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Improving the characterization of initial conditions for streamflow prediction 

using a precipitation reconstruction algorithm 

Ayoub TAHIRI *. David LADEVEZE*. Pascale CHIRON**. Bernard ARCHIMEDE** 

Abstract: Hydrologic forecasts derive their skill from knowledge of initial conditions at the forecast date, 

climate forecast, model structure and parameters. Uncertainty on the initial conditions has as much 

influence as uncertainty on the weather forecasts on the hydrologic forecasts for some watersheds. Initial 

conditions depend on several parameters: evapotranspiration, soil composition and mainly former rain 

events which are measured by rain gauges or radars. Precipitation measures often show uncertainties or 

even data gaps, and thus, the evolution of the soil states is unknown. The initial conditions can only be 

determined by following up the evolution of the variable states. The measured discharge runoff is the only 

available reliable data and thus, that information can be used to determine the variable states, by the 

inversion of the rainfall-runoff model. This study proposes a post-processing method that adjust the initial 

conditions using measured discharge runoff at the outlet of a watershed. The heuristic is applied on the 

Echez watershed, and the effectiveness of the method is illustrated thanks to a comparison of the results 

obtained with the measured observation during an analysis period falling out after the forecast date.  

 Hydrology backward, precipitation reconstruction, hydrologic forecast, initial conditions. 

1. INTRODUCTION

Water supply outlooks, or volume of runoff, are communally 

used by water managers in order to predict water supplies, 

determining industrial and agricultural water allocations, and 

operating reservoirs for multiple uses such as hydropower and 

flood control. Therefore, each water manager should take 

advantage of a tool that can predict the evolution of the water 

resource in short and long term in order to adapt his 

management strategy. 

A hydrologic model is a mathematical model describing the 

rainfall-runoff process at the scale of a catchment area, 

drainage basin or a watershed. The inputs of the model vary 

from a model to another (precipitation, evapotranspiration, soil 

permeability, ...) and the output is the discharge runoff at the 

watershed outlet. The differences between the simulated flow 

rates and the observed flow rates represent the errors of the 

model. 

Every hydrologic model has a number of parameters that need 

to be calibrated based on the available observations, so that the 

model can simulate the catchment hydrological behaviour as 

closely as possible. The model calibration process consists in 

varying the model parameters until the measured flow 

corresponds to the model outflow using a large former data set. 

Different efficiency criteria for hydrological model calibration 

are mentioned in [Nash and Sutcliffe, 1970] and [Krause et al, 

2005]. The type and the number of parameters are different 

from a model to another. Some parameters may be related to 

physical characteristics of the watershed, others are abstract 

quantities (storage capacity of a soil tank, etc.).  

Hydrologic models can be classified into different groups 

depending on their conception and the nature of the 

expressions defining the relationships between the inputs and 

outputs: deterministic or stochastic; discrete in time or

continuous; physical, empirical or conceptual; discrete in 

 

A conceptual model allows to represent the main processes of 

the rain-flow relationship without describing the physical laws 

governing the processes involved. This type of model 

generally consists in interconnected reservoirs, in which the 

level increases and decreases over time and represents the 

different hydrological compartments of the watersheds. 

In the current study, we focus on conceptual, deterministic and 

global models, and we assume that the models are calibrated. 

The advantage of a conceptual approach is that the model is 

much simpler from a mathematical point of view. Thus, 

hydrologic processes are estimated with simple equations 

rather than solving governing partial differential equations and 

so, setting and calibration is easier [Aghakouchak and Habib, 

2010]. 

In order to execute a simulation on a hydrologic model, it is 

necessary to specify the initial conditions of the simulation, 

which represent the variables states at the first-time step of the 



simulation. The initial hydrologic conditions have a strong 

impact on the prediction of cumulative runoff and soil 

moisture [Shukla and Lettenmaier, 2011]. Errors on the initial 

states have as much influence on the quality of the flow 

prediction than those related to weather forecast [Kirchner, 

2009]. In fact, in the process transforming rainfall to runoff at 

the catchment scale, former rains events influent strongly the 

response of this basin via the saturation of the soil.  When the 

soil is saturated, the watershed tends to respond rapidly and 

intensively to rainfall, while when it is dry, the watershed 

absorbs most of the rainfall. The knowledge of the antecedent 

moisture degree has been a major challenge for hydrological 

prediction, mainly for two reasons: (1) it  difficult to exactly 

estimate catchment soil moisture status through time, by either 

measurement or modelling, and (2) it  difficult to determine 

the functional relationship between this antecedent soil 

moisture and the runoff which induced it. Therefore, 

improvement in knowledge of the initial hydrologic conditions 

would improve the streamflow prediction [Shukla and 

Lettenmaier, 2011].  

