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A Geometric Point of View on Parallel Interconnection of Buck
Converters

Jérémie Kreiss1, Jean-François Trégouët1, Romain Delpoux1, Jean-Yves Gauthier1 and Xuefang Lin-Shi1

Abstract— This paper tackles the current sharing problem
for interconnected power converters. Specifically, it considers a
single load, fed by buck converters via a common DC bus. In
such a case, it has been recently shown that dynamics related
to (i) voltage regulation and (ii) current distribution can be
completely separated without resorting to frequency separation
argument, which inevitably lowers achievable performance.
In this paper, the origin of this separation is investigated.
A comprehensive analysis is provided by relying on geomet-
ric techniques. Controller design example exploiting the new
structure is also proposed. Numerical simulations promote the
decomposition benefit and illustrate the geometric notions.

I. INTRODUCTION

Nowadays, connecting several power converters in parallel
to a single load becomes more and more common. Indeed, in
many applications such as Microgrids (see [1] for example)
or Low-voltage/High-current power supplies, this kind of
parallel interconnection of converters is used. Despite a larger
number of electrical components, this interconnection bene-
fits from several advantages such as increased reliability, ease
of maintenance and repair, improved thermal management,
reduced output ripple by interleaving phase of Pulse Width
Modulation (PWM), etc. Each of them being a consequence
of the possibility to freely distribute the load current on each
converter.

Several solutions for controlling such a system have
been proposed in the literature (see e.g. [2], [3], [4]). The
main challenge is to regulate output voltage as well as
current distribution, corresponding to power-flow into the
interconnection. Those two dynamics are coupled, though. To
cope with this difficulty, most of existing solutions propose
control design procedure relying on several SISO transfer
functions shaping. However, deriving conditions for closed-
loop stability in this framework seems rather involved, so
that frequency separation is often ultimately used as the key
argument, which inevitably lowers achievable performance
by imposing a slow current distribution dynamics as in [1].

In stark contrast with this approach, new solution has
been recently proposed in [5], resorting to both state and
input change of coordinates rather than frequency separation
to completely separate voltage and current distribution dy-
namics, hence offering tractability without sacrificing perfor-
mance. Arbitrary number of DC/DC buck converters having
distinct characteristics was considered.

In this paper, we propose to look at main result of [5] in a
different way. Specifically, by using geometric control point
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of view (see [6], [7], [8]), we aim to bring a fresh perspective
to the origin of the change of coordinates provided by [5].
Main contribution of this paper consists in recovering basis
vector of the new coordinates by exploiting properties of
output nulling controlled invariant subspaces and discussing
implication of this reformulation in terms of control design.

The paper is organized as follows: After defining the
control problem in Section II and introducing background
materials on geometric control theory in Section III, origin
of the change of coordinates is described in Section IV.
In Section V, benefits of this reformulation in terms of
control design is discussed. In Section VI, some simulations
are performed in order to illustrate the proposed approach.
Finally, conclusions are offered in Section VII.

Notation: The symbol Im stands for the identity matrix of
dimensions m×m. The null matrix of size m×n is denoted
by 0m×n. The vector (column matrix) of size m for which
every entry is 1 (0) is denoted by 1m (0m). The notation
xk refers to the k-th element of the vector x, with 1 being
the index of the first element. The operator ”diag” builds
diagonal matrix from entries of the input vector argument.

II. PROBLEM STATEMENT

We consider the electrical circuit shown in Fig. 1 which
corresponds to parallel interconnection of m buck converters
sharing a single capacitor and connected to a common
resistive load R. Converters are controlled via PWM where
dk refers to duty cycle of k-th converter. Index k belongs to
the following set:

K := {1, . . . ,m}

Voltage of DC bus is denoted by v and current in k-th
inductor Lk is referred to as ik. We gather those state variables
in the following vector:

Rm+1 3 x :=
[
i>v
]>

where i =
[
i1, . . . , im

]>. Magnitude of voltage sources Ek are
supposed to be known and constant. Capacitor C is connected
in parallel to the load R.

