpi ’s previous operation, which
indicates where any future position of pi might be, and ranдe stores
the current interval the position of pj should belong to in order for

pi to decide.

When executing output(), pi first increments its round counter

and writes the new value inM (lines 01 and 02) and then iterates

the while loop (lines 03 to 15). Each iteration tries to get closer to

the position of pj in M , until the condition in line 08 is satisfied.

There are two (disjoint) cases that can make pi ’s current operation
decided. In the first case, called closeness rule, the position of pj read
bypi is in the interval ranдe computed in line 07, hence the distance

between the positions is at most 1/2r , where r is the total number of

operationspi is aware of. This ensures that the distance between the
positions of the processes obeys the convergence requirement of 2-

LLAA. In the second case, called invalid position rule, the position of

pj is out of the previously-committed range prev of pi . Observe that
this can happen because of asynchrony: pi might have completed

several operations getting closer to a position of pj in M that is

different from the position pj is about to write. The rationale behind

Shared variables:
M [0, 1] ← [⟨pos = 0, round = 0⟩, ⟨pos = 1, round = 0⟩]

Local variables:
myID ← i
your ID ← 1 − i
me . ⟨pos, round ⟩ ← ⟨myID, 0⟩ %% My position and round

you . ⟨pos, round ⟩ ← ⟨your ID, 0⟩ %% Other’s position and round

prev, ranдe ← [myID ± 1]

Function output():
(01) me .round ←me .round + 1
(02) M [myID].round ←me .round
(03) while true do
(04) M [myID].pos ←me .pos
(05) you ← M [your ID]
(06) rounds ←me .round + you .round
(07) ranдe ← [me .pos ± 1/2rounds ]
(08) if you .pos ∈ ranдe ∨ you .pos < prev then
(09) prev ← ranдe
(10) returnme .pos
(11) elseifme .pos < you .pos then
(12) me .pos ←me .pos + 1/2rounds

(13) else
(14) me .pos ←me .pos − 1/2rounds

(15) endif
(16) endwhile
endFunction

Figure 1: A lock-free 2-LLAA algorithm for processes p0 and
p1. Code of process pi .

the invalid position rule is that as pj was slow and its position is not

inprev ofpi , it would have to “catch up” and decide by the closeness
rule in its current operation. As shown below (Lemma 1), whenever

pi decides by the invalid position rule, the current operation of pj
is pending and pj decides by the closeness rule in every extension

in which its operation is complete.

3.1 Correctness Proof
In the analysis of the algorithm, for simplicity and without loss

of generality, the invocation of an operation is identified with its

first shared-memory write operation outside the while loop of the

output function (line 02), that is, it is executed atomically together

with the local operations of line 01. The response of a decided

operation is identified with its last shared-memory read step inside

the loop (line 05). We also assume that the local computation inside

the while loop (lines 05-15) is executed atomically together with

the shared-memory read step in line 05.

For an execution α , we use the following notation and termi-

nology. The k-th operation of a process pi in α is denoted Pki (α),

if there is such an operation. P0i (α) denotes a fictitious operation

whose output is the initial position of pi . An operation Pki (α) of
pi is decided if it takes its response (read) step in α . In this case,

vki (α) denotes the value of variable v at the end of Pki (α). We let

rad(prevki (α)) denote the radius of the interval prev
k
i (α) with cen-

termeki .pos(α). A decided operation Pki (α) decides by the closeness

3



rule on Pmj (α) (with j = 1 − i) if youki .pos(α) ∈ ranдeki (α) and

youki .round(α) = m. Pki (α) decides by the invalid position rule on
Pmj (α) ifyou

k
i .pos(α) < prev

k
i (α) andyou

k
i .round(α) =m. We omit

α from the above definitions when it can be understood from the

context.

To see that Algorithm 1 is lock-free, we note that two operations

Pki and Pmj cannot both take an infinite number of steps without

completing, since eventually they agree on rounds = k +m and

their positions get sufficiently close to each other. The formal proof

is omitted for lack of space

Algorithm Linearize (Figure 2) specifies how we linearize a qui-

escent execution (i.e. an execution without pending operations)

α . Lemma 1 stated below (whose proof is in the appendix) forms

the basis for showing that Algorithm Linearize produces correct
linearizations. Linearize considers the operations of α in the order

they decide. Let Pki and Pmj be the operations considered at the

beginning of the ℓ-th iteration of the while loop of Linearize. If
Pmj is decided, then Pmj is already in seqℓ , and, as we shall see, P

k
i

decides by the closeness rule. This implies that Pki and Pmj satisfy

the convergence requirement. If Pmj is not decided (hence pending),

then Pmj can be safely placed before or after Pki because Lemma 1

implies that Pmj will decide by the closeness rule. Finally, as the

proof of Lemma 3 argues, if none of Pki and Pmj are in seqℓ , then P
k
i

and Pmj start from a quiescent state of the algorithm (operations P2

and Q1
in Figure 3 are an example of this situation) and their order

is decided considering the outputs of the previous operations.

Lemma 1. Let α be a finite execution whose last step is a read (in
line 05) of an operation Pki of pi that makes that operation decided (by
either the closeness or the invalid position rules) on some undecided
operation Pmj of pj , with j = 1 − i . Let αβ be any extension of α in
which Pmj is decided. Then, Pmj decides by the closeness rule in αβ

and dist(meki .pos,memj .pos) ≤ 1/2m+k .

It follows directly from Algorithm Linearize that the latest point
in which an operation is linearized is when it decides (by reading

in line 05 of Figure 1). Moreover, once an operation is linearized,

the operation (by the other process) it decides on is also linearized

(if it was not linearized before).

