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ABSTRACT

Robot localization is a mandatory ability for the robot to
navigate the world. Solving the SLAM (Simultaneous Lo-
calization and Mapping) allows the robot to both localize
itself in the environment while building a map of its sur-
rounding. Vision-based SLAM uses one or more camera as
the main source of information. The SLAM involves a large
computation load on its own and using vision involves even
more complexity that does not scale well. This increasing
complexity makes it hard to solve in real-time for applica-
tions where the SLAM high rate and low latency are inherent
constraints (Advanced Drivers Assistance Systems). To help
robots solve the SLAM in real-time we propose to build a
vision-core that aims at processing the pixel stream com-
ing from the camera in a vision front-end that let a SLAM
method work only with high-level features extracted from
the image. This paper describes the implementation on
FPGA of a core that computes the BRIEF descriptor from a
camera output. We also present the implementation of the
correlation method for this descriptor for the tracking in an
image sequence. This core is then tested in an embedded
SLAM application with good speed-up.
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1. INTRODUCTION

One of the important aspects of robot navigation is the
ability to locate the robot and build a map of its surround-
ings. SLAM (Simultaneous Localization And Mapping) al-
gorithms target such a goal by fusioning multiple sensor
inputs (depth scanner, inertial measurement unit, gps, vi-
sion...) to estimate the state of the robot in its environment
and to incrementally build a map of its surrounding.

Vision based SLAM uses one or more camera to extract
and track information from the scene (features) which al-
lows to estimate the robot position and incrementally build
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the environment map. The SLAM problem can be solved
using a number of different methods, including Kalman Fil-
ter (KF) and Bundle Adjustement (BA). Most methods rely
on the same vision processing tasks : feature detection and
tracking. These two tasks represent an important part of the
processing time of the SLAM and leveraging the power of
hardware accelerators to solve them can yield great process-
ing time and power consumption improvements. Moreover
computer-vision performed in software does not scale-well
in term of resolution and number of sensors where hardware
accelerator can help linearize computing cost.

The BRIEF (Binary Robust Independent Element Fea-
ture) feature descriptor is a simple yet efficient method to
extract an image feature signature. This signature can then
be correlated with an image region to track it in an image
sequence. This descriptor simplicity makes it a good candi-
date for hardware implementation. Combined with a FAST
feature detector it allows a compact hardware implementa-
tion able to detect and track multiple features from a pixel
stream. Stream processing of pixel coming out of a camera
permits to eliminate image buffering and provides detection
and tracking results with almost zero latency (a few image
lines of latency). The implementation of the BRIEF de-
scriptor and correlator in hardware permits to target a fully
functional embedded SLAM system with all vision operators
migrated to hardware.

This paper focuses on the design of a hardware accelera-
tor for BRIEF feature tracking. This core is integrated in
a Extended Kalman Filter SLAM framework to reach real-
time performances (image acquired at 30Hz) on an embed-
ded platform (ZedBoard, ZynQ 7020). In a first part we
introduce the SLAM context and the associated computer
vision operators. In a second part we introduce the design of
the correlation core, then its integration in the architecture.
We finally conclude with results and perspectives.

2. VISION-BASED SLAM

2.1 The generic SLAM problem

The problem known in the literature as SLAM (Simul-
taneous Localization And Mapping) consists in estimating
jointly the robot pose and the positions of a set of static
landmarks in the environment.

Figure 1, shows the different steps in the SLAM process:
(A) The robot observes by first time the three landmarks
(the corners of the squares); (B) the robot moves, it knows
its position with uncertainty; (C) the robot re-observes the
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landmarks; (D) merging this observation(s) with the map
constructed previously reduces both robot and landmarks
position uncertainty.
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Figure 1: Steps in the SLAM algorithm

Figure 2 shows a general view of a generic SLAM archi-
tecture.
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Figure 2: Generic architecture to solve the SLAM
problem

2.2 Vision operators for the SLAM

In a vision-based SLAM implementation the robot uses
exteroceptive informations extracted from a scene perceived
through one [4] [9] or more cameras [12]. Most SLAM im-
plementations use sparse informations extracted from the
image refered to as features. Constraints for a feature to be
used for localization are its ability to be tracked over time in
the image sequence, and to be static in the reference frame
used for localization (world frame). One widely use image
feature is texture corner since it is easy to detect and is
stable over time.