Throughout this paper, we assume that (i) switching
frequency fs is sufficiently large for the dynamics to be
approximated by an average continuous time model, (ii)
converters remain in continuous conduction mode and (iii)
electrical components and switches are ideals, i.e. parasitic
elements (resistances, losses) can be neglected.

Using Kirchoff’s laws and considering previous assump-
tions, dynamics of the circuit represented by Fig. 1 is
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Fig. 1. Electrical schematic

expressed by

∀k ∈K , Lk
dik
dt

=−v+Ekdk, (1a)

C
dv
dt

= σ − v
R
, (1b)

where
σ := ∑

k∈K
ik = 1>m i,

refers to the total current. Eq. (1a) refers to the dynamics
of output current produced by each converters whereas (1b)
describes the output voltage dynamics.

The main control goal on this system is to regulate the
bus voltage v to a given constant value vr. This leads us to
the following state-space representation:[

diag{L} 0
0 C

]
ẋ =

[
0 −1m

1>m −1/R

]
x+
[

diag{E}
0>m

]
d (2a)

z =
[
0>m 1

]
x (2b)

where z represents the regulated output.

Remark (Controllability of (2)). It can be easily checked
that system (2) is controllable for any R 6= 0. Indeed, the
first 2m−1 columns of controllability matrix C reads[

diag{E}diag{L}−1 0
0 E>diag{L}−1

]
.

Clearly this matrix has full row rank1 so that C inherits from
this property. y

III. BACKGROUND ON GEOMETRIC CONTROL THEORY

In the considered problem, m independent control dk are
used to impose asymptotic value of scalar signal z = v. This
suggests that degrees of freedom exist in the way this goal
is achieved. Indeed, (1b) shows that v depends on the total
current σ instead of each ik individually. As a result, the way

1For the problem to be meaningful, it holds Ek > 0 and Lk > 0 for all
k ∈K .

σ is distributed among converters may not impact z. This
intuition was the core of the reasoning behind the derivation
of the change of coordinates provided in [5].

In this paper, we use a different path to recover main result
of [5] and, thereby, provides deeper investigation on the
considered problem. Specifically, observe that the previous
remark is equivalent to saying that only a projection of the
state vector, that is [1ᵀm,0]x and [0ᵀm,1]x, affects the regulated
output z. To properly isolate part of the state space which
does not impact z, we refer to some geometric tools (see [6],
[7] and [8]) which are now introduced.

A. Output nulling controlled invariant subspaces

Consider the following LTI system:

Σ :

{
ẋ = Ax+Bu
z = Cx+Du

with state x ∈ Rn, control input u ∈ Rm and regulated
output z ∈ Rp. We denote by V ∗ the largest output-nulling
controlled invariant subspace of Σ, i.e., the largest subspace
V of Rn such that (see [6, Ch.5])[

A
C

]
V ⊂ (V ×0)+ Im

{[
B
D

]}
or, equivalently, the largest subspace V of Rn for which a
matrix F ∈ Rm×n exists such that

(A+BF)V ⊂ V ⊂ Ker{C+DF} (3)

It follows immediately from (3), that V ∗ has the properties
below:

1) “controlled invariance”: From the first inclusion of (3),
it follows that every solution of ẋ= (A+BF)x that starts
in V ∗ remains in V ∗ for all t ≥ 0;

2) “output nulling”: From the second inclusion of (3), it
comes out that every element x ∈ V ∗ ensure that z =
(C+DF)x is identically zero.

Any matrix F satisfying (3) is called a friend of V . When
state-feedback u = Fx with such a matrix is implemented,
resulting closed-loop system induces z(t) = 0,(t ≥ 0) for all
x(0) ∈ V ?.

Let R∗ be the so-called largest reachability subspace of
V ∗. When a LTI system contains some uncontrollable zeros,
R∗ corresponds to the controllable part of V ∗.