Initial conditions depend on several parameters: 

evapotranspiration, soil composition and mainly former rain 

events which are measured by rain gauges or radars. Many 

reasons can lead to uncertainties when estimating rainfall such 

as rain gauge technical ability to measure severe rainfall 

intensities, poor spatial or temporal resolution rain gauges 

sampling [Sarann et al, 2012]. Precipitation measurements 

often show uncertainties or even data gaps, and thus, the 

evolution of the states is broken. The initial conditions can 

only be determined by following up the evolution of the 

variables states. The measured discharge runoff is the only 

available reliable data and thus, that information can be used 

to determine the variable states, by inverting the rainfall-runoff 

model.  

Recent contributions to the literature have raised the question 

to figure out the uncertainty of measured rainfall. Some studies 

suggested methods to better take into account rainfall 

uncertainties during the calibration of rainfall-runoff models.  

These studies suggested to consider rainfall at each time step 

as a model parameter that need to be calibrated as usual model 

parameters. However, the number of parameters to be 

calibrated is large, thus, other studies proposed the use of 

correction factors for rainfall series in order to reduce the 

number of parameters to be calibrated. [Kuczera et al. 2006] 

[Vrugt et al. 2008] solve the input uncertainty in hydrologic 

modelling, using a markov chain monte carlo simulation. 

[Kirchner 2009] represented the catchment as a simple first-

order nonlinear dynamical system which is thus, invertible; 

one needs only measured streamflow fluctuations as input to 

calculate (P-E), with P: the precipitations and E: the 

evapotranspiration. A similar approach was used by [Teuling 

et al. , 2010], [Krier et al. , 2012] and [Herrnegger et al. 2014]. 

[ -analytical 

rainfall-runoff models. The suggested heuristic inversion 

method is based on a Quasi-Newton algorithm and showed to 

be able to identify both hourly rainfall time series and rainfall-

runoff model parameters values. The problem with this 

approach is that the rainfall time series and the parameters are 

unknown, and so, the quality of the inverted rainfall depends 

on the capacity of the algorithm on finding precisely the model 

parameters, since the model is sensitive to the latter.  

In this work, we propose a precipitation reconstruction 

algorithm from the chronicles of measured flow rates in order 

to estimate the initial states. It consists in finding the hourly 

rainfall time series which generated the observed flows. The 

reconstituted precipitations will be reinjected in the hydrologic 

model and initial conditions will be found. The algorithm 

developed herein relies on a numerical model coupled with a 

hydrologic model, and allows the user to generate better 

hydrologic forecast data. 

2. Methodology and mathematical formulation

Reconstituting precipitations consists in determining rain 

events such that when these events are input in the hydrologic 

model, the simulated flow rate results approach the observed 

flow rate. In other words, it consists in finding precipitation 

values at each time step that minimize the difference between 

the output of the hydrologic model and the measured flow (see 

Figure 1).  

Figure 1: Precipitations identification methodology 

The methodology consists mainly in three steps: 

1. Generate a precipitation vector.

2. Introduce the precipitation vector as an input for

simulation on a calibrated model, and evaluate the 

error defined as the gap between the simulated flow 

and the measured one. 

3. Integrate this error, and generate a new precipitation

vector that will reduce the error. 

The complexity of this problem is mainly due to two reasons: 

The model is a black box: The mathematical 

transformation function and its derivatives are not 

known and their evaluation is computing time 

expensive. 

The model has a state representation and thus, a bad 

estimation of a rain value at instant  , will change the 

state all over the simulation horizon which make it 

difficult to find the correct future values. 

Let ,  and   denote the precipitation vector,

the simulated flow corresponding to vector  and the 

measured flow respectively. Let denote the error vector

of the model corresponding to the precipitation vector :  

 (1)



An objective function must be defined in order to quantify the 

difference between the observed flow and the flow simulated 

by the hydrological model. Several objective functions can be 

implemented for the reconstruction computation: absolute-

 

In order to avoid the compensation of opposite signs errors, the 

norm which is given by the sum of the absolute values of the

vector elements E(P) is used as an objective function.  