2.2.1 Feature detection

There exist a wide variety of coner detectors for images.
The Harris detector is based on the gray level partial spatial
derivatives [6] around the pixel of interest.

The FAST [10] corner detector simplifies the process by
analyzing the local gradient only between a central pixel
and the pixels on Bresenham circle pattern. FAST detector
complexity is very low and only requires integers operations
when Harris (and others) require more complex arithmetic.
This simplicity and good stability makes it a good candi-
date for hardware implementation. Other corner detection
methods are proposed for corners such as SIFT [7] (Scale
Invariant Feature Transform) or SURF (Speed-Up Robust
Feature) [1]. These methods relies on DoG (Difference of
Gaussian) for corner detection and shows very good perfor-
mance and invariance to change of scale and rotation. How-
ever those methods prove to be computationally complex
and resource consuming (for an hardware implementation).

2.2.2 Feature correlation

Once detected the feature is initialized in the SLAM as a
landmark. Tracking the feature over time can be performed
in two different ways. Tracking by detection uses the de-
tected corners to be associated with the features stored in
the map . This tracking technique requires a stable corner de-
tector (same corner will be detected in an image sequence).
Features can also be tracked using active search. In this
technique the SLAM algorithm computes a search window
for the features of the map where the correlation is per-
formed. This method is more reliable to succesfully track
the features but can be computationnaly complex depend-
ing on the search window size.

Correlation methods for a feature can be divided in two
classes : template-based and descriptor-based. Template-
based directly correlates two image regions : it correlates the
neighborhood of the feature in the search window. Different
method exists to compute the correlation score that each
tries to improve stability (SAD, SSD, CC, ZCC, ZNCC) with
increasing arithmetic complexity.

Descriptor-based correlator, computes a signature (descrip-
tor) for the feature, based on its neigborhood. This descrip-
tor is then compared with the descriptor extracted for a posi-
tion in the image. Methods such as SIFT [7] computes a 128
element descriptor which is based on gradient orientation in
the neighborhood of the point of interest. SURF [1]features
uses a 64 to 128 element vector extracted by computing the
HAAR wavelet response in a 20 x 20 neighborhood centered
on the pixel of interest.

BRIEF (Binary Robuste Independent Element Feature)
[3] is a binary feature descriptor that describes the distri-
bution of gradients in the neighborhood of the pixel of in-
terest. First a N x N patch center on the pixel of interest
is extracted. M pairs of pixels in the patch are randomly
selected and for each pair po,p1 a bit is generated with the

following rule :
b — 1 if po <p1
"0
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Figure 3: Image feature and corresponding 8-bit
BRIEF descriptor. Vectors picture the pixel pairs
elected for comparison.

This results in a M-bits long binary descriptor. Com-
paring two descriptor is simply done using the Hamming
distance. This descriptor can be computed very fast, is very
compact and exhibit good stability for the matching. The
descriptor is robust to illumination changes and small rota-
tions (less than 15°) [3] which makes it a good candidates
for the SLAM. Its simplicity also makes it a good candidate



for hardware implementation.

In the following work we will use texture corners detected
in the image as features. We chose to use the FAST al-
gorithm to detect the features that are then described and
tracked using a active-search of the BRIEF descriptor.

2.2.3 Hardware architectures for vision-based SLAM

There exist several contributions for a embedded SLAM
architecture. In [8] the authors only implements the cor-
ner detection and sensors synchronisation (for an IMU) in
hardware while other image processing tasks and SLAM are
computed in software. The SLAM is performed using an
optimisation method and runs on a separate computer.

In [2] the authors implements the SIFT feature descriptor
in hardware to be used for a EKF-SLAM application using 4
QVGA cameras on a FPGA platform. This implementation
runs the correlation part in sowftare on an embedded soft-
core to produce a 2D map of the environment.

3. BRIEF CORRELATION CORE

The BRIEF descriptor exhibits nice properties for its im-
plementation in hardware. The computation of the descrip-
tor requires only differences between 8-bit pixel values and
the Hamming distance can be computed easily with an adder
tree.

For our system we target a core that can directly process
the pixel stream from a camera while storing the minimum
amount of data (no full-frame buffering, pixel stream pro-
cessing). This core will be clocked directly by the pixel clock
of the camera that is independent of the system clock (but
lower). In the following we will describe the implementation
details that allows to meet those requirements.

