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Abstract—High integrated power electronic modules are de-
signed with the emergence of new semi-conductor technologies.
The increase of reliability of power modules induces the precise
knowledge of the local temperature, even if it can not be measured
at any location. In this paper, the application of an observer in
the discrete time framework is proposed. It allows to estimate
the temperature at any location using measurements provided
from thermal sensors located at a few precise points. The aim
is to design a reduced size observer that could be implemented
on a real-time embedded target such as Digital Signal Processor.
Consequently, this works pays attention on the design procedure
and the computation complexity of the resulting observer.

Index Terms—Thermal modeling, Sample and hold state space
representation, Discrete linear functional observer.

I. INTRODUCTION

The joint emergence of Wide Band Gap materials (SiC,
GaN, C) and new generation hybrid integration techniques sig-
nificantly enhance performances of power electronic modules.
Such modules should operate in severe environment and con-
straints: high temperature and high power density, fast switch-
ing, etc. Consequently of high temperature, new constrains
appear and become critical for power electronics assemblies.
Several studies aim at identifying failure modes or critical
interfaces [1], [2]. Thus, estimation of local temperatures
becomes a real challenge in new generation of power modules
to increase their lifetime. Indeed, it has been shown in [3], [4]
that the evolution of local constraints in a power electronic
module, which can be thermal or thermo-mechanical, have a
negative effect on the lifetime of the module. These constraints
increase the occurrence of potentially critical defects and
failures on the module. Consequently, it becomes necessary
to have a precise knowledge of the temperatures at specific
locations in the module, such as the temperature of semi-
conductor chips or wire bondings. However, due to the size of
sensors and possible electromagnetic field disturbances close
to measurement points, the use of thermal sensors may be
difficult at some locations inside of the power module. For
these reasons the objective of the following work is to estimate
this physical variable in a specific non measured location,
using measured data by few sensors.

As a case study, a simple two-dimensions (2D) thermal
system is considered in this paper and then modeled using
an analogy between thermal and electrical domains. Then,

equations of thermal evolution of the system with respect to
time and space can be rewritten using a linear state-space
representation. Using this representation, the temperature can
be estimated at any location with a linear functional observer
or a partial state observer. In order to be implemented on a
digital target, observers have to be designed in the discrete
time domain. The first way of designing such observer is to
consider the sample and hold model of the system and design
the corresponding discrete observer.

Section II deals with the construction of a thermal model
and its state space representation. In this work, the thermal
behavior of a (30× 30mm) 2D heated plate, which may rep-
resent a section of a power electronics module is considered as
a test benchmark for our technics. The continuous and discrete
matrix representations of the previous model is established and
its purpose is to design a reduced size observer. We propose in
section III a way to design a discrete linear functional observer,
based on the use of successive derivatives of the measured
outputs. The interest of the observer lies in the possibility to
estimate the temperature at any location in the system. Thus,
our main objectives are to give a straightforward procedure
to find the minimal functional observer for the discrete time
system, followed by a simulation results from the application
on the 2D heated plate in section IV. Finally, a discussion
about the performances of the observer is presented.

II. 2D THERMAL MODEL

A. Thermal model

The thermal evolution of a 2D heated plate is given by the
heat equation (1), [5], [6] with:

• T the local temperature in K,
• t the time in s,
• ρ the mass density of the material in kg.m−3,
• Cp the thermal capacity in J.kg−1.K−1,
• λ the thermal conductivity in W.m−1.K−1,
• S the heat source in the system in W.m−3

ρ Cp

∂T (x, y, t)

∂t
= −λ

(

∂2T

∂x2
+

∂2T

∂y2

)

+ S (1)



The heat equation (1) reflects linear transfer phenomena such
as conductive and convective transfers induced by the presence
of the temperature gradient represented by (2), [7], [8], [9]:

−→ϕ = −λ.
−−→
grad T (2)

where −→ϕ stands for the heat flux density.
Radiative transfers are non considered in this equation.

However, in this work, this kind of transfers are neglected.
As (2) is similar to Ohm’s law in electrical domain, a thermo-
electrical analogy between the different domains can be de-
fined and summarized in Tab. I, [10].

