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Flux Weakening of PMSM for Enhancing Torque Tracking

Jérémie Kreiss1, Jean-François Trégouët1, Romain Delpoux1, Jean-Yves Gauthier1 and Xuefang Lin-Shi1

Abstract— Permanent magnet synchronous motors associated
to their drivers are subjected to both current and voltage
saturations. Dealing with those limitations is the core of flux
weakening problem which aims defining achievable operating
conditions. In stark contrast with most of the literature focusing
on the steady-state, this paper investigates how current and
voltage constraints impact transient as well. In-depth analysis
reveals that bounds affecting derivative of torque exerted by the
machine are influenced by direct current. This suggests that by
assigning proper value to this signal, one can shift torque limits
beforehand in direction where high torque demand is expected
to occur. Simulations suggest that this “preloading” strategy
can indeed enhance torque tracking and help meeting the
most demanding specifications. A comprehensive optimization
framework for selecting the level of “preload” is also provided.

I. INTRODUCTION

Permanent Magnet Synchronous Motors (PMSMs) are
widely used in industry and transportation. They are more
robust than brushed DC motors and produce higher torque
per volume than induction machines. Thanks to the coordi-
nate transformation called direct-quadrature (d-q) transfor-
mation introduced in [1], control strategies for such motor
has received considerable interest such as field oriented
control. Among them, we find methods based on feedback
linearization [2], sliding mode control [3], to cite a few.

For high speed applications, one of the primary limitation
of PMSM is the boundedness of excitation control (i.e.
voltage and current limitations). Indeed, internal electromo-
tive force (EMF) rises in proportion to the motor speed to
a speed limit for which voltage limit is reached. At the
steady-state, fail to comply with current limitations, related
to cooling capacity of the machine among others, might
also damage the motor. However, adjusting direct current
id is possible by acting on voltages in order to reach higher
speeds or produce larger torque. This is the so-called flux
weakening operation (see [4], [5] or [6] to cite a few).
The related problem, which aims computing the optimal
electrical steady-state maximizing torque or speed under
current and voltage constraints, has been extensively studied
in the literature (see for instance [7], [8], [9]). The purpose of
this paper is to analyze how those constraints impact transient
as well.

Analysis of current and voltage constraints during transient
reveals that bounds affecting τ̇ , the derivative of torque
produced by the machine, are influenced by direct current id .
This suggests that by assigning proper value to id , one can
shift limits of τ̇ beforehand in direction where high torque
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demand is expected to occur. Simulations suggest that this
“preloading” strategy can indeed enhance torque tracking and
help meeting the most demanding specifications.

Furthermore, it appears that “preload” might increase
energy consumption. To order to compromise competing
control goals of “preload” and losses minimization, an op-
timization framework is proposed which takes current and
voltage constraints as well as stator resistance voltage droop
into account. Its solution is computed analytically by way of
geometrical considerations. Note that this last result gives, as
a special case, analytical solution to the optimal steady-state
selection problem of more classical statement like Torque
Maximization [6].

The paper is organized as follows: After presenting consid-
ered model and associated control problem in Section II, de-
scription of “preloading” strategy is provided by Section III.
In Section IV, selection of level of “preload” is formulated
as an optimization whose analytical solution is given. In
Section V, simulations are performed in order to illustrate
the proposed approach. Finally, conclusions and perspectives
are offered in Section VI.

Notations: We denote y(t−d ) (y(t+d )) left (right) limit of
time-varying signal y(·), i.e., limits of y(t) when t tends to
td with t < td (t > td). The euclidean norm is denoted by ‖·‖.

II. PROBLEM STATEMENT

As depicted on Fig. 1, the PMSM model considered in this
paper breaks down into two parts: (i) the electrical dynamic
and (ii) the mechanical one.
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Fig. 1. Block diagram of PMSM dynamical model

A. Electrical dynamic

Consider the following state model of PMSMs electrical
part in the d-q reference frame (see [1]):

L
d
dt

i =
[
−R npLω

−npLω −R

]
i+ v−

[
0

Kφ npω

]
(1)

where v = [vd ,vq]
ᵀ and i = [id , iq]ᵀ gather respectively the

d-axis, q-axis stator voltage and current, L and R are the
stator inductance and resistance, ω is the mechanical angular
velocity, Kφ is the permanent magnet flux linkage and np,
the number of pole pairs.