The problem of precipitation reconstruction in a hydrologic 

model can be modelled as a constrained optimization problem, 

by adding bounds on elements of the precipitation vector.  

(2) 

(3) 

With  represents the time horizon, and  the precipitation at

instant . 

Resolving the problem of precipitation reconstruction consists 

in identifying the set of rainfall variables for which the model 

outputs are the measured flows. This is done by a numerical 

optimization procedure whose purpose is to determine the 

values of the input variables producing the vector P while 

minimizing the objective function .

Theoretically, a vector P for which the objective function is 

zero exists, nevertheless the set of measured flow contains 

uncertainties. Therefore, the objective function cannot achieve 

its theoretical minimum value, and the obtained precipitation 

variables input set does not strictly correspond to the actual 

one.

Optimization problems in hydrological models are generally 

complex because of the non-linearity of the mathematical 

formalizations and because of the models structures. Optimum 

research strategies can be divided into two categories: local 

methods and global methods. 

Local methods explore in a progressive and evolutionary way 

the state space from an initial input value. The exploration of 

space is done in the direction where it is possible to improve 

the value of the objective function. The procedure can be 

terminated when  no longer possible to generate a 

significant improvement, thereby the set of variables found, 

corresponds to an optimum of the objective function. These 

methods can be based on the objective function only or on its 

derivatives as well. The advantage of these methods is that at 

each iteration, the objective function gets improved. However, 

the main drawback of these kind of methods is that they can 

lead to a local optimum instead of finding the global one. 

Global methods explore a large research space and therefore 

allow to identify, in principle, the optimal set of input variables 

and avoid local convergence. Among these methods, we can 

mention: simulated annealing [Vicente, et al, 2003], genetic 

algorithms [Mitchell, 1998], neural network [Schalkoff, 1997]. 

These methods use the vectors tested during former iterations 

improve the objective function, it is kept in a database and 

could be used in a future iteration. These methods are time 

consuming for the first iterations, but speed up as the database 

get bigger. 

The optimization algorithm implemented herein is global, 

iterative and improves the objective function at each iteration. 

The end of an iteration is marked with a model simulation. Let 

 and  denote for an iteration , the precipitation vector

and the precipitation at instant . The algorithm starts with a 

null vector  and evolves to the optimal vector 

. At each iteration, the recurrence formula (4) is applied: 

 (4) 

With  an indicator defined later, and  a correction 

vector at iteration k. 

Every watershed and so, every hydrologic model has its own 

reaction to a rain event. To determine the response of the 

hydrologic model to a rain event we consider a database which 

contains the results of every simulation made during the 

previous iterations of the algorithm. The algorithm uses the 

database simulations values to infer the corrections to be made 

on the precipitation vector at each instant , so that the next 

input precipitation vector can improve the output flow. A first 

simulation with the vector  is made to 

initialize the database. 

Every single rain event  has an effect on the flow all along 

the concentration time  of the watershed. In other words  

has an effect on . In order to consider the 

error over this period, an indicator consisting of the 

convolution of  and 

 is computed: 

 (5) 

Vectors  and  represent the error of the simulation and the 

signature of the model respectively. The indicator (5) is a 

similarity measure of the two series  and is defined as a 

function of the displacement of one relative to the other. In 

other words, it corresponds to a cross-correlation measure. 

The algorithm selects the points that require corrections, i.e. 

the instants for which the value of  is significant. Let  

denote one of those instants, the algorithm looks for rain events 

in the database which are similar to the one at instant . Let T 

denote the set of rain events similar to one at instant .The 

similarity measure is based on three standards: the temporal 

distance between the two events, the cumulative rainfall value, 

and the quantity of instantaneous rain. Based on these three 

standards values, a corrector coefficient  is computed using

the empirical formula (6). 



 (6) 

The reconstructing algorithm steps are illustrated in the Figure 

2.  

Figure 2: Reconstruction algorithm 

At each iteration, the algorithm generates a net rainfall vector 

which is simulated on a calibrated hydrological model to 

obtain the flow rates associated. The indicator is then 

computed in order to estimate the rainfall events values at each 

time step. The errors, revealed out by a significant indicator 

values are corrected by modifying the rain event at the 

corresponding time steps. The correction quantities are 

computed using the former simulations in the database and the 

formulas (4), (5) and (6). For the foremost iterations, few 

simulations exist in the database, hence the corrections 

proposed are not accurate, but as the database get bigger, the 

algorithm becomes more efficient and faster. 