3.1 BRIEF descriptor extraction

Experimentation in software showed that a 9x 9 patch size
and a 128-bit length of the BRIEF descriptor are enough to
ensure stability of the tracking while minimizing the resource
usage. Since our processing system is based on a streaming
architecture, the computation of the descriptor requires to
buffer a 9x 9 sliding window from the incoming pixel stream.
This memory cache uses enough BRAM memory to store 8
lines of the image and registers to store 8 pixels of the last
line of the patch (Figure 4).

pixel from camera

Figure 4: Behavior of the 9x9 sliding window. Pink
indicate content retrieved from BRAM, Blue indi-
cate content of registers and Green indicate incom-
ing pixel from the camera

This 9x9 window is used for the BRIEF computation with
a statically generated pattern of 128 pixel pairs comparison
(Figure 5). This comparison pattern being generated stat-
ically the synthesizer can perform a deeper optimization of

the comparison logic. The descriptor is computed at the
pixel rate and can be latched whenever a corner is detected.
Its worth noting that the same 9 x 9 pixel window can be
used for the corner detection (FAST uses a 7 X 7 window to
detect a corner).
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Figure 5: Architecture for the extraction of a 128bit
BRIEF descritpor from a pixel stream

3.2 Hamming distance computation

Hamming distance is defined as the number of bits that
differs in a pair of N-bit words. The computation requires
to first perform a bit-wise XOR of the two words and then
count the ones in the resulting word (population count). The
XOR operation is combinational but the computation of the
Hamming distance requires more work to be performed in a
frequency and resource efficient manner.

Counting the ones in a word can be performed in different
ways:

1. Sequential count of the ones : scanning the word and
incrementing a counter every time a one is detected.

2. Parallel count of the ones : Computing partial Ham-
ming distance in parallel and iteratively add them.

A sequential count of the ones is done using an adder cas-
cade. In this technique counting a N-bit word requires N/2
chained counter. This counting technique gives very poor
frequency performance since the max combinational path
goes through N adders (Figure 6). Frequency performance
can be improved by pipelining every stage of cascade.

Figure 6: Adder cascade for polulation count on a
4-bit word

The computation of the Hamming distance for a word
of length 128 bits, using a sequential count will require 64
stages.

Parallel count of the ones can be performed using an
adder-tree. The adder tree will have ceil(log2(N)) stages
each composed of N/(stageindes+1) adders of o(stageindes+1)
width (Figure 7). The adder tree can be fully combinational
with a large impact on the maximum system frequency or
pipelined at the cost of resources but better frequency per-
formance.

For the computation of the Hamming distance for a word
of length 128 bits, the resulting adder tree will thus be 7



Figure 7: Adder tree for population count on a 8-bit
word

stages deep. While the number of adder in each stage mainly
has an impact on resource count, the depth of the adder
tree will impact the maximum frequency of the core (hence
reducing maximum pixel clock our system can handle) since
it directly conditions the maximum combinational path.

To target a system driven by the pixel clock (distance
must be computed at each clock cycle) with maximum fre-
quency performance and minimal resource count, we will
only investigate the parallel approach. In this work we ex-
plore different solutions to the parallel bit-counting prob-
lem. To find a better trade-off between system frequency
and resource usage than the aforementioned methods.We
will specifically explore solutions taking advantage of FPGA
specific resources : LUT and Block RAMs.

3.2.1 LUT-based Hamming distance computation

Naive implementation of the adder-tree uses 1-bit adders
at the first stage of the tree. This means that this first
stage needs N/2 1-bit adders. In [11] the authors propose to
implement the Hamming distance using LUT. Adding 2-bits
can be seen as a combinational function with the following
thruth table :

bi | bo || 71 | 70
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

A truth table can be mapped to MUX and LUTSs in the
FPGA fabric. FPGA generic slices contains one or more
LUT with varying input size depending on the vendor and
model of the FPGA. In Xilinx portfolio, modern FPGAs
(from Spartan-6 on) use 6 inputs LUT with one output. This
means that instead of using 1-bit adders in the first stage of
the adder tree we can map the add function to the inputs
of three 6-input LUTs effectively computing the Hamming
distance for a 6-bits word. For a word of size N-bits, we
thus consume (N/6) * 3 LUT in the first stage of the tree
and then ceil(log2(IN/6)) stage of adders to compute the
Hamming distance (Figure 8). The resulting reduction in
the adder tree depth has a direct impact on the maximum
frequency of the haming distance core, and efficiently maps
to FPGA resources.