TABLE I
ELECTRO-THERMAL ANALOGY

Thermal domain Electricity domain
Parameter (unit), Notation Parameter (unit), Notation

Temperature (K), T Electric potential (V ), V
Thermal flux (W ), Q Current (A), I

Thermal resistance (m2K/W ), Rth Resistance (Ω), R
Heat capacity (J/K), Cth Capacity (F ), C

This analogy leads to obtain an equivalent electrical model
which represents the thermal behavior of a system [10].
In order to design a continuous-time observer, the first step
is to discretize the obtained model with respect to the two
dimensions of space (see Fig. 1).

30mm

30mm

y

x

Fig. 1. Surface discretization of the heated plate into elementary surfaces
(illustrative example)

Using a spatial finite difference discretization of the heat
equation and the previously defined thermo-electrical analogy,
thermal behavior of the 2D plate is modeled as a network
composed of resistors for spatial thermal conductivity and
convection, capacitors for heat storage, voltage sources for
temperature sources and current sources for heat sources [11].
On the one hand, the conductive transfer (resp. convective) is
characterized by a conduction resistance Rcd (resp. convection
resistance Rcv) defined by :

Rcd =
e

λS
(resp. Rcv =

1

hS
) (3)

where e is the plate thickness, S is the exchange surface be-
tween elementary surfaces and h is the convection coefficient
[12].

On the other hand, the storage of thermal energy in an
elementary surface is modeled by a thermal capacity Cth

connected between the center and the mass (thermal reference)
and given by:

Cth = ρ CpV (4)

where V is the volume of the material in m3.
Finally, heat sources Pth may be inserted into some ele-

ments to induce the dynamic thermal response of the system.

B. Continuous state space representation of the heated plate

From the spatial discretization, the temperature T is defined
on the centers of the elementary surfaces (denoted nodes in
the following) of the plate. It depends on the temperatures
of its neighbors and thermal impedances connected to the
considered element. Depending on the position of nodes on
the plate, two kinds of impedances connected to the nodes
must be considered as shown in Fig. 2. Thus, the heated plate
is represented by a network of impedances that translates the
conduction between center and edges of this surface.

(a) Edge (b) Inside

Fig. 2. Representation of an impedance network of an elementary surface at
the edge and inside of the plate [13]

These elementary schemes must be combined to build the
complete network described in Fig. 3.

Fig. 3. Electro-thermal nodal model of the heated plate [13]

Millman’s theorem [14] allows to express the temperature
for each node with a first order differential equation. By



combining all the node’s equations, a state space representation
is obtained (5).

{

CthṪ(t) = AT(t) +Bu(t)

y(t) = CT(t)
(5)

where T(t) is the vector of local temperatures, Cth is the
diagonal matrix of thermal capacities, A is the thermal resis-
tances matrix, y(t) is the measurements vector, C reflects the
sensors position, u(t) is the vector of boundary conditions for
temperatures and heat sources and B reflects their influence
on the plate.

Simulation of local temperatures is then obtained through
the state space model (5). As a contrary to experiments,
simulation of (5) allows the knowledge of all temperatures.
Consequently, the estimation of the temperature in a specific
non measured location is necessary. In this paper, we propose
to achieve this objective through linear functional observers in
discrete time.

C. Sample and hold state space representation

For digital target applications, a discretization of the state
space system is necessary. Assume that the continuous time
system of the heat equation is given by the following state
space representation:

{

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)
(6)

Equation of the sampled system is given by:
{

x(k + 1) = Adx(k) +Bdu(k)

y(k) = Cdx(k)
(7)

with:


















Ad = eATs

Bd =

∫ Ts

0

eAθB dθ

Cd = C

(8)

where Ts is the sampling period. For every t in R
+, x(t) is a n-

dimensional state vector, u(t) is a p-dimensional control vector
supposed to be known, y(t) is a m-dimensional measured
vector and, Ad(n×n), Bd(n×p) and Cd(m×n) are constant
matrices.
Notation: in the whole paper, all the discrete signals s(k) may
be written in one of three ways s(kT ) ≡ s(k) ≡ sk, where
k ∈ Z.