Lemma 2. Let α be a finite execution without pending operations.
The sequential execution produced by Linearize(α ) respects the real-
time order in α .

Proof. Consider two operations Pki and Pmj in α , k,m > 0.

Suppose that Pki precedes Pmj in α . The latest point at which Al-

gorithm Linearize linearizes Pki is when βl+1 in line 03 of Algo-

rithm Linearize ends in the read step which makes Pki decide in

α . None of the steps of Pmj appear in βl+1, hence P
k
i does not de-

cide on Pmj and consequently Pmj is not linearized in lines 10, 15

or 17 of Algorithm Linearize (which are the only places operations

are linearized). Furthermore, no prior operation by pi could have

decided on Pmj in βl+1, hence it was not linearized before. □

Function Linearize(α ):
(01) seq0 ← ϵ, ℓ ← 0

(02) while α has more than ℓ operations do
(03) βℓ+1 ← shortest prefix of α with ℓ + 1 decided operations

(04) Pki ← operation that decides in the last (read) step of βℓ+1
(05) Pmj ← operation that Pki decides on in α (i.e. youki .round =m)

(06) if Pki is in seqℓ then
(07) if Pmj is in seqℓ then
(08) seqℓ+1 ← seqℓ
(09) else
(10) seqℓ+1 ← seqℓ · Pmj
(11) else
(12) if Pmj is in seqℓ then
(13) seqℓ+1 ← seqℓ · Pki
(14) else if dist (meki .pos,mem−1j .pos)

≤ dist (memj .pos,mek−1i .pos) then
(15) seqℓ+1 ← seqℓ · Pki · P

m
j

(16) else
(17) seqℓ+1 ← seqℓ · Pmj · P

k
i

(18) endif
(19) endif
(20) ℓ ← ℓ + 1

(21) endwhile
(22) Remove the (fictitious) operations P 0

0
and P 0

1
from seqℓ

(23) return seqℓ
endFunction

Figure 2: A sequential algorithm to linearize an execution α
without pending operations.

P 1 P 2 P 3

Q1 Q2 Q3

P

Q

Lin
P 1 Q1 P 2

P 2 Q1
or

P 3 Q2 Q3

Figure 3: An example of the linearization produced by Algo-
rithm Linearize.

Lemma 3, is the key technical lemma in the algorithm’s correct-

ness proof, establishing that Algorithm Linearize outputs correct
linearizations.

Lemma 3. Letα be any finite execution without pending operations.
Then, Lin(α ) is a sequential execution of the 2-LLAA object.

Proof Sketch. We consider a linearization Lin(α ) of an exe-

cution α which, as we assume towards a contradiction, is not a

sequential execution of 2-LLAA, and consider the first operation Pki
that violates convergence. Let Pm−1j be the latest preceding opera-

tion of pj in Lin(α ). Then, dist(meki .pos,mem−1j .pos) > 1/2m+k−1.

Since Lin(α ) respects the real-time order in α (Lemma 2), Pki does

not precede Pm−1j in α .

If Pm−1j and Pki are concurrent in α , let β be the shortest prefix

of α in which the first of them, say Pki , is decided. Hence P
m−1
j is
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pending and Pki decides on Pm−1j . By Lemma 1,

dist(meki .pos,mem−1j .pos) ≤ 1/2m+k−1,

and the convergence requirement holds.

We therefore know that Pm−1j precedes Pki in α . It can be

shown that at the end of the previous (possibly fictitious) operation

Pk−1i of pi , rad(prev
k−1
i ) ≥ 1/2m+k−2. Moreover, when Pki starts,

previ = prev
k−1
i ,mei .pos =mek−1i .pos andM[j].pos =mem−1j .pos .

Now, if no operation of pj overlaps Pki , then if Pki decides by

the invalid position rule, it does so in the very first iteration of

the while loop, without any change to its position mei .pos , and

thus meki .pos = mek−1i .pos . Hence, mem−1j .pos < prevk−1i and

dist(mek−1i .pos,mem−1j .pos) > 1/2m+k−2, implying that either

Pk−1i or Pm−1j (both preceding Pki in Lin(α )) do not satisfy the con-

vergence requirement, which is a contradiction. And if Pki decides

by the closeness rule, the code implies that

dist(meki .pos,mem−1j .pos) ≤ 1/2m+k−1,

and the convergence requirement holds.

We are left with the case that operation Pmj exists and overlaps

with Pki (and Pm−1j precedes Pki ). We first prove that

dist(meki .pos,mem−1j .pos) ≤ dist(memj .pos,mek−1i .pos) (1)

dist(meki .pos,memj .pos) ≤ 1/2m+k (2)

To prove (1), note that Pmj cannot precede Pk−1i because it is con-

current with Pki . Also, it is easy to show that Pk−1i precedes Pmj in

α . Thus, Pm−1j precedes Pki and Pk−1i precedes Pmj , and hence both

Pk−1i and Pm−1j are complete when the first among Pki and Pmj starts

in α .Without loss of generality, suppose that Pki decides before Pmj ,

then, since they overlap, Pki decides on Pmj . Since Pm−1j precedes

Pki and Pk−1i precedes Pmj , in the while iteration of Algorithm Lin-

earize that linearizes Pki , the conditions of lines 06 and 12 are false,

namely, Pki and Pmj were not linearized yet, and they are linearized

in lines 14-18. It can be shown that Pmj is not linearized before Pki ,

and the condition of line 14 holds, implying (1).

Lemma 1 implies (2), since Pki are Pmj are concurrent, similarly

to the case when Pki and Pm−1j are concurrent, handled before.