In this case, v is the control vector whereas i corresponds
to state vector.

B. Mechanical dynamic

From the second Newton’s law of motion in rotation, we
obtain the model below for the mechanical part:

J
d
dt

ω =− f ω + τ− τext (2)

where J is the motor inertia, f is the viscous frictional
coefficient of the motor, τext gathers external torque and τ is
the electrical torque developed by the motor. This last signal
has to be regarded as input of dynamics (2) while angular
velocity ω is its state.

By relating τ and iq, the following linear relationship:

τ =
3
2

npKφ iq (3)

is the coupling term between electrical and mechanical
dynamics.

C. Torque tracking under constraints

When tackling control problems related to mechanical
variables, e.g., velocity or angular position tracking, dis-
turbance rejection, etc., one typically implements modular
control design for which reference torque τ# is computed
by way of some high-level “mechanical control law”. This
signal then serves as a reference for low-level “electrical
controller” driving current vector i. From (3), observe that τ

depends on quadrature current iq solely which suggest that
when tracking τ# one can ignore id . Yet, currents dynamics
are coupled: From (1), derivative of iq is affected by id .
However, as soon as v can be freely selected, this coupling
can be simply canceled out by substituting vq by v̂q+npLωid
so that derivative of iq does not depend on id anymore and
is controlled by new input v̂q.

Norm of v is physically constrained, though, as this
quantity cannot exceed some positive scalar Vmax which
depends on voltage source magnitude and control law driven
the inverter. This implies that the following inequalities

‖v‖=
√

v2
d + v2

q ≤Vmax (4)

holds at all time. Furthermore, ‖i‖ is subjected to the
following steady-state upper limits:

‖i‖=
√

i2d + i2q ≤ Imax. (5)

Overtaking this bounds, whose magnitude depends mainly on
cooling capacity of the machine, might damage the motor.

Those two constraints might prevent from using change of
variable involving v̂q. This is where direct current id comes
into play: When focusing on the steady-state, it comes out
that decreasing id can enlarge the set of achievable torque
and speed. The problem of computing the optimal electrical
steady-state for maximizing torque or speed under (4) and
(5) has been extensively studied in the literature (see for
instance [7], [8] or [9]). Usually, when system is away
from saturation bounds, id is left at 0 in order to minimize

energy consumption. Negative value is assigned to this signal
whenever voltage v or current i reach their limits.

The main contribution of this paper is to show that direct
current id can be used to improve transient reference torque
tracking as well.

III. CONTROLLING id TO ENHANCE TORQUE TRACKING

Let us now investigate how inequalities (4) and (5) impose
limits on mechanical input τ and, in turn, might prevent τ#

from being properly tracked.
First note that (5) only restricts steady-state and, hence,

can be violated during transient. As far as (4) is concerned,
this constraint involves voltages and, in turn, imposes limi-
tations on derivative of τ . Indeed, by (1) and (3), one gets

d
dt

τ =
3
2

npKφ

d
dt

iq

=
3

2L
npKφ (−npωLid−Riq + vq−Kφ npω) (6)

Considering the case where the system is initially at some
equilibrium, let us compute maximum achievable τ̇ satisfying
(4). From (1) and (2) and using continuity argument, it holds:

id(t+) = id(t−), iq(t+) = iq(t−), ω(t+) = ω(t−), (7)

for any instant time t, see [10, Sec. 7.4]. As far as electrical
inputs are concerned, discontinuity of v is supposed to be
achievable. Even at the electrical time scale, this hypothesis
is indeed reasonable since v is generated via Pulse Width
Modulation (PWM) strategy driven by duty cycle which can
(almost) instantaneously change value. This is equivalent to
say that vd(t+) can be uncorrelated to vd(t−), and the same
fact applies to vq. From (6) and the above discussion, it holds

d
dt

τ(t+) =
3

2L
npKφ (−npω(t−)Lid(t−)−Riq(t−)

+ vq(t+)−Kφ npω(t−)) (8)

Expressing iq in terms of τ with (3) and replacing it in (8)
leads to

τ̇min(ω(t−),τ(t−), id(t−))

≤ τ̇(t+)≤
τ̇max(ω(t−),τ(t−), id(t−))

where

τ̇min(ω,τ, id) := ψ(ω)id + γ(ω,τ)− 3
2L

npKφVmax,

τ̇max(ω,τ, id) := ψ(ω)id + γ(ω,τ)+
3

2L
npKφVmax,

ψ(ω) :=−3
2

n2
pKφ ω, γ(ω,τ) :=−1

L
(Rτ +

3
2

n2
pK2

φ ω),

since largest magnitude of vq(t+) under (4) is Vmax and is
achieved for vd(t+) = 0.

