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Few vs many-body physics of an impurity immersed in a superfluid of spin 1/2 attractive fermions

In this article we investigate the properties of an impurity immersed in a superfluid of strongly correlated spin 1/2 fermions and we calculate the beyond-mean-field corrections to the energy of a weakly interacting impurity. We show that these corrections are divergent and have to be regularized by properly accounting for three-body physics in the problem and that our approach naturally provides a unifying framework for Bose and Fermi polaron physics.

The physics of an impurity immersed in a manybody ensemble is one of the simplest although non-trivial paradigms in many-body physics. One of the first examples of such a system is the polaron problem which was introduced by Landau and Pekar [START_REF] Landau | Effective mass of a polaron[END_REF] to describe the interaction of an electron with the phonons of a surrounding crystal. Likewise, in magnetic compounds Kondo's Effect arises from the interaction of magnetic impurities with the background Fermi sea [START_REF] Kondo | Resistance minimum in dilute magnetic alloys[END_REF][START_REF] Warren | Localized magnetic states in metals[END_REF]. Similar situations occur in nuclear physics, e.g. in neutron stars to interpret the interaction of a proton with a superfluid of neutrons [START_REF] Kutschera | Proton impurity in the neutron matter: A nuclear polaron problem[END_REF][START_REF] Zuo | 1s0 proton and neutron superfluidity in β-stable neutron star matter[END_REF], or in quantum chromodynamics where the so-called Polyakov loop describes the properties of a test color charge immersed in a hot gluonic medium [START_REF] Fukushima | Polyakov loop modeling for hot qcd[END_REF]. Finally, impurity problems can be used as prototypes for more complex many body-systems [START_REF] Levinsen | Universality of the unitary Fermi gas: a few-body perspective[END_REF], as illustrated by the dynamical mean-field theory [START_REF] Georges | Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions[END_REF].

The recent advent of strongly correlated quantum gases permitted by the control of interactions in these systems have opened a new research avenue for the physics of impurities [START_REF] Bloch | Many-body physics with ultracold gases[END_REF][START_REF] Zwerger | The BCS-BEC Crossover and the Unitary Fermi Gas[END_REF][START_REF] Chevy | Ultra-cold Polarized Fermi Gases[END_REF][START_REF] Massignan | Polarons, dressed molecules and itinerant ferromagnetism in ultracold Fermi gases[END_REF]. Experiments on strongly polarized Fermi gases [START_REF] Zwierlein | Fermionic superfluidity with imbalanced spin populations[END_REF][START_REF] Partridge | Pairing and phase separation in a polarized Fermi gas[END_REF][START_REF] Nascimbène | Collective Oscillations of an Imbalanced Fermi Gas: Axial Compression Modes and Polaron Effective Mass[END_REF] were interpreted by the introduction of the so-called Fermi polarons, a quasi-particle describing the properties of an impurity immersed in an ensemble of spin-polarized fermions and dressed by a cloud of particle-hole excitations of the surrounding Fermi Sea [START_REF] Chevy | Universal phase diagram of a strongly interacting Fermi gas with unbalanced spin populations[END_REF][START_REF] Lobo | Normal state of a polarized Fermi gas at unitarity[END_REF][START_REF] Prokof | Fermi-polaron problem: Diagrammatic monte carlo method for divergent signalternating series[END_REF]. More recently, the physics of Bose polarons (impurities immersed in a Bose-Einstein condensate) was explored using radio-frequency spectroscopy [START_REF] Nils B Jørgensen | Observation of attractive and repulsive polarons in a Bose-Einstein condensate[END_REF][START_REF] Hu | Bose polarons in the strongly interacting regime[END_REF]. Contrary to the Fermi polaron, this system is subject to an Efimov effect [START_REF] Efimov | Energy levels of three resonantly interacting particles[END_REF] and three-body interactions play an important role in the strongly correlated regime [START_REF] Thomas | Efimov states of heavy impurities in a Bose-Einstein condensate[END_REF][START_REF] Jesper Levinsen | Impurity in a Bose-Einstein condensate and the Efimov effect[END_REF]. Finally recent experiments on dual superfluids have raised the question of the behaviour of an impurity immersed in a superfluid of spin 1/2 fermions [START_REF] Ferrier-Barbut | A mixture of Bose and Fermi superfluids[END_REF][START_REF] Roy | Two-element mixture of Bose and Fermi superfluids[END_REF][START_REF] Yao | Observation of coupled vortex lattices in a mass-imbalance Bose and Fermi superfluid mixture[END_REF]. In these experiments, the polaron was weakly coupled to the background superfluid and the interaction could be accurately modeled within mean-field approximation. Further theoretical works explored the strongly coupled regime using mean-field theory to describe the fermionic superfluid [START_REF] Nishida | Polaronic atom-trimer continuity in three-component Fermi gases[END_REF][START_REF] Yi | Polarons in ultracold Fermi superfluids[END_REF]. They highlighted the role of Efimov physics in the phase diagram of the system and as a consequence some results were plagued by unphysical ultraviolet divergences. In this letter we address this problem without making any assumption on the properties of the superfluid component. We calculate the first beyond-mean-field corrections to the energy of the polaron and we show that the logarithmic divergence arising from three-body physics can be cured within an effective field theory approach introduced previously in the study of beyond mean-field corrections in Bose gases [START_REF] Braaten | Quantum corrections to the energy density of a homogeneous Bose gas[END_REF][START_REF] Eric Braaten | Dilute Bose-Einstein condensate with large scattering length[END_REF].