Finally, consider the outputsmek−1i .pos andmem−1j .pos of Pk−1i
and Pm−1j . Suppose thatmek−1i .pos ≤ mem−1j .pos (the other case

is similar). Let I = [mek−1i .pos,mem−1j .pos]. It can be shown that

meki .pos,memi .pos ∈ I. By assumption, Pk−1i and Pm−1j do satisfy

the convergence requirement, namely,

dist(mek−1i .pos,mem−1j .pos) ≤ 1/2m+k−2,

and hence |I | ≤ 1/2m+k−2. The interesting case is when |I | =

1/2m+k−2. Lemma 12 (in the appendix) implies that the first to

decide among Pki and Pmj must decide a position (in I) that is

Pk−1
i

Pm−1
jPk

i
Pm
j

c0 c1 c2 c3 c4

1/2m+k−2

1/2m+k−1

Figure 4: An example of the last case in the proof of Lemma 3:
Pki decides before Pmj and outputs c1, whose distance to the out-
put of Pm−1j is strictly larger than 1/2m+k−1. By (2), the output
of Pmj is in the interval [c0, c2]. This is a contradiction since
the distance between any point in [c0, c2] and the output of
Pk−1i is at most 1/2m+k−1, and thus dist (meki .pos,mem−1j .pos) >

dist (memj .pos,mek−1i .pos).

an integer multiple of 1/2m+k . There are only five integer mul-

tiples of 1/2m+k in I.3 A case by case analysis shows that if

dist(meki .pos,mem−1j .pos) > 1/2m+k−1, then inequality (2) implies

that dist(meki .pos,mem−1j .pos) > dist(memj .pos,mek−1i .pos), which

is a contradiction, given inequality (1) (see an example in Fig-

ure 4). □

Consider any finite execution α of the algorithm from Figure 1.

Let αβ be an extension of α in which all operations in α are com-

plete (and no new operation is started). This extension exists since

the algorithm is lock-free. By Lemma 2, the sequential execution

seq(α β) produced by Lin(αβ) respects the real-time order of α β ; by
Lemma 3, it is a sequential execution of the 2-LLAA object. Thus,

seq(α β) is a linearization of α β , and of α as well, implying the

main theorem of this section:

Theorem 4. Algorithm 1 is a lock-free linearizable implementa-
tion of the 2-LLAA object, using reads and writes.

3.2 A Simpler Linearization Proof?
This section discussed whether a simpler linearization argument ex-

its. The linearization proof in the previous subsection is nontrivial,

partly because Algorithm Linearize may place operations that are

pending in α before operations that are complete. Furthermore, as

we described previously, to linearize a non-quiescent execution α ,
we first complete all pending operations in α and then apply Algo-

rithm Linearize to the resulting quiescent execution. Consequently,

it is possible that the linearization S ′ we obtain for an extension

α ′ of α is not an extension of the linearization S we obtain for

α , implying that our implementation is not necessarily strongly

linearizable [9].
4

In contrast, the linearizability order used in the correctness proof

of the lock-free algorithm [10, Figure 5, Section 4] is simple and

shows that the algorithm is strongly linearizable. Below we argue

that this simple approach does not work for our stronger 2-LLAA

object.

3
It is useful to consider the initial configuration, wherem = k = 1 andmek−1i .pos =

0,mem−1j .pos = 1.

4
An algorithm is strongly linearizable if there is a function f from executions of

the algorithm to sequential executions such that (1) for every execution α , f (α ) is a
linearization of α and (2) for every execution α β , f (α ) is a prefix of f (α β ).
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The linearization order used in [10] (right above Lemma 11) is the

following. For every operation OP in an execution, let rounds(OP)
be the first value the operation sets to the local variable rounds (that
variable is called i in [10]). Then, if rounds(OP) < rounds(OP ′),OP
is linearized beforeOP ′, and if rounds(OP) = rounds(OP ′),OP and

OP ′ can be linearized in any order.

Consider the following execution of the algorithm in Figure 1: (1)

p0 starts an invocation to output(), completes one iteration of the

loop (note that it does not decide as 1/2rounds = 1/21) and stops

before writing its new preference at the first step of the second

iteration of the loop. Note that p0 is about to write 1/2 and the

position of p0 inM is still 0. (2) p1 executes, until completion, two

consecutive invocations to output() (p0 takes no steps while p1
completes the two invocations). Observe that p1 obtains 1/4 and
1/8 from the two invocations, respectively. (3) p0 runs solo until

it completes its pending output() invocation. Note that p0 obtains
1/4 from the invocation.

It is easy to see that, for the execution α defined above,

rounds(P1
0
) = 1, rounds(P1

1
) = 2 and rounds(P2

1
) = 3, and thus,

using the linearization order defined in [10], α would be linearized

as follows: ⟨P1
0
: 1/4⟩⟨P1

1
: 1/4⟩⟨P2

1
: 1/8⟩. However, this lineariza-

tion is incorrect because lin(α) is not a sequential execution of

2-LLAA: the prefix ⟨P1
0
: 1/4⟩ of the sequential execution is invalid,

because the distance between the current position of p0 and the

current (initial) position of p1, which are respectively 1/4 and 1,

is larger than 1/21. Consequently, lin(α) is not a valid sequential

execution of 2-LLAA either.

Finally, it can be verified that Algorithm Linearize produces the
linearization ⟨P1

1
: 1/4⟩⟨P1

0
: 1/4⟩⟨P2

1
: 1/8⟩ from α , which is a

sequential execution of 2-LLAA.