Given a mechanical equilibrium characterized by ω(t−)
and τ(t−), the crucial point is that bounds of τ̇(t+) depends
on id(t−). As a result, if we can predict in same way, in
which direction some torque of large magnitude will have
to be exerted, bounds of τ̇(t+) can be shifted in advance



in the appropriate direction by controlling id(t−) in order to
enhance torque tracking. Such a goal can be indeed achieved
since ω and τ do not uniquely define system equilibrium,
provided that saturation limits are not reached.

The strategy described above and consisting in setting a
non zero value to id to shift bounds on derivative of τ will
be coined “flux preloading” in the sequel. Note that this
objective might be contradictory with minimization of ‖i‖, a
desirable objective for reducing energy consumption.

Let us now formulate the problem tackled in this paper.

Problem (Optimal flux preloading). Assign steady-state of
PMSM compromising:

1) Maximization of ability of closed-loop system to re-
sponse to abrupt torque demand by shifting bounds
on τ̇;

2) Minimization of input energy consumption, related
to ‖i‖;

and satisfying constraints (4) and (5). �

Remark (Zero velocity case). Note that when ω = 0, neither
τ̇min nor τ̇max depend on id since ψ(0) = 0. As a result, the
strategy is only applicable whenever considered mechanical
steady-state involves non zero angular velocity. y

IV. OPTIMAL FLUX PRELOADING

This section aims formalizing problem stated in previous
section into an optimization problem. For the sake of sim-
plicity, let us focus on maximization of the upper bound of τ̇ ,
since lower bound minimization can be handled in a similar
way.

A. Cost function

Define the following cost function J : R2→ R

J (id , iq) = α

(
‖i‖
Imax

)2

− (1−α)
τ̇max(ω,τ, id)
|ψ(ω)Imax|

(9)

parametrized by ω , τ and α ∈ [0,1], the latter being a
weighting variable compromising the two terms of J . To
understand the role played by those two terms, let us describe
the two extreme cases related boundary interval of α:
• α = 0 is related to pure ”flux preloading” which aims

maximizing upper limit of τ̇ (or minimizing its oppo-
site), regardless of energy consumption;

• α = 1 minimizes energy consumption, ignoring limits
of τ̇ .

Note that both terms of J have been normalized via
maximum norm of current vector Imax and ψ(ω).

This interpretation suggests that parameter α can be seen
as a ”responsivity” indicator of the controller: Large value
of α should be used whenever abrupt variation of τ# is
expected, requiring τ to grow very fast. The opposite case,
corresponding to selection of low value of α , indicates that
smooth variation of τ# is expected, so that one can stick
to energy consumption as the primary goal. In the case
of mechanical disturbance rejection, a (slowly) time-varying
signal can even be assigned to α and takes larger value when
environnement is hostile than when it is safe.

B. Optimization problem formulation

Besides current and voltage inequalities given by (4) and
(5), respectively, constraints that apply at the steady-state,
characterized by some angular velocity ω and torque τ , are
simply:

d
dt

ω = 0,
d
dt

i =
[

0
0

]
(10)

This gives rise to the following optimization problem:

min
id ,iq

(
α

i2d + i2q
I2
max

− (1−α)
τ̇max(ω, id)
|ψ(ω)Imax|

)
s.t. (11a)∥∥∥∥[id

iq

]∥∥∥∥≤ Imax (11b)∥∥∥∥[ 0
Kφ npω

]
−
[
−R npLω

−npLω −R

][
id
iq

]∥∥∥∥≤Vmax (11c)

iq =
2τ

3npKφ

(11d)

where {ω,τ,α} acts as parameters set. Indeed, (11b) is
nothing but current inequality (5) whereas (11c) corresponds
to (4) after having been translated in terms of i by zeroing
derivatives of i in (1). Equality (11d) readily derives from (3)
and is related to torque to be exerted in order to compensate
for frictional and external torques. Observe that this last
constraint (11d) induces that id is actually the only decision
variable.