The model in (7) is therefore called a zero-order hold of
the system in (6) [15], [16].

III. ESTIMATION OF NON-MEASURED VARIABLES

A. Discrete functional linear observers

Let us consider a system described by the sample and hold
state space equations in (7).

The aim of a functional observer is to estimate state vari-
ables, at least asymptotically, from the measurements on the
system. Estimated state variables are defined by :

v(k) = Lx(k) (9)

where L is a constant full row rank (l × n) matrix selecting
estimated components.

The observation of v(k) can be carried out by the designed
linear functional observer or Luenberger observer [17], [18],
which is described by the state equations:

{

z(k + 1) = Fdz(k) +Gdu(k) +Hdy(k)

v̂(k) = Pdz(k) + Vdy(k)
(10)

where z(k) is a q-dimensional state vector and v̂(k) is a l-
dimensional vector. The constant matrices Fd, Gd, Hd, Pd, Vd

and the order q are determined such that lim
k→+∞

(v(k) −

v̂(k)) = 0. Moreover, it must be kept in mind that we look for
a minimal order observer. The asymptotic tracking is ensured
if Fd is a Schur matrix, i.e. all the eigenvalues of Fd are inside
a open unit disk.

Following [19], the linear functional observer (10) exists if
and only if there exists a (q × n) matrix M such that:

MAd − FdM = HdCd (11)

L = PdM + VdCd (12)

Gd = MBd (13)

B. Design of a discrete Luenberger observer

This section deals with the search for a minimum order of
a functional observer. This point is achieved in order to obtain
a fast and implementable observer.

Let q be the smallest integer such that,

rank Σq = rank

(

Σq

LA
q
d

)

(14)

with:

Σq =



























Cd

L

CdAd

LAd

...
CdA

q−1

d

LA
q−1

d

CdA
q
d



























(15)

1) First step: The design of the observer uses the successive
derivations of v(k). After q derivations of v(k) = Lx(k), we
obtain:

v(k + q) = LA
q
dx(k) +

q−1
∑

i=0

LA
q−1−i
d Bdu(k − i) (16)

From (14), two matrices can be defined, Γi, i ∈ J0 ; qK and
Λi, i ∈ J0 ; q − 1K such that:

LA
q
d =

q
∑

i=0

ΓiCdA
i
d +

q−1
∑

i=0

ΛiLA
i
d (17)



Using (17), (16) can be written as:

v(k + q) =
∑q

i=0
ΓiCdA

i
dx(k) +

∑q−1

i=0
ΛiLA

i
dx(k)

+
∑q−1

i=0
LA

q−1−i
d Bdu(k − i)

(18)
2) Second step: The second step is to eliminate the state

x(k) from the (18) so that v(k+ q) will be expressed only in
terms of v(k), y(k), u(k) and their successive derivatives. To
do so, the state equation (7) is used after each derivation of
v(k) = Lx(k) and y(k) = Cdx(k), [20], [21]. Thus, we get:

v(k+ q) =

q
∑

i=0

Γiy(k+ i)+

q−1
∑

i=0

Λiv(k+ i)+

q−1
∑

i=0

Φiu(k+ i)

(19)
where, for i ∈ J0 ; q − 2K:

Φi =
[

LA
q−1−i
d −

∑q

j=i+1
ΓjCdA

j−i−1

d

−
∑q−1

j=i+1
ΛjLA

j−i−1

d

]

Bd

(20)

and
Φq−1 = [L− ΓqCd]Bd (21)

3) Third step: The third step consists in realizing the input-
output differential equation (19) [20], [22], as:
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z(k) +











Φ0
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Φq−1
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+











Γ0 + Λ0Γq

Γ1 + Λ1Γq

...
Γq−1 + Λq−1Γq











y(k)

v̂(k) = [0 0 ... 0 1] z(k) + Γq y(k)
(22)

When Fd is a Schur matrix, it is demonstrated that (22) is an
asymptotic observer of the functional linear Lx(k). Otherwise,
it becomes necessary to increase the order q and to do again
the building procedure with a higher order, [23], [24].