4 LOCK-FREE n-LLAA, USING
(n − 1)-CONSENSUS OBJECTS

We formally define the n-LLAA object and explain how it can be

implemented in a lock-free manner using (n− 1)-process consensus
objects; full correctness proofs are omitted for lack of space.

Definition 2. Each of the n processes belongs to a side, either 0
or 1. The n-LLAA object supports a single operation called output().
Let S be a sequential execution with invocations of output(), each
returning a real number. The current position of side i in S is the
output value of the last operation of a process in side i , or i if there
are no operations of processes in side i . We say that S satisfies the
convergence requirement if the distance between the current positions
of the two sides is at most 1

2
r , where r is the total number of operations

in the execution. The sequential specification of the n-LLAA object

contains every sequential execution of output() operations by the
n processes such that each of its prefixes satisfies the convergence
requirement.

The lock-free implementation of n-LLAA is based on the lock-

free 2-LLAA algorithm. Consider first the case in which there is at

least one process in each side. Then, using (n−1)-process consensus
objects, the ≤ n−1 processes in side i simulate operations of process

pi in Algorithm 1; each time an operation terminates, the processes

decide who takes this output value, also using consensus objects.

Shared variables:
M [0, 1][0, . . . , n − 1] ← each entry of M [j], j ∈ {0, 1},

initialized to ⟨pos = j, round = 0, tmst = 0⟩

SIDE[0, . . . , n − 1] ← each entry initialized to ⊥

READS [0, 1][∞] ← bi-dimensional array

with infinitely many (n − 1)-process consensus objects
OPS [0, 1][∞] ← bi-dimensional array

with infinitely many (n − 1)-process consensus objects

Local variables:
mySide ← initialized to 0 or 1

otherSide ← 1 −mySide
me . ⟨pos, round, tmst ⟩ ← ⟨mySide, 0, 0⟩

%% My side’s position, round and timestamp

you . ⟨pos, round, tmst ⟩ ← ⟨otherSide, 0, 0⟩
%% Other’s position, round and timestmp

prev, ranдe ← [mySide ± 1]
count_r eads, count_ops ← 0

Function output():
(01) SIDE[ID] ←mySide
(02) s ← snapshot(SIDE)
(03) if | {ID : s[ID] =mySide } | = n then
(04) return otherSide
(05) while true do
(06) me .round ←me .round + 1
(07) me .tmst ←me .tmst + 1
(08) M [mySide][ID] ←me
(09) decided ← false
(10) while ¬decided do
(11) M [mySide][ID] ←me
(12) t ← snapshot(M [otherSide])
(13) max ← max({tmst ′ : t [ID].tmst = tmst ′ })
(14) prop ← any t [ID] such that t [ID].tmst =max
(15) count_r eads ← count_r eads + 1
(16) you ← READS [mySide][count_r eads].decide(prop)
(17) rounds ←me .round + you .round
(18) ranдe ← [me .pos ± 1/2rounds ]
(19) if you .pos ∈ ranдe ∨ you .pos < prev then
(20) prev ← ranдe
(21) count_ops ← count_ops + 1
(22) owner ← OPS [mySide][count_ops].decide(ID)
(23) if owner = ID then
(24) returnme .pos
(25) decided ← true
(26) elseifme .pos < you .pos then
(27) me .pos ←me .pos + 1/2rounds

(28) me .tmst ←me .tmst + 1
(29) else
(30) me .pos ←me .pos − 1/2rounds

(31) me .tmst ←me .tmst + 1
(32) endif
(33) endwhile
(34) endwhile
endFunction

Figure 5: A lock-free n-process LLAA object algorithm.
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When there are n processes in the same side, the processes can

safely decide on the initial value of the other side.

Figure 5 shows how processes in the same side i simulate process

pi of Algorithm 1. Lines 05–31 simulate a single operation output()
of pi ; each time this loop starts, a new operation of pi is simulated.

Lines 08 and 11 correspond to the write operations of Algorithm 1

and Lines 12–16 simulate the read operation of Algorithm 1, with

the help of the consensus objects in READS . Each process first

reads the pair (pos, round) of the processes in the other side and

considers the most current one (from its point of view), with the

help of the timestamps in the local variablesme . This is its proposal
to the consensus which decides the next read value of the simulated

processpi . Once the output value of the current simulated operation

of pi has been computed (the condition in Line 19 is true), the
processes in the same side i compete for that output value in Line 22,

with the help of the consensus objects inOPS . The winning process
outputs that value for its current operation, while the others start a

new simulated operation of pi . The goal of Lines 01–04 is to handle
the case in which all processes belong to the same side: when a

process discovers that all processes are in its side, it knows that the

other side is not moving (it has not moved since the beginning of

the execution) hence it can safely decide the initial position of the

other side.

The way processes advertise their side in Line 01, and then

check the others’ side in Line 03, ensures that in every execution, at

most n − 1 processes invoke the same consensus object (in Lines 16

and 22). The following property directly follows from the agreement

property of consensus.

Lemma 5. Consider an execution of Algorithm 5. Then, for every
pair of processes pℓ and pj in the same side, if both pℓ and pj assign
the kth value to a local variable v , which is eitherme,you,prev or
ranдe , then vkj = v

k
ℓ
.

Using this lemma, we can now precisely define the notion of

a simulated operation. Let α be a (finite or infinite) execution of

Algorithm 5. For every side i and integer k ≥ 1, the k-th simulated
operation of side i , denoted sOPki , is the subsequence of α containing

all steps corresponding to steps in Lines 08, 11, 12, 16 or 22 of any

process such that when it executes the step, its me .round local

variable is equal to k . The following lemma relates the executions

of Algorithms 1 and 5, where the two processes in Algorithm 1 are

denoted q0 and q1.