For the computation of the Hamming distance on our 128-
bit word we thus need a adder-tree of depth 5 with a first
stage composed of (3*22) 6-inputs LUT.

3.2.2 BRAM-based Hamming distance computation

LuT

LuT
* 3
_/

Figure 8: Adder tree for the population count on a
8-bit word using LUT. LUT are limited to 4-inputs
in this figure

Aforementioned method mapped the first stage of the
adder tree to 6-inputs LUTS to limit adder tree depth and
increase maximum system frequency. Dual-port BRAM is
another resource usually available in modern FPGAs. These
BRAMs allows for dual simultaneous read access using two
independent ports. A BRAMs being a memory, it can also
be seen as a large LUT with inputs being the address and
content being the LUT output. A BRAM with a Addresswidtn
and Datayigen can be used as an Address.iqsn inputs LUT
with Data.yidrn output. Using a BRAM to hold a Address.widain

bit-counting LUT will require Datawiain = ceil(Addressyiain/2)-

For example a BRAM with a address bus size of 8 will need
to hold 4-bit data. This means that we can replace the first
stage of our adder-tree with BRAMs (one BRAM can be
used for two addition thanks to the dual port) and consume
(N/8)/2 BRAM for the first stage and then ceil(log2((N/8)/2))

adder stage to compute the Hamming distance (Figure 9).

DP-BRAM

A SPO
g 4
g

DPRA DPO

Figure 9: Adder tree for population count on a 16-
bit word using Dual Port Block Ram. Each port of
the RAM is used as an independent counter

For the computation of the Hamming distance on our 128-
bit word we would need a adder tree or depth 3 with a first
stage composed of 8 dual port BRAMs with 8-bit address
bus and 4-bit data bus.

All these methods are good solutions to the population
count problem. The LUT implementation gives the best
performance/resource ratio but depending on the resources
available for a given architecture the designer could choose
to use the BRAM-based method.

3.3 Correlation Core architecture

In our SLAM implementation the observation of land-
marks is performed by the active-search of feature descrip-



tors in the image sequence. This SLAM implementation uses
a short-term map containing a maximum of 20 landmarks,
with only up to 6 landmarks observation being used for cor-
rection at each iteration. Our accelerator allows to track
20 features in the image sequence, thus allowing to observe
every landmark of the map. The core is loaded with BRIEF
descriptors and corresponding search window position and
area. It is then driven by the pixel clock and update the
current position in the image. This position and current
pixel BRIEF descriptor are passed to 20 Hamming distance
computation cores that are only active when current posi-
tion is within their correlation window (Figure 10). Each of
the Hamming distance is used to drive memory signals with
minimum Hamming distance found and its position in the
search window.

BRIEF curent one_correl
BRIEF reference | Hamming distance =
|
ROl.size posX & posY|  on b
ROl.pos =
ROI
hsync Line

vsync || Counter | Lmin_dist

posX|

pelk Pixel

min_posx

Counter | g
D-latch | ,min_posy
: min_write
nE0! resultAvailable

Figure 10: Correlation-core for one correlator

4. RESULTS

4.1 Synthesis of the correlation core

The correlation core was synthesized for a ZynQ 7020 to
evaluate resource usage and maximum frequency. For a sin-
gle correlator, the adder-tree methods gives a fair resource
usage and shows a max frequency of 150.921MHz. The LUT-
based bit-counter shows the best frequency for the mini-
mum resource usage with a max frequency of 160.436MHz
while showing a 20% reduction in resources usage (only on
LUTs). The BRAM approach has good frequency perfor-
mance (140MHz) and use 50% less LUT but would uses too
many of the available BRAMs of the target platform. More-
over Xiling 7 series logic uses 18kbit to 36kbit block ram with
data witdh of 1, 2, 4, 9, 18. When using these block RAM
with 8-bit address width and 4-bit data width we largely
sub-utilize each block RAM.

When increasing the number of correlators to 20, the fre-
quency is not impacted by the place and route thanks to
the low resource usage. The LUT based method can still go
higher in pixel clock frequency and still consumes 20% less
resources than the adder-tree. To minimize the resource us-
age of the overal application we chose to use the LUT-based
method in our architecture. The synthesis report for the 20
LUT-based correlators is shown in 1.