IV. APPLICATION TO THE 2D HEATED PLATE

A. Design of a minimal-order observer

In this section, the discrete functional observer is applied
on temperature estimation of a heated plate. In order to
closely follow the design of the observer, the plate is spatially
discretized into 9 elementary surfaces (Fig. 4) leading to a
9-order state space model. This choice is only achieved to
detail the design procedure of the observer and the obtained
results. Any partitioning of the heated plate could be chosen.
Moreover, the more precise the partitioning is, the larger the
matrices are. However, in case of large matrices, the details of
calculus cannot be explicitly shown. Ca, S and O denotes
respectively the sensor, the heat source and the estimated
temperature locations. Let us remark that from symmetrical
reasons, for identical initial conditions, the temperature of cell
Ca shall be equal to the one of cell O.

SCa

O

Fig. 4. Discretization of the heated plate

Considering the modeling method in section II, a continuous
[25] and the associated sample and hold state space represen-
tation are obtained for a sampling period Ts = 1s:
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Bd =





























0, 74 6, 74× 10−6

0, 50 1.907× 10−3

0, 74 6, 74× 10−6

0, 50 1.907× 10−3

7.683× 10−3 0, 68
0, 50 1.907× 10−3

0, 74 6, 74× 10−6

0, 50 1.907× 10−3

0, 74 6, 74× 10−6





























Cd =
(

0 0 0 1 0 0 0 0 0
)

L =
(

0 0 0 0 0 0 0 1 0
)

(23)

where a = 0.24, b = 2.45 × 10−3, c = 7.55 × 10−6, d =
2.45×10−5, e = 7.54×10−8, f = 2.32×10−10, g = 0.48, h =
4.88× 10−3, i = 1.50× 10−5, j = 0.97, k = 2.45× 10−5 and
l = 2.45× 10−3.

The design procedure in section III-B is applied and the

minimal order such as rank(Σ3) = rank

(

Σ3

LA3
d

)

is q = 3.

Thus, a minimal third-order candidate observer can be
envisaged.

It has to be verified that Fd is a Schur matrix:

LA3
dΣ

−1

3 = (−0.05 0.05 0.47 − 0.47
−1.22 1.22 1)

(24)

Then, Λ0 = 0.05,Λ1 = −0.47,Λ2 = 1.22. It yields to:

Fd =





0 0 0.05
1 0 −0.47
0 1 1.22



 (25)

The eigenvalues of Fd are (0.24, 0.48, 0.48).



Fd is then a Schur matrix. Consequently, the observer is
asymptotically convergent.

From, LA3
dΣ

−1

3 , it gets Γ0 = −0.05,Γ1 = 0.47,Γ2 =
−1.22 and Γ3 = 1.
Using (22), the matrices of the observer are deduced:







































Gd =





1.28× 10−13 −3.23× 10−16

−6.46× 10−13 1.13× 10−15

5.41× 10−13 2.05× 10−15





Hd =





6.17× 10−14

−3.80× 10−13

5.04× 10−13





Pd =
(

0 0 1
)

, and Vd = 1

(26)

Considering orders of magnitude of the coefficients in Gd and
Hd, they can be approximated by:

Gd =





0 0
0 0
0 0



 , Hd =





0
0
0



 , Pd =
(

0 0 1
)

, Vd = 1

(27)
The observer design is ended. However, when the obtained

poles (0.24, 0.48, 0.48) are not suitable to ensure a sufficiently
fast dynamic of the observer error, the observer order has to
be increased.

For an initial condition T (0) − T̂ (0) = 1, the simulation
results are given in Fig. 5.

Fig. 5. Simulation result of observer of order q = 3, for a discrete state
model, with non identical initial conditions

It is clear that the convergence between the observer output
is asymptotically ensured to the simulation value. Moreover,
the observer is designed with an arbitrary asymptotic con-
vergence speed due to the eigenvalues of Fd. To improve
performances and to obtain a faster convergence, the order
of the observer has to be increased.