Lemma 6. For every finite or infinite execution α of Algorithm 5,
there is an execution α∗ of Algorithm 1 such that:

(1) There is a function f from the set of operations of α onto the set
of operations in α∗; moreover, for each operation OP in side i , f (OP)
is an operation of qi .

(2) An operation OP is pending if and only if f (OP) is pending;
moreover, OP has infinitely many steps if and only if f (OP) has
infinitely many steps too.

(3) The outputs of a completed operation OP and its associated
completed operation f (OP) are the same.

(4) If OP precedes OP ′ in α then f (OP) precedes f (OP ′) in α∗.

Proof Sketch. By Lemma 5, every pair of processes perform-

ing the steps of the same simulated operation sOP , write the same

sequence of values (possibly at distinct times, due to asynchrony).

Thus, for each simulated operation sOP in α , we can map an op-

eration д(sOP) in an execution of α∗ of Algorithm 1 by removing

redundant steps from α (essentially, we keep the first ℓth simulated

step of sOP , for every ℓ). For any operation OP of process pi in
α , let h(OP) be the simulated operation in α , the last step of OP
by pi belongs to. Then, if OP is completed, h(OP) is the simulated

operation pi is simulating when it wins in the consensus at Line 22.

Finally, we let f (OP) = д(h(OP)) □

Theorem 7. Algorithm 5 is a lock-free linearizable implementa-
tion of the n-LLAA object, using reads, writes and (n − 1)-process
consensus objects.

Proof. Lemma 6 implies that if there is an infinite execution α of

Algorithm 5 in which only finitely many operations are completed,

then there is an infinite execution α∗ of Algorithm 1 in which only

finitely many operations are completed, in contradiction to the lock-

freedom of Algorithm 1. This implies that Algorithm 5 is lock-free

as well.

Next, consider any finite execution α and let αβ be an extension

in which all operations in α are completed. Let λ be an execution

of Algorithm 1 associated with αβ , as in Lemma 6. The output of

a completed operation OP is equal to the output of its associated

completed operation f (OP), and ifOP precedesOP ′ in αβ then, by

Lemma 6, f (OP) precedes f (OP ′) in λ. Thus, by replacing eachOP
with f (OP), we can obtain a linearization lin(αβ) of αβ from any

linearization lin(λ) of λ, since the convergence requirement in both

2-LLAA and n-LLAA is a function of the number of all previous

operations. Thus, Algorithm 5 is linearizable. □

5 IMPOSSIBILITY OF WAIT-FREE n-LLAA
USING (n − 1)-WINDOW REGISTERS

An execution β is an extension of a finite execution α if α is a prefix

of β . A configuration C is reachable if there is a finite execution
that ends with all processes and variables in the same states as inC .
A configuration C ′ is reachable from a configuration C if there is a

finite execution α that ends withC ′ and a prefix of the execution α
ends with C . Two configurations C and C ′ are indistinguishable to
process p, denoted C

p
∼ C ′, if the state of every shared variable and

the state of p are the same in C and C ′.
Fix an implementation A of the n-LLAA object. Below, we con-

sider only executions of A in which process p0 is on side 0, per-

forming a single output() operation, and all other processes are on

side 1.

Let α be a finite execution of A; α is v-potent if there is an

extension α ′ of α in which the operation of p0 is complete and

returns v; α is v-univalent (or just univalent when v is irrelevant)

if α is v-potent and for allw , v , α is notw-potent; α is bivalent if
it is both v-potent andw-potent, for two values v , w .

Definition 3. An execution α is ambivalent for process q , p0
(or simply ambivalent when q is immaterial), if α is v-univalent
and for some w , v , there is a w-univalent execution α ′ that is
indistinguishable from α to process q. If α ends with a configuration
C , we say that C is ambivalent for process q.
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Definition 4. An execution α , ending with configurationC , has a
critical q-extension (or simply critical extension when q is immate-
rial) for a processq , p0, if there is a processq′ < {p0,q} such that, for
all ℓ ≥ 0, p0(qℓ(C)) is v-univalent and p0(q′(qℓ(C))) isw-univalent
with v , w .

Definition 5. An execution α , ending with configuration C , is
(v,q,v ′)-critical (or simply critical if v , q and v ′ are immaterial), if
p0(C) is v-univalent, there is a process q , p0 such that p0(q(C)) is
v ′-univalent, for v ′ , v , and for all finite extensions αβ of α ending
in configuration C ′, p0(C ′) is univalent.

Lemma 8. If α is a (v,p1,v ′)-critical execution of A ending in
configuration C , then either some extension of α is ambivalent or
some extension of α has a critical extension.

Proof. The proof considers the next steps that p0 and p1 are
about to take in C . If both p0 and p1 access different window reg-

isters, or p1’s step is a read, then p1(p0(C)) and p0(p1(C)) are indis-
tinguishable to p0. Hence, a solo execution of p0 after both config-

urations returns the same value, contradicting the fact that α is

(v,p1,v
′)-critical, that is, p1(p0(C)) is v-univalent and p0(p1(C)) is

v ′-univalent.
If p0’s next step is a read of a window register, then p1(p0(C))

and p0(p1(C)) are indistinguishable to all processes other than p0,
p1(p0(C)) is v-valent and p0(p1(C)) is v

′
-valent, so p1(p0(C)) and

p0(p1(C)) are both ambivalent for all processes other than p0.
The remaining case is when both steps are writes to the same

window register R. If n = 2, then R is an ordinary register, so

p0(p1(C)) and p0(C) are indistinguishable to p0. Since α , ending
with C , is (v,p1,v

′)-critical, p0(C) is v-valent and p0(p1(C)) is v
′
-

valent, which is a contradiction.