B. A matrix view point

Assume that there is no uncontrollable invariant zeros so
that R∗ = V ∗. For the sake of simplicity, we also consider
that D = 0.2 Let ρ := dimR∗. Choose T ∈ Rn×n as an
invertible matrix such that its ρ first columns span R∗.
Choose G =

[
Gα Gβ

]
∈Rm×m as an invertible matrix such

that Im{BGα}=R∗. Choose finally F ∈Rm×n as a friend of
R∗. Apply the regular feedback transformation u = Fx+Gũ
and the coordinate change ξ = T−1x to the system Σ in order
to obtain

ξ̇ = ĀF ξ + B̄ũ, z = C̄ξ (4)

2Those two assumptions are valid for system (2).



where ĀF = T−1(A + BF)T , B̄ = T−1BG and C̄ = CT .
According to [9], system (4) have the following structure[

ĀF B̄
C̄ 0

]
=

 Ā11 Ā12 B̄11 B̄12
0 Ā22 0 B̄22
0 C̄12 0 0

 (5)

where Ā11 ∈Rρ×ρ , Ā22 ∈R(n−ρ)×(n−ρ) and B̄11 ∈Rρ×ρ1 with
ρ1 being the number of columns of Gα or equivalently the
size of the input subspace for which Bu ∈R∗.

The upper triangular structure of (5) allows for a decom-
position into two subsystems. Let η ∈ Rρ and ϕ ∈ Rn−ρ be
parts of the state vector in the new coordinates such that:
ξ = [η> ϕ>]>. Similarly let ũα ∈Rρ1 and ũβ ∈Rm−ρ1 such
that ũ = [ũ>α ũ>β ]

>. We can write dynamics of (4) as follows

η̇ = Ā11η + B̄11ũα + Ā12ϕ + B̄12ũβ , (6a)

ϕ̇ = Ā22ϕ + B̄22ũβ , (6b)

z = C̄12ϕ. (6c)

Relation (6b) points out that the dynamics of ϕ is inde-
pendent of both η and ũα . From (6c), the output z inherits
from the property. Trajectories of ϕ are usually denoted as
the ”external dynamic” whereas ”internal dynamics” refers to
trajectories of η (see [8]). η is the part of the state for which
the output vanishes identically to zero. On (6a), we notice
that Ā12 and B̄12 matrices represent an unilateral coupling
from the external dynamic and input to the internal dynamic.
This discussion is summarized in Fig. 2.

(Ā22, B̄22) (Ā11, B̄11)
ũβ ∈ Rm−ρ1 ũα ∈ Rρ1

η ∈ Rρ

External dynamic Internal dynamic

ϕ ∈ Rn−ρ

(Ā12, B̄12)

Unilateral coupling

Fig. 2. New cascaded open loop model

IV. HOW TO SEPARATE VOLTAGE REGULATION FROM
CURRENT DISTRIBUTION?

The goal of the paper is to provide an in-depth analysis of
the main result of [5]: There exists a suitable change of vari-
able on both state (i,v) and input d that completely decouples
voltage dynamics from current distribution trajectories. This
section makes use of material of the previous section in order
to unveil how geometry of the considered problem provides
such a change of coordinates.

A. Main results of [5]

Let us select the new state variables (δ ,σ ,v) ∈ Rm−1×
R×R via δ

σ
v

= T−1
[

i
v

]
(7)

with

T−1 :=

Γ>m 0m−1
1>m 0
0>m 1

 ∈ R(m+1)×(m+1)

and where Γm ∈ Rm×(m−1) is defined as follows

Γm :=



1 0 · · · 0

−1 1
. . .

...

0 −1
. . . 0

...
. . . . . . 1

0 · · · 0 −1


=

[
Im−1
0T

m−1

]
−
[

0T
m−1

Im−1

]
. (8)

Note that T is indeed invertible and it can be easily verified
that this matrix reads

T =

[
Γm(Γ>mΓm)

−1 1
m 1m 0m

0>m−1 0 1

]
. (9)

Remark (Physical meaning of δ ). It is worth mentioning
that the new state variable σ , the total current, appears
explicitly. In addition to that, remark that new coordinates
δ admits a physical interpretation as it holds

δ = [(i1− i2),(i2− i3), . . . ,(im−1− im)]
>

so that this vector reflects the current distribution. y

Regarding the input, [5] introduces the following change
of coordinates

d = diag{E}−1 diag{L}
[
Γm(Γ>mΓm)

−1 1
m 1m

][
diag

{
∆∗(L−1)