C. Analytical solution of (11)

This subsection derives analytical solution for problem
(11) by way of geometrical considerations, rather than us-
ing Karush-Kuhn-Tucker optimality conditions. Specifically,
constraints of (11) are depicted in the (id , iq)-plan in hopes of
better highlighting physical limitations and, hence, provide
more informative discussion than “blind” construction of the
Lagrangian.

1) Current saturation (11b) with (11d): An example about
this saturation is depicted by Fig. 2. First note that (11d)
sets the value of iq so that optimal solution belongs to the
red horizontal line in (id , iq)-plan satisfying (11d). Then
remarking that (11b) corresponds to a circle in (id , iq)-
plan centered at the origin, combination of (11b) and (11d)
imposes that id takes value within a segment:

id ∈ [−isat, isat] (12)

where

isat =

√
I2
max−

(
2 f ω

3npKφ

)2

2) Voltage saturation (11c) with (11d): As far as (11c)
is concerned, let us first introduce the following change of
variable [

ĩd
ĩq

]
:=
[

id
iq

]
+κ(ω)

[
npωL

R

]
(13)

with
κ(ω) :=

Kφ npω

R2 +(npωL)2



Imax

Imax

(11b) and (11d)

−isat isat

i2d + i2q = I2max

iq

id

possible values for id under (11b) and (11d)

0

Fig. 2. Current limits (11b) in (id , iq)-plan

so that (11c) becomes∥∥∥∥−[ −R npLω

−npLω −R

][
ĩd
ĩq

]∥∥∥∥
=

√(
−npωLĩq +Rĩd

)2
+
(
npωLĩd +Rĩq

)2 ≤Vmax (14)

since

κ(ω)

[
−R npLω

−npLω −R

][
npωL

R

]
=−κ(ω)

[
0

(npLω)2 +R2

]
=−

[
0

Kφ npω

]
.

Expanding squared terms of (14) gives

ĩ2d + ĩ2q ≤
V 2

max

R2 +(npωL)2 , (15)

which corresponds, in (id , iq)-plan, to equation of the disk
centered at

(−npωLκ(ω),−Rκ(ω)) .

and of radius equals to

r(ω) :=
Vmax√

R2 +(npωL)2
.

Thus, combining (11c) and (11d) leads to

id ∈ [v−sat,v
+
sat] (16)

where

v−sat :=−

√
r2(ω)−

(
2 f ω

3npKφ

+Rκ(ω)

)2

−npωLκ(ω)

v+sat :=

√
r2(ω)−

(
2 f ω

3npKφ

+Rκ(ω)

)2

−npωLκ(ω).

As depicted by Fig. 3, v−sat and v+sat correspond to intersections
between the line resulting from (11d) and boundary of disk
(15).

(11c) and (11d)

v−sat

ĩ2d + ĩ2q = r(ω)2
iq

id

possible values for id under (11c) and (11d)
v+sat

0

Fig. 3. Voltage limits (11c) in (id , iq)-plan

3) Solution of the full problem: Combining (12) and (16)
allows to reduces (11b), (11c) and (11d) to the simple
relationship id ∈ [sat−,sat+] where

sat− := max{−isat,v−sat}, sat+ := min{isat,v+sat}.

as represented by Fig 4. As a result, optimal solution of (11)
is given by

id =

 sat−, i∗d < sat−

i∗d , sat−≤ i∗d ≤ sat+

sat−, i∗d > sat+
(17)

where i∗d refers to id coordinate of the (unique) optimal
solution1 of simplified version of (11) which gets rid of
inequality constraints (11b) and (11c):

i∗d := argmin
id

J (id ,
2τ

3npKφ

).