For n > 2, we can prove the following claim:

Claim 9. Let αβ be a finite extension of α ending in configuration
C ′, such that p0 and p1 do not take steps in β and no process writes to
R in β . Then p0(C ′) is v-univalent and p0(p1(C ′)) is v ′-univalent.

Proof. The proof is by induction on the length of β , with a

trivial base case when β is empty. Suppose the lemma holds for

when the length of β is ℓ, and let us consider an extension αβγ of

α , where γ is a single step of some process q < {p0,p1}. Let C
′
be

the configuration at the end of αβ , and C ′′ be the configuration at

the end of αβγ . By the induction hypothesis, p0(C
′) is v-univalent

and p0(q(C
′)) is v ′-univalent. Note that no process writes to R in

βγ .
If q applies a primitive to a window register different than R, then

p0(C
′′) = p0(q(C

′)) = q(p0(C
′)) is v-univalent and p0(p1(C

′′)) =

p0(p1(q(C
′))) = q(p0(p1(C

′))) is v ′-univalent.
Otherwise, since no process writes to R in βγ , q reads R. Then

p0(C
′′) = p0(q(C

′)) andp0(C
′) are indistinguishable top0. Asp0(C

′)

is v-univalent, p0(C
′′) is v-potent, since the solo executions by

p0 starting from C ′′ and from C ′ are the same, hence both must

returnv . Moreover, sinceα is critical,p0(C
′′) is univalent. Therefore,

p0(C
′′) is v-univalent. Similarly, p0(p1(C

′′)) = p0(p1(q(C
′))) and

p0(p1(C
′)) are indistinguishable to p0 and p0(p1(C

′)) isv ′-univalent
by the induction hypothesis. Hence, p0(p1(C

′′)) isv ′-univalent. □

Assume first that we can let each process p2, . . . ,pn−1, in turn,

take steps until it is about to write to R, reaching a configura-

tion D in which the next step of every process is a write to R.
By Claim 9, p0(D) is v-valent and p0(p1(D)) is v

′
-valent. However,

since R is an (n − 1)-window register, pn−1(...(p2(p0(D)))...) and
pn−1(...(p2(p0(p1(D))))...) are indistinguishable to all processes ex-

ceptp1, contradicting the fact thatpn−1(...(p2(p0(D)))...) isv-valent,
whereas pn−1(...(p2(p0(p1(D))))...) is v

′
-valent.

Otherwise, for some process q , p1, there is an infinite extension

αβγ of α such that q runs solo in γ and no process writes to R in

βγ . Let C ′ be the configuration at the end of αβ . By Claim 9, for all

ℓ ≥ 0, p0(q
ℓ(C ′)) is v-univalent and p0(p1(q

ℓ(C ′))) is v ′-univalent,
i.e., γ is a critical q-extension of αβ . □

We next use a standard valency argument to prove that if A is

wait-free, then it has a critical execution.

Lemma 10. If A is a wait-free linearizable implementation of the
n-LLAA object, then it has a critical execution.

Proof. SinceA is linearizable, in a solo execution by p0 starting
fromC0 and completing one output operation, the current position
of side 0 must be at least

1

2
. On the other hand, in the execution

from C0 in which p1 first executes solo two complete output op-
erations and then p0 runs solo and executes its output operation
to completion, the current position of side 0 can be at most

3

8
. It

follows that the empty execution (from C0) is bivalent.

Starting with the empty execution as α , we repeatedly extend

α to a bivalent execution αα ′′, such that p0 executes a step in

α ′′ (α ′′ may include steps by other processes). Since A is wait-

free, eventually we reach a bivalent execution αα ′ ending with

configuration C ′ such that for any extension αα ′β of αα ′ ending
with configurationC ′′, p0(C

′′) is univalent. In particular, this holds

for the empty β .
It follows that p0(C

′) is univalent, so it is v-valent for some v .
Since αα ′ is bivalent, it has an extension αα ′β1, ending with a

configuration C1, such that p0(C1) is v
′
-valent, for some v ′ , v .

Let β2 be the longest prefix of β1 such that αα ′β2 ends with a

configuration C2 for which p0(C2) is v-valent. Let q be the process

that takes the next step in αα ′β1 after the execution of αα ′β2.
From our construction, p0(C2) isv-valent, p0(q(C2)) isv

′
-valent for

v ′ , v , and for any finite extension αα ′β3 of αα
′β2, ending with a

configuration C3, p0(C3) is univalent. It follows from Definition 5

that αα ′β2 is (v,q,v
′)-critical. □

Theorem 11. There is no wait-free linearizable implementation
of the n-LLAA object, which uses only (n − 1)-window registers. (Note
that this includes read and write registers.)

Proof. Assume, by way of contradiction, that A is a wait-free

linearizable implementation of the n-LLAA object. By Lemma 10,

A has a critical execution α . By Lemma 8, we have two cases:

Case 1: Some extension α ′ of α , ending with a configuration C ′, is
ambivalent for a process q , p0. By Definition 3, α ′ is v-valent for
some v , and there is aw , v and an execution αw , ending with a

configuration Cw , such that αw isw-univalent and configurations

C ′ and Cw are indistinguishable to q.
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Pick an integerk such that
1

2
k < |v−w |. Letα

′β
q
v be an extension

of α ′ such that, in β
q
v , q runs solo and executes to completion k + 3

output operations. Let x be the value returned by the last operation

of q. Let α ′β
q
v β

p0
v be an extension of α ′β

q
v such that, in β

p0
v , p0 runs

solo until it completes its output operation. Since α ′ is v-univalent,
p0’s operation returns v .