}
diag{∆∗E} 0

0 Eeq/Leq

][
λ
µ

]
(10)

which decomposes d into λ ∈Rm−1 and µ ∈R. The follow-
ing constants have been used:

R+∗ 3 1/Leq := ∑
k

1/Lk, R+∗ 3 Eeq := min
k

Ek,

and the operator ∆ reads

Rp 3 y 7→ ∆y := Γ>p y, (11)

whereas3 ∆∗ is such that:

Rp 3 y 7→ (∆∗y)k :=
{

(∆y)k, (yk 6= yk+1)
1, (otherwise)

Resulting dynamics of the open loop in the new coordi-
nates is as follows:

d
dt

δ
σ
v

=

0 0 −∆(L−1)
0 0 −1/Leq
0 1/C −1/(RC)

δ
σ
v


+

Eδ L−1
δ 0

0 Eeq/Leq
0 0

[λ
µ

]
. (12)

3Because diag
{

∆∗(L−1)
}

diag{∆∗E} is always invertible, the use of ∆∗
instead of ∆ in (10) ensure that d 7→ λ is a bijection.



where the following notation have been introduced:

Eδ := diag{∆∗E} , Lδ := diag
{

∆∗(L−1)
}−1

.

Eq. (12) reveals that if dynamics of both v and σ are
coupled, they are completely disconnected from current
distribution dynamics, related to δ trajectories. Also note
inputs that µ and λ can be used to independently control
(σ ,v) and δ , respectively. Those last two remarks have major
consequences on control design (see Section V) and has to
be regarded as the main result of [5].

B. State-space decomposition
From Section III, computation of a basis of V ∗ gives a

way to isolate the largest region of the state-space which can
be made both invariant and invisible from the output z = v,
by means of a linear state feedback.

Since system (2) is controllable, V ∗ coincides with R∗.
Several techniques (see for instance [6, Sec. 4.3], [9] or [10])
allow us to compute a basis of R∗. By means of one of them,
we can prove that

R∗ = Im
{[

Γm
0>m

]}
, (13)

where Γm ∈ Rm×(m−1) is defined in (8). Note that R∗ is a
subspace of dimension m−1 since Γm is full column rank.

We complete the state-space by introducing the following
subspace4 of Rn:

Rn/R∗ = Im
{[

1m 0m
0 1

]}
.

since [Γm,1m] is invertible as Im{1m}= Ker
{

Γᵀ
m
}

.
Concatenation of the two basis matrices above gives rise

to a transformation matrix of the form

T1 :=
[

Γm 1m 0
0 0 1

]
.

whose first m−1 columns span R∗, whereas the remaining
part of T1 complete the state-space. It comes out that matrix
T given by (9) is nothing but T1T2 where block diagonal T2,
defined as

T2 := diag
{
(Γ>mΓm)

−1,

[ 1
m 0
0 1

]}
,

simply renormalizes T1 without mixing up basis vectors of
R∗ and Rn/R∗ in this matrix, i.e. preserving confinement
of basis vector R∗ into the first m−1 columns of T1T2. Note
that it is not necessary to add the matrix T2 because its only
purpose is to facilite the notations.

This discussion allows to interpret δ as coordinates related
to R∗ = V ∗ or, equivalently, coordinate of the largest part
of closed-loop state space (with some linear state-feedback)
which does not impact the output z = v. This observation is
physically meaningful as coordinates of the remaining part
of the state-space are (σ ,v), so that increasing dimension
of R∗ will necessarily affects those variables and, in turn,
affects voltage trajectory.

4A convenient way to obtain the state-space completion is to construct the
quotient space of Rn modulo R∗ defined in [7, Sec. 0.5] and characterized
by dimR∗+dimRn/R∗ = dimRn

C. Input-space decomposition

Let us now isolate part of the input space which affects
R∗ and, hence, does not impact voltage trajectory. To this
end, it suffices to (back) propagates R∗ into the input space
by computing B−1R∗ := {u ∈ Rm | Bu ∈R∗} as this set
(which is actually a vector space) contains input vectors that
induce state trajectories in R∗. Here B−1R∗ is trivial because
dimKer{B}= 0 and its expression reads

B−1R∗ = Im
{

diag{E}−1 diag{L}Γm

}
.