4.2 Integration in the embedded SLAM archi-
tecture

Our accelerator was integrated on the ZedBoard platform
using the Xillybus framework. This framework consists in a
Linux distribution for the dual-core ARM with simple to use
drivers for memory mapped accelerators and FIFO commu-
nication with hardware cores (Figure 11). This distribution

Type Available | Used | Ratio
Slice Registers 106400 6850 6%

Slice LUTs 53200 9864 18%
LUT Flip Flop pairs : 12511

-With an unused Flip Flop 5661 | 45%
-With an unused LUT 2647 | 21%
-Fully used LUT-FF pairs 4203 33%

Table 1: Synthesis report for the LUT-based corre-
lator for 20 features

was chosen to ease the debugging but will later be replaced
with custom drivers for the core. The architecture also inte-
grates a FAST corner detector and interfaces the correlation
core using memory mapped BRAMs. To mimic a camera
connected to the logic, we use a hardware block that sim-
ulates camera signals from pixels received through Xillybus
FIFOs. The Xillybus architecture limits the system clock to
80Mhz for the logic side which limits the performance of the
correlator module.

ZYNQ-7020
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Cortex A9 MP Core 1lcortex A9 MP core o[, | % | [ 5] [% ] [ ¥ I X
w A A
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e 20 || x ||
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Figure 11: Correlation core integrated in our vision-
based SLAM system

The correlation core was first tested using artifical images
to assess and debug the core behavior. The core was then
integrated in the software architecture for our vision-based
EKF-SLAM implementation in place of the existing software
code. Functions calls for the correlation of a given feature
were replaced with calls to the hardware accelerators using
Xillybus peripheral drivers.

On this architecture the performance of the EK-SLAM
with FAST corners extracted in hardware was limited to
an average of 18Hz but adding the BRIEF correlation core
allowed to increase this frequency to 24Hz. Moerover the
BRIEF correlator allowed to stabilize the frame-rate, when
correlation performed in software would make the frame-rate
varry a lot depending on the search window area (Figure 12).

This 24Hz figure is still far from our 30Hz goal but its
worth noting that profiling showed that reading image from
disk represents 24% of the computation time and Xilly-
bus communications would create a significant slow-down.
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Figure 12: EKF-SLAM rate plotting with and with-
out correlation-core

Moreover since, the camera is simulated, images needs to
be transferred from system memory to logic with a great
impact on maximum rate of our SLAM implementation.

In [2] and [13] the authors implements the SIFT feature
descriptor in hardware. The SIFT feature descriptor is bet-
ter than BRIEF in terms of stability, but the resource count
is much higher with the use of DSP blocks (respectively 64
and 97), more LUT (respectively 35k and 43k), more regis-
ters ( 19k for both) and run at much lower frame-rate (30
FPS for QVGA images in [2] and 30 FPS for VGA images in
[13]). Moreover these two design only compute the descrip-
tor, while the correlation is performed in software. In [5]
the authors use a FPGA to compute a 256-bit BRIEF de-
scriptor. The implementation only consider the descriptor
computation and was designed using HLS tools. This imple-
mentation is shown to work well for QVGA images stored
in memory and processed using a 125MHz system clock but
no implementation of the correlator is proposed.

5. CONCLUSION AND FUTURE WORK

In this paper we presented a novel architecture for BRIEF
descriptor computation and correlation tested in a 3D EKF-
SLAM application. This hardware accelerator proves to be
valuable to reach higher frame-rate in an embedded SLAM.
The correlation core can process up to 160MHz pixel stream
which correspond to VGA resolution at 390 frames per sec-
ond (or higher resolution at lower frame-rate).

While the core was tested in a EKF-SLAM software im-
plementation, there is no reason why it would be limited to
EKF-SLAM. OTher applicaiton using feature detection and
tracking could also benefit from the same level of speed-up.

The core could be further enhanced with a correlation
scheduler that would allow to match more than 20 features.
The current design works for a worst case where the search
window for each feature is as large as the image itself. In a
real world scenario, this case should never occur and most
of the correlation cores will be inactive most of the time. By
using a correlator scheduler, one could use the core to track
more than 20 features, one correlator being used to track
multiple features with non-overlapping search windows.

The next step for our embedded EKF-SLAM implemen-
tation is to integrate a custom designed camera module
(60FPS global shutter) to perform real-time image stream-
processing and low-latency SLAM.
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