Consider a linearization of α ′β
q
v β

p0
v . It contains at least k + 3

operations of processes in side 1, including all the ones by q, and
one operation by p0. Suppose first that the last operation of q is

linearized after the operation ofp0. By Definition 2, |x−v | ≤
1

2
k+4 <

1

2
k+1 .

Suppose now that the last operation of q is linearized before the

operation of p0. Let k
′
denote the number of operations in side 1

linearized between the last operation of q and the operation of p0
and let y be the value returned by the operation linearized right

before the operation of p0. By Definition 2,

|x −v | ≤ |x − 0| + |0 − y | + |y −v |

≤ 2
−(k+3) + 2

−(k+3+k ′) + 2
−(k+3+k ′+1)

< 2
−(k+1) .

Let αw β
q
w be an extension of αw such that, in β

q
w , q runs solo

after αw and executes to completion k + 3 output operations. Since
α ′ and αw are indistinguishable to q, β

q
w = β

q
v and so q’s (k + 3)’th

output operation in β
q
w also returns x . Now consider the extension

αw β
q
w β

p0
w such that, in β

p0
w ,p0 runs solo until it completes its output

operation. Since αw isw-univalent, p0’s output operation returns

w . Consider a linearization of αw β
q
w β

p0
w . Using a similar reasoning

as above, we can show that |w − x | < 2
−(k+1)

. Therefore,

|w −v | ≤ |w − x | + |x −v | <
2

2
k+1
=

1

2
k
,

which is a contradiction.

Case 2: Some extension α ′ of α , ending with configuration C ′,
has a critical q-extension. That is, there are two processes q , q′,
different from p0, and two values v , w , such that for all ℓ ≥ 0,

p0(q
ℓ(C ′)) is v-univalent and p0(q

′(qℓ(C ′))) isw-univalent.

The rest of the reasoning is similar to the previous case. Pick

an integer k such that
1

2
k < |v − w |. Let α

′β be an extension of

α ′ ending in a configuration C ′′, such that in β , q runs solo and

executes k + 3 output operations to completion. Let x be the value

returned by q’s last operation.
Let α ′βγv and α ′βγw be two extensions of α ′β such that, in γv ,

p0 runs solo until it completes its output operation, returning v ,
since p0(C

′′) isv-univalent; and in γw , q′ executes a single step and
then p0 runs solo until it completes its output operation, returning
w , since p0(q

′((C ′′))) isw-univalent. Considering a linearization of

α ′βγv and a linearization of α ′βγw , it can be shown that

|v −w | ≤ |v − x | + |w − x | <
2

2
k+1
=

1

2
k
,

which is a contradiction. □

6 SUMMARY AND FUTUREWORK
This paper shows a computational separation between lock-

freedom and wait-freedom, two dominant progress conditions of

concurrent algorithms: while there is no wait-free implementation

of the n-LLAA object from k-window registers, with k < n (whose

consensus number is exactly k), there is a lock-free implementation

of then-LLAA object using read/write primitives and (n−1)-process
consensus objects. To the best of our knowledge, this is the first

time such a separation is shown.

An interesting open question is whether there exists an n-LLAA
implementation from x-process consensus objects for x < n−1, e.g.,
reads and writes, which would strengthen the separation. Noting

that the n-LLAA object is non-deterministic, a second avenue for

future research is to investigate whether or not the separation

that we have shown holds also for deterministic long-lived objects.

Finally, the n-LLAA specification assumes that the object “knows”

the ID of the process invoking an operation on it. It would be

interesting to see if the separation holds also for objects that do not

assume this.
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A ADDITIONAL PROOFS FOR SECTION 3
We present additional details for the correctness analysis of Algo-

rithm 1; some technical proofs are omitted for lack of space.

For an execution α , we use the following notation and ter-

minology. If α is finite, vαi denotes the value of local variable

v of a process pi at the end of α , while Mα
denotes the value

of the shared array M at the end of α . Iαi denotes the interval

[Mα [i].pos ± 1/2meαi .round+youαi .round ]. If α is finite and ends

with a read step of pi that makes its current operation decided, then

rad(prevαi ) is the radius of the interval prev
α
i with centermeαi .pos .

The following lemma can be easily proved by induction on the

length of the execution α .

Lemma 12. In every finite execution α , for i ∈ {0, 1},Mα [i].pos =

y/2meαi .round+youαi .round , for some integer y ≥ 0.

Lemma 13. Let λ = αe1e2 · · · eℓ be a finite execution. Then, Iλi ⊆
prevαi .
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Proof. The proof of the lemma is based on the following two

claims.

Claim 14. For every finite execution α , Iαi ⊆ prevαi .

Proof Sketch. By induction on the length of the prefixes

of α , one can prove that meαi .pos ∈ prevαi and the dis-

tance between meαi .pos and any extreme of prevαi is at least

1/2meαi .round+youαi .round
. This invariant proves the lemma when

Mα [i].pos =meαi .pos , because then Iαi ⊆ prevαi by definition. Oth-

erwise, it must be that the last step of pi in α is a read step in

line 05 that modifies its positionmei .pos after executing lines 11-15,
in which case we consider the execution α ′ obtained from α by

removing the last step of pi and proceed as in the first case. □

Claim 15. For every finite execution αe , prevαei ⊆ prevαi .