To complete the input-space, we construct the following
quotient space

Rm/B−1R∗ = Im
{

diag{E}−1 diag{L}1m

}
where diag

{
E−1

}
diag{L} has been incorporating into this

expression as a way to simplify resulting transformation
matrix of the input-space:

G1 := diag{E}−1 diag{L}
[
Γm 1m

]
. (14)

As for the decomposition of the state space, change of
coordinate of the input space provided in [5] and given by
(10) can be recovered by normalizing G1 via block diagonal
matrix G2 defined as

G2 := diag
{
(Γ>mΓm)

−1Eδ L−1
δ ,

Eeq

mLeq

}
,

so that d = G[λᵀ,µ]ᵀ with G = G1G2.

D. Expression of the dynamics in the new coordinates

Previous discussions can be sum up by expressing open-
loop (2) in the new coordinates:

0 0 −∆(L−1) Eδ L−1
δ 0

0 0 −1/Leq 0 Eeq/Leq
0 1/C −1/(RC) 0 0
0 0 1 0 0

 . (15)

Observe now that (15) admits structure of (5) and, hence,
its dynamics adopts cascaded form depicted by Fig. 2.
This observation results from the fact system (2) enjoys
the peculiar property that null matrix 0 is a friend of R∗.
Subsection III-B indeed predicts that (2) can be rewritten
as in (5) but only as a closed-loop system and for some
state-feedback F ∈ Rm×n. In fact, it comes out that, in
the new coordinates, open-loop system (2) already admits
the structure of (5) which means that null matrix F = 0
is already satisfactory for making R∗ an output nulling
invariant subspace.

The bottom line is the decomposition introduced in [5],
i.e., i and d replaced by (δ ,σ) and (λ ,µ) respectively,
follows from the construction of a basis of R∗ and, in turn,
of B−1R∗.



E. Trajectories δ (·) corresponds to the internal dynamics

Following the way (6) has been derived from (5), dynamics
induced by (15) can be decomposed into a cascaded form
where upper subsystem Σv defined by

Σv :


d
dt

[
σ
v

]
=

[
0 −1/Leq

1/C −1/(RC)

][
σ
v

]
+

[
Eeq/Leq

0

]
µ

z =
[
0 1
][σ

v

] (16)

feeds a lower one, denoted by Σδ and governs by

Σδ :
d
dt

δ =−∆(L−1)v+Eδ L−1
δ λ (17)

Fig. 3 depicts the interactions between those two blocks.
From the discussion carried out in subsection III-B, Σv

corresponds to the external dynamic, i.e., the one which
is visible from z, whereas Σδ is nothing but the internal
dynamics which lies into the output nulling subspace R∗ and,
in turn, is invisible from z. Fig. 2 highlights this last comment
by the fact the δ is a signal of the lower subsystem which
does not affect the output z = v of Σv, the higher block in
the cascade. Property that internal dynamic does not impact
the external one is thus recovered.

Σv Σδ
µ ∈ R λ ∈ Rm−1

δ ∈ Rm−1

External dynamic Internal dynamic

v ∈ R

−∆(L−1)

Unilateral coupling

Fig. 3. New cascaded open loop model for buck interconnection

V. CONTROL DESIGN

The new formulation allows for modular design. Indeed,
both voltage v and current repartition δ can be controlled
independently by the input µ and λ , respectively.

A. External control design

Interestingly, subsystem Σv related to external dynamics
corresponds to a single equivalent buck converter. As a result,
we can apply any methodology from the literature to control
it, including when R is unknown. However, the purpose being
to illustrate the paper results, we assume here that the load
value R is known for the sake of simplicity. Here, we choose
to compute a state-feedback such that the external controller
is expressed by:

Cv : µ =−Kv

([
σ
v

]
−
[

vr/R
vr

])
+

vr

EeqR

where Kv ∈ R1×2. This control law is nothing but a linear
state-feedback stabilizing the shifted origin (σ ,v)−(vr/R,vr)
and so that v converges to vr, provided that Kv makes state
matrix of closed-loop Σv with Cv Hurwitz.