Expression of i∗d derives by zeroing derivative of J with
respect to id :

∂

∂ id
J (id ,

2τ

3npKφ

)= 0 ⇔ 2α
id

I2
max
−(1−α)

ψ(ω)

|ψ(ω)Imax|
= 0,

which leads to

i∗d =


α−1

2α
Imaxsign(ω) (α > 0)

+∞ (α = 0∧ω > 0)
−∞ (α = 0∧ω < 0)

(18)

When α = 0, cost function J (id ,2τ/(3npKφ )) is linear and,
hence, unbounded from below. This is why infinity value is
assigned to i∗d , so that either i∗d < sat− or i∗d > sat+ hold,
inducing, by (17), that optimal solution id lies on boundary
of the feasible set.

Remark (Unfeasible cases). Depending on ω and τ , problem
(11) might be unfeasible. Fig. 4 graphically shows that such a
situation occurs whenever the red line, related to (11d), lies
above or below intersection of the two disks representing
(11b) and (11c). In this case, inequality sat− > sat+ hold.
This gives a way to express critical value of (ω,τ) by solving
sat− = sat+, both terms depending on parameters (ω,τ). y

1Uniqueness indeed comes from strict convexity of J (·, iq) for any iq
and α > 0, coming from linearity of τ̇max with respect to id .



(11b) and (11c) and (11d)
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isat−isat
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ĩ2d + ĩ2q = r2(ω)

0

Fig. 4. Voltage and current limits (11b) and (11c) in (id , iq)-plan

V. SIMULATION RESULTS

Simulations are performed on open-loop model defined by
(1) and (2) in order to highlight benefit of flux preloading
for different values of ω , τ and α . Motor parameters are
presented in Table I.

TABLE I
SYSTEM PARAMETERS

Pole pairs, np 5
Stator resistance, R 0.55 Ω

Stator inductance, L 4e−4 H
PM flux linnkage, Kφ 0.0082 Wb
Viscous frictional coef., f 1.044e−4 kg.m.s−1

Inertia, J 2.2e−6 kg.m2

Voltage limitation, Vmax 12 V
Current limitation, Imax 3 A

For each simulation running through t = 0 to
t = t f = 100 µs, two distinct phases can be distinguished:

1) For t ∈ [0, td [, system is at rest, at a mechanical equilib-
rium characterized by given ω and τ;

2) For t ∈ [td , t f ], electrical inputs are set to values that
maximizes τ̇(t+d ) under constraints (4), that is vd = 0
and vq =Vmax (see Section III).

Input signals are constant on each phase and transition occurs
at td = 20 µs. During phase 1, steady-state is further defined
by selecting id as solution of optimization problem (11).
Different values of α are chosen in order to assess how this
parameter impacts both phases.

A. Relevance of simulation environment for closed-loop sys-
tem

In order to promote the simulation environment described
above, let us consider the following realistic scenario where
closed-loop strategy give rise to phases previously discussed.

Assume that velocity tracking is the foremost control goal.
This corresponds to make the relative velocity ω̃ , defined by

ω̃ := ω−ω
#,

as close to zero as possible. Here, ω#(·) refers to time-
varying reference to be tracked. Specifically, assume that
this signal is piecewise constant and change value at t = td ,
while the system is initially at rest, i.e., ω̃(t−) = 0. Suppose,

further, that mechanical controller delivering torque reference
τ# is a proportional negative feedback of the form −kω̃ with
k > 0.2 In this case, τ# will abruptly change value at t = td
since it holds

τ
#(t+d )−τ

#(t−d )=−k(ω̃(t+)−ω̃(t−))
(7)
= k(ω#(t+)−ω

#(t−)).

so that ω#(t+)> ω#(t−) implies τ#(t+d )> τ#(t−d ) indicating
that τ has to be increased to drive ω̃ back to zero. Fur-
thermore, if k(ω#(t+)−ω(t−)) is large, because ω# jump
is wide or k is selected to make the controller aggressive,
the best closed-loop system can do it to produce the largest
achievable control torque τ in the appropriate direction. This
corresponds to increase τ as fast as possible by setting
voltage inputs vd = 0 and vq = Vmax (see Section III). This
is nothing but the simulation environment considered in this
section.