Proof. We prove the claim by induction on the length of the

prefixes of αe . Note that the first step f in αe must be a write in

line 02, which does not change the value of any local variable, and

hence prev
f
i = prev

ϵ
i , where ϵ is the empty execution. This is the

base of the induction.

Suppose thatprev
β f
i ⊆ prev

β
i , for a prefix β f of α . We show that

prev
β f д
i ⊆ prev

β f
i , where д is the next step in αe . If д is not a step

of pi or is a write step of pi (in line 02 or line 04), then such a step

does not change the local variables of pi , and prev
β f д
i = prev

β f
i .

Otherwise, д is a read step of pi (Line 05) and the local variables

of pi might change when pi executes lines 07–15. The claim clearly

holds ifpi does not decide, since it executes line 07 and then lines 11–

15; therefore, previ is not modified, namely, prev
β f д
i = prev

β f
i .

If pi decides, that is, the condition of line 08 is satisfied, then

note that pi does not modify its position after the read step, hence

me
β f д
i .pos =me

β f
i .pos = Mβ f [i].pos . By Claim 14, I

β f
i ⊆ prev

β f
i

holds. Also, following the execution of line 07, ranдeβ f д = I
β f д
i ⊆

I
β f
i holds (note that the containment may be proper, because

you
β f д
i .round ≥ you

β f
i .round) and prev

β f д = ranдe
β f д
i (line 09),

and thus prevβ f д ⊆ prevβ f . □

By Claim 14, Iλi ⊆ prevλi . By repeatedly applying Claim 15,

prevαe1e2 · · ·eℓ i ⊆ prevαe1e2 · · ·eℓ−1i ⊆ . . . ⊆ prevα . Therefore,
Iαe1e2 · · ·eℓi ⊆ prevαi and the lemma follows. □ □

Lemma 16. Let α be a finite execution. Then, for each i ∈ {0, 1}
and j = 1 − i , eitherMα [i].pos ∈ prevαj orMα [j].pos ∈ prevαi .

Proof Sketch. By strong induction on the length of the exe-

cutions, we can show that eithermeαi .pos ∈ prev
α
j ormeαj .pos ∈

prevαi . This proves the lemma because if neitherMα [i].pos ∈ prevαj
norMα [j].pos ∈ prevαi , then we consider the execution α

′
obtained

from α by removing, if necessary, the last read step of each process

so that Mα ′[i].pos = meα
′

i .pos and Mα ′[j].pos = meα
′

j .pos , hence

reaching a contradiction. □

Proof of Lemma 1. First, we show that if Mα [i].pos ∈ prevαj ,

then Pmj must decide by the closeness rule in αβ . Note that

meαi .pos = Mα [i].pos . Assume otherwise towards a contradiction,

then Pmj decides by the invalid position rule, hence at some point

in the execution pj evaluates youj .pos < prevj as true in line 08.

Thus, there must exist a prefix λ of αβ such that pi ’s last read
in λ (in line 05) results in it executing lines 11–15 and writing to

meλi .pos a value such thatmeλi .pos < prev
λ
j (with α a prefix of λ and

prevαj = prevλj ). Observe that pi changesmeλi .pos in order to get

closer to pj ’s position, hence you
λ
i .pos = Mλ[j].pos < prevλj , im-

plying that Iλj ⊈ prevλj , contradicting Lemma 13. Thus, Pmj cannot

decide by the invalid position rule.

We prove that Mα [i].pos ∈ prevαj , by considering two possi-

bilities. (1) Pki decides by the closeness rule Note thatmeαi .pos =

Mα [i].pos and youαi .pos = Mα [j].pos . The fact that Pki decides by

the closeness rule implies that at the end of α , when pi executes
line 08, it sees that Mα [j].pos = youαi .pos ∈ ranдeαi . Since the

round counter of each process increases monotonically, we have

that rad(ranдeαi ) ≤ rad(Iαj ), hence Mα [i].pos = meαi .pos ∈ Iαj .

By Lemma 13, Iαj ⊆ prevαj , from which follows that Mα [i].pos ∈

prevαj . (2) P
k
i decides by the invalid position rule. Hence, at the end

of α , when pi executes Line 08, it sees that you
α
i .pos = Mα [j].pos <

prevαi . Lemma 16 directly implies thatMα [i].pos ∈ prevαj . In both

cases, Mα [i].pos ∈ prevαj and hence Pmj decides by the closeness

rule.

Now, since the last step in α is a read by pi in line 05 that makes

Pki decided, pi executes lines 07–10 at the end of α , and so we

have thatmeαi .pos is the center of prev
α
i , rad(prev

α
i ) = 1/2m+k ,

meki .pos =meαi .pos and prev
k
i = prev

α
i . We prove thatmemj .pos ∈

prevαi , which implies that dist(meki .pos,memj .pos) ≤ 1/2m+k .

Let λ be the shortest prefix of αβ in which Pmj is decided (hence

α is a prefix of λ). The last step of λ is a read step by pj in line 05

that makes Pmj decided. Let x = youλj .round . Thus, P
m
j decides (by

the closeness rule) on the operation Pxi , for x ≥ k . At the end of λ,

after pj executes lines 07–10, we have thatmemj .pos =meλj .pos .

By Lemma 13, Iλi ⊆ prevαi . Since P
m
j decides by the closeness

rule, at the end of λ the condition of line 08 is satisfied when pj
checks it, and thus dist(meλj .pos,you

λ
j .pos) ≤ 1/2m+x . Notice that

youλj .pos = Mλ[i].pos , and hencememj .pos ∈ Iλi ⊆ prevαi , which

concludes the proof. □
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