B. Internal control design
The considered controller is expressed by

Cδ : λ =−Kδ (δr−δ )+Lδ E−1
δ ∆(L−1)v. (18)

This control law gets rid of voltage influence on the current
distribution by removing term ∆(L−1)v so that derivatives of
δ for closed-loop Σδ with Cδ reads

δ̇ =−Eδ L−1
δ Kδ (δr−δ ).

It follows that any matrix Kδ ∈ R(m−1)×(m−1) making
−Eδ L−1

δ Kδ Hurwitz, ensures that δ converges to some
prescribed current distribution vector δr.

Note that, if voltage regulation is the unique control goal,
Cδ can actually be arbitrarily selected. However, controller
(18) let the resulting closed-loop system enjoys internal
asymptotic stability as an additional property. Furthermore,
control law (18) can asymptotically drive δ to arbitrary
reference δr, so that not only voltage (and, in turn, total
current) but also current distribution among converters are
in hand. This gives a way to meet secondary objectives
related to power-flow among the interconnection. Along this
line, main result of [11] can be regarded as a control design
achieving overall power losses minimization at the steady-
state by means of appropriate selection of δr.

From this discussion, characterization of R∗ and B−1R∗

presented in this paper can also be viewed as a way to
highlight degrees of freedom that remains in the control
action once regulation of z is achieved: If inputs belonging to
B−1R∗ affect state trajectory, they do not impact regulated
output and, hence, can be used to meet additional control
goal. Important comments on this topic can be found in [12].

VI. SIMULATION RESULTS

In order to illustrate the state decomposition, simulations
on the system (2) have been performed on Matlab/Simulink
in the case of two converters. Note that using more than two
converters do not add any difficulty for the control design.

1) Model parameters and reference definition: We con-
sider two parallel converters (m = 2). Capacitor and resistor
numerical values are respectively C = 47 µF and R = 2 Ω.
Other physical parameter values are listed by Table I. Voltage
has to be regulated to vr = 12 V.

TABLE I
CONVERTERS PARAMETERS

k = 1 k = 2
Ek (V) 20 25

Lk (mH) 0.25 0.50

From previous discussions, full characterizing of the de-
sired steady-state requires to define δr = ir1− ir2 ∈R, where
ir1 and ir2 are current references of i1 and i2, respectively.
The following two distinct scenarios are successively con-
sidered:
(i) δr = 0 ⇔ ir1 = ir2 corresponding to uniform current

distribution;
(ii) δr = −1 ⇔ ir2 = ir1 + 1 leading to steady-state for

which converter 2 conveys more power than con-
verter 1.



2) Simulation results: Following guidelines provided by
Section V, controller gains are selected as follows:

Kv =
[
2×10−3 −36×10−3

]
, Kδ =−5. (19)

The two scenarios only differs on internal reference. As
a result, external trajectories should be the same. This can
be verified on Fig. 4 where voltage v and total current σ
chronographs are identical for (i) and (ii). In fact, current
repartition δ , corresponding to R∗ coordinates, is in the
direction of

[
1 −1 0

]> which is contained in Ker{C}
and, hence, invisible from z.
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Fig. 4. Results in (i1, i2) plan and chronographs of v(t), σ(t) and δ (t)

Figure 5 depicts closed-loop state trajectory for scenario
(ii) in the state space (i1, i2,v) using blue line. This trajectory
is then decomposed into its external component (cyan line)
lying in Rn/R∗ and its internal component (magenta line)
which belongs to R∗. To improve visual rendering, transla-
tion of R∗ that contains equilibrium point is depicted (orange
line) instead of R∗ itself.

VII. CONCLUSION

In this paper, a didactic methodology for separating volt-
age and current distribution dynamics has been proposed for
parallel interconnection of buck converters. The core is the
approach relied on characterization of controlled invariant
subspaces contained in the kernel of the output map. This
allows for change of both state and input coordinates giving
rise to cascaded system for which voltage trajectory becomes
independent from current distribution. Extensive discussion
on benefits of this reformulation in terms of control design
is also provided.

ℝ

Fig. 5. Simulation results in (i1, i2,v) plan for δr =−1 A
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