B. Convergence time and computation complexity of the ob-

server

In order to evaluate the performances of the observer
previously designed, several sampling periods Ts are tested.

Obviously, the maximum sampling period remains lower than
the time constant of the temperature evolution. A convergence
criteria ǫ = |T − T̂ | < 10−3 is chosen to measure the
convergence time Tcv . Then, convergence time and maximum
estimation error are given in Tab. II for an initial condition
T (0) − T̂ (0) = 1. Note that in this comparison, the observer
order q stays equal to 3.

TABLE II
OBSERVER PERFORMANCES REGARDING Ts

Ts 50ms 100ms 1s 2s 4s
Tcv 22.9s 20.9s 15s 14s 12s
ǫmax 138 37 1.22 1 1

In case of digital implementation of the observer, it is
necessary to consider the computation complexity to obtain
the estimated temperature for each sample. Considering the
structure of Fd, the worst case such as Gd and Hd are full of
non-zero values, y is a scalar and u is a d dimension vector,
the estimated temperature needs dq3 + 1 multiplications and
3q+d−1 additions. In a digital processors, multiplications are
longer to compute than additions. Consequently, it becomes
clear that the observer dimension as to be minimal.

Finally, regarding observer performances and computation
complexity, it can be said that the sampling period should be as
large as possible to increase the performances of the observer
in terms of estimation error and convergence time and to avoid
high computation complexity.

C. Increase of the accuracy of spatial discretization

Let’s consider a system model with a more accurate dis-
cretization with (11 × 11) elementary surfaces leading to a
121th order state space model. The position of the sensor and
the estimated point are chosen to ensure non symmetry in
the estimation problem. An observer is designed according to
the procedure given in section III. Thus, a linear functional
observer of order q = 14 is obtained. The asymptotic con-
vergence of the simulated temperature T and the estimated
temperature T̂ is checked. This study points out the advantage
of a linear functional observer compared to a reduced observer
of order n− l = 120. The simulation result is given in Fig. 6.

It can be concluded that the observer accurately estimates
the temperature of a desired point, whatever the initial condi-
tions.

V. CONCLUSION

In this paper, a thermal modeling of a heated plate is
presented using the finite difference discretization for the 2D
heat equation, leading to a state space representation of the
system with the thermo-electrical analogy.

From this state space representation expressed in the dis-
crete time framework, a linear functional observer has been
designed in order to estimate the temperature at any desired
point using few measurements and the knowledge of inputs.



Fig. 6. Simulation result of observer of order q = 14, for a state model of
order 121, with non zero initial conditions

This paper shows that the observer is able to accurately
estimate the temperature of the heated plate. Then, perfor-
mances of the observer in terms of estimation error and
convergence time have been studied regarding the sampling
period. Computation complexity has also been evaluated. It
has been shown that the setting of the sampling period has to
be done regarding the physical system and the digital target,
especially for large system and observers.

The main objective of this paper was to show the feasibility
of our approach to design fast and efficient observers. Our
future development will be to establish 3D thermal models
for the observation of a complete power electronic module.
However, these models will be naturally of large dimension
and state space representations will be huge. Thus, it could
be supposed that even the linear functional observer will not
drastically reduce the order of the problem. In this case,
the observer designed from experimentally identified transfers
could be studied. Using small order transfers, the associated
observer would have a limited dimension. This particular point
will be developed in further work.

Two ways of development could also be considered for the
presented work. On the one hand, some efforts will be done
on the thermal modeling. Anisotropic materials could be on
concerned, leading to variations of parameters along spatial
dimensions. This point will lead to models of complete power
modules. On the other hand, unknown input observers could
be studied. This particular point is extremely important in
case of unknown or uncontrolled perturbations applied on the
system. This will be applied to the observation of real systems
where environmental conditions, such as ambiant temperature
and cooling systems, are not always perfectly stable and
controlled. Finally, for stability purposes, the use of sample
and hold observers designed from continuous linear functional
observers will also be discussed in further work. It will also
be compared to numerically integrated continuous observers.
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