B. Definition of phase 1
1) Case 1: ω = 100 rad.s−1 and τext = 0: The lack of

external torque induces that τ has only to compensate for
frictional torque at the equilibrium so that τ = f ω . This
allows to compute the following numerical values related
to phase 1:
• ω = 100 rad.s−1;
• τ = 0.0104 N.m;
• iq = 0.170 A;

• isat=2.995 A;
• v+sat=16.967 A;
• v−sat=-21.755 A.

which constraint id to satisfy −2.995 A≤ id ≤ 2.995 A.
2) Case 2: ω = 300 rad.s−1 and τext = 0: In order to

evaluate how rotor speed impacts the results, let us introduce
second simulation setup for which larger value of ω is
considered for phase 1. Proceeding as before, new numerical
values related to this phase are as follows:
• ω = 300 rad.s−1;
• τ =−0.031 N.m;
• iq = 0.51 A;

• isat=2.96 A;
• v+sat=-1.02 A;
• v−sat=-21.26 A;

which constrain id to satisfy −2.96 A≤ id ≤−1.02 A.
In contrast with the previous case, upper bound of id

is now induced by voltage saturation, i.e., sat+ =sat+v , and
imposes negative direct current.

For both cases, id is then computed as solution of problem
(11) (given by (17)) for different α . Results are provided by
second column of Table II.

TABLE II
SOLUTION OF (11) AND DISSIPATED POWER

ω = 100ω = 100ω = 100 rad.s−1−1−1

α id (A) P (W)
1.00 0.000 0.024
0.90 -0.333 0.115
0.75 -1.000 0.849
0.60 -2.000 3.324
0.50 - 2.995 7.425

ω = 300ω = 300ω = 300 rad.s−1−1−1

α id (A) P (W)
0.75 -1.02 1.07
0.70 -1.29 1.58
0.65 -1.62 2.37
0.60 -2.00 3.51
0.50 -2.96 7.43

Red values indicates that α is such that optimal value
belongs to boundary of the constraints, i.e., id equal either
sat− or sat+.

2Note that the same reasoning applies in the case where this controller
additionally include integral part.



Last column of Table II gives electrical power of resistive
losses in electrical circuit during phase 1 and defined as
follows

P(i) :=
3
2

R(i2d + i2q),

according to [11, eq. (14)]. Recall that α aims parameter-
izing trade-off between energy consumption (large α) and
accuracy of torque tracking (low α). This is in agreement
with results of Table II since P decreases as α takes larger
value.

C. Impacts of α on phase 2

For the two simulation cases considered, let us investigate
how phase 1, for which α serves as a parameter, impacts the
first instant of phase 2. To this end, chronographs of id and τ

are depicted on Fig. 5 and Fig. 6, corresponding to ω = 100
rad.s−1 and ω = 300 rad.s−1, respectively.

On each figures, id and τ curves are depicted using the
same color for a given α . It can be seen that the lower id is
(similarly the lower α is) in phase 1 (for t ∈ [0,20[ µs),
the faster τ increases. This conclusion is obviously valid
whenever selection of α does not induce a saturate value of
id , corresponding to red values in previous table. It confirms
that increasing α shift bounds of τ̇ in such a way that torque
tracking can be enhanced under voltage saturation limits.

Finally, observe that preloading strategy is much more
effective for large value of angular velocity. Indeed, as
suggested by remark on Section III, bounds on τ̇ are in-
fluence by id by way of term ψ(ω)id and ψ is a linear
function of its argument. As a result, large ω inducing strong
“controllability” on ψ(ω)id and, in turn, on τ̇min and τ̇max.
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Fig. 5. Chronographs of id(t) and τ(t) for ω = 100 rad.s−1 and τext = 0

VI. CONCLUSION

In this paper, it has been shown that torque limits of
PMSM might be shifted during steady-state in contemplation
of upcoming demanding transient. Numerical simulation
demonstrates that this flux preloading strategy effectively
enhance torque tracking. In order to compromise competing
control goals of preloading and energy consumption, an
optimization framework is proposed. It takes stator resistance
as well as current and voltage constraints into account.
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This paper has to be regarded as a proof of concept. Going
further would require to integrate flux preloading strategy
into a feedback controller computing torque reference online
and ensuring that current references are properly tracked,
despites unknown perturbations and badly estimated param-
eters.

Allowing signal α , parameterizing trade-off between en-
ergy consumption and responsivity, to be time-varying is also
promising as it gives a way to adapt on-line closed-loop
behavior to changing operating conditions.
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