3. Case study

The algorithm is applied on the GR3H hydrologic model 

[Fourmigué et al, 2005; Perrin et al, 2007]. The hydrologic 

model GR3H is a conceptual model. The input is the hourly 

rain vector on the watershed and the output is the hourly flow 

at the outlet. The reconstruction algorithm was applied on the 

Echez watershed. The measuring station used in this study is 

located in Tarbes, in the south west of France and covers a 

surface of 233 . 

Firstly, in order to validate the algorithm, we test its ability of 

finding precipitations that generated the observed flows. In 

other words, we test the algorithm ability for inverting the 

model. The validation stage 

way to confirm the robustness of the algorithm.  

The validation stage is performed over the period (03/03/2017 

to 15/04/2017). Figure 3 represent the hourly reconstituted 

precipitations, the measured precipitations, the hourly 

measured flow and the hourly simulated flow using the 

reconstituted precipitations. The comparison between the two 

precipitations vector shows a temporal disparity. On the other 

hand, the total volume of rain measured and reconstituted over 

the study period is  and   respectively, 

which corresponds to an error of . The origin of this 

error may be due to different reasons: errors of measurements 

(precipitations and inflows), the calibration of the GR3H 

evapotranspiration, since the reconstituted precipitation 

corresponds to the net rainfall. 

While comparing the hourly measured flow and the hourly 

simulated flow it can be seen that the algorithm succeeded to 

reproduce the measured flows. The error between the 

simulated flow and the measured one over the validation 

period (42 days) is 1.5%.   

Figure 3: reconstituted and measured data 

As a conclusion, the algorithm achieved the reconstruction of 

the measured flow. For a period of 42 days, which corresponds 

to a 1008 hourly period, the algorithm had to make only 9 

simulations to reach optimality. 

After validating the algorithm, we evaluate the contribution of 

the reconstructing algorithm for the hydrological forecast. 

Four sequences of forecast at different dates are considered in 

order to observe the evolution in time of the forecast after 

reassessing the initial conditions using the precipitation 

reconstruction algorithm. The different simulations are made 

with the same precipitation forecast which is obtained 

retrospectively from the real measured precipitation.  For the 

four sequences, the algorithm uses the observed flow measured 

prior the starting date of the sequences. 

15/01/2018). The GR3H model is calibrated, and uses the 

precipitation forecasts to predict the discharge. For the four 

sequences, the starting dates of the forecast and the durations 

are listed in table1. 

Table 1: Sequences of forecast 

Sequence A B C D 

Starting 

date 

27/01/2017 29/01/2017 01/01/2018 05/01/2018 

Period of 

forecast 

2 days 3 days 4 days 10 days 



Figure 4: Sequence A 

Figure 5: Sequence B 

Figure 6: Sequence C 

Figure 7: Sequence D 

Figures 4, 5, 4, 7 show the evolution in time of the hydrologic 

forecast. As it is shown, the continuously updating of the initial 

conditions significantly improved the forecast. We remind that 

the simulations are made using the same precipitation forecast. 

Hence, the improvements are only due to the updating of the 

initial conditions. The errors of forecast are of 

, and  for the sequences A, B, C and D 

respectively.  

For the sequences A, B and C, i

hydrologic forecast, but this is due to the non-representative 

precipitation measurement.     

Figure 7 shows that with a good weather forecast and a 

calibrated initial conditions, the model can provide good 

results if the measure station is temporarily failing as is the 

case between 07/01/2018 and 09/01/2018.  

6. CONCLUSIONS

The aim of this paper is to evaluate the initial conditions of a 

hydrologic model using inflow measurement. An algorithm is 

proposed to inverse a hydrologic model, and hence determine 

the initial conditions of the simulation, which represent the 

variables states at the first-time step of the simulation. The 

developed heuristic is global, iterative and approach the 

correct initial conditions at each iteration. On the case study, 

the proposed method was shown to estimate reasonably well 

precipitation values that enable the model to reproduce the 

measured inflow. The capacity of the model to reproduce the 

measured inflow assure the good follow-up of the variable 

states and so improve the hydrological forecast. Furthermore, 

it was shown through the four sequences that the hydrological 

forecast gets improved after using the inflow measurement to 

update the initial conditions. One of the perspectives of this 

work would be the application of the algorithm on different 

hydrological models in order to draw general conclusions.  
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