Qualitatively speaking, the phase diagram of the impurity can be decomposed in three different regions when the strength of the impurity/fermion interaction is varied (see Fig. 1). For a weak attraction, the impurity can be described as a polaronic quasi-particle. When attraction is increased, the impurity binds to an existing Cooper pair and the polaronic branch connects to the resonant Efimov trimer states. Earlier variational calculations suggest that the transition between the polaron and trimeron states is a smooth crossover [START_REF] Nishida | Polaronic atom-trimer continuity in three-component Fermi gases[END_REF][START_REF] Yi | Polarons in ultracold Fermi superfluids[END_REF]. Finally, in the strongly attractive regime, impurity/fermion attraction overcomes Cooper pairing leading to a dimeron state describing an impurity/fermion dimer immersed in a fermionic superfluid medium.

Since the size of the ground-state Efimov trimer is typically much smaller than the interparticle spacing, its binding energy is much larger than the Fermi energy of the fermionic superfluid. As a consequence, except when the Efimov trimer becomes resonant with the atomic continuum, the internal structure of the trimer is only weakly affected by the many-body environment (see [31] for a semi quantitative description of the phase diagram).

Since the trimeron and dimeron regimes are dominated by few-body physics, we focus on the energy of the polaronic branch that is more strongly affected by the presence of the superfluid, especially in the regime a R e , where R e is the resonance range [32]. When the fermion-fermion interaction is varied, the polaronic state evolves from a Fermi polaron when fermions are weakly interacting, to a Bose polaron in the BEC regime where fermions can be described as a Bose-Einstein condensate of molecules.

Consider thus an impurity of mass m i immersed in a bath of spin 1/2 fermions of mass m f . We write the Hamiltonian of the system as Ĥ = Ĥimp + Ĥmb + Ĥint , where Ĥimp (resp. Ĥmb ) is the Hamiltonian of the impurity (resp. many-body background) alone, and Ĥint describes the interaction between the two subsystems. We label the eigenstates of the impurity by its momentum q and its eigenvalues are ε (i) q = 2 q 2 /2m i . The eigenstates and eigenvalues of Ĥmb are denoted |α and E α , where by definition α = 0 corresponds to the ground state of the fermionic superfluid.

Assuming for simplicity an identical contact interaction between the impurity and each spin component of the many-body ensemble, we write

Ĥint = g 0 σ=↑,↓ d 3 r ψ † σ (r) ψσ (r) φ † (r) φ(r), (1) 
where ψσ and φ are the field operators for spin σ particles of the many-body ensemble and of the impurity respectively. In this expression, the bare and physical coupling constants g 0 and g = 2π 2 a /m r , where m r is the impurity-fermion reduced mass, are related through

1 g 0 = 1 g - 1 Ω k<Λ 1 ε (r) k , ( 2 
)
where Ω is the quantization volume, Λ is some ultraviolet cutoff and

(r)

k = 2 k 2 /2m r .
Assuming that the contact interaction can be treated perturbatively, we have up to second order

g 0 = g + g 2 Ω k<Λ 1 ε (r) k + o(g 2 ). (3) 
Calculating the energy ∆E of the polaron to that same order, we have

∆E pert = g n + g 2 n Ω q 1 ε (r) q -χ(q, ε (i) q ) . ( 4 
)
where n is the particle density in the many-body medium and

χ(q, E) = 1 N α | α|ρ -q |0 | 2 E α -E 0 + E , (5) 
with ρq = σ d 3 r ψ † σ (r) ψσ (r)e iq•r . In the sum, the presence of the two terms allows for a UV cancellation of their 1/q 2 asymptotic behaviours. Indeed, for large q the eigenstates of the many-body Hamiltonian excited by the translation operator ρq correspond to free-particle excitations of momentum q and energy ε (f) q = 2 q 2 /2m f . We therefore have

χ(q, E) S(q) ε (f) q + E , (6) 
where S(q) = α | α|ρ q |0 | 2 /N is the static structure factor of the many-body system. At large momenta, we have S(q) = 1 + C 2 /4N q + ..., where C 2 is Tan's contact parameter of the fermionic system and characterizes its short-range two-body correlations [START_REF] Hu | Static structure factor of a strongly correlated Fermi gas at large momenta[END_REF][START_REF] Tan | Large momentum part of a strongly correlated Fermi gas[END_REF]. From this scaling we see that the UV-divergent 1/q 2 contributions in Eq. ( 4) cancel out. However, the next-to-leading order term in S(q) suggests that this cancellation is not sufficient to regularize the sum that is still log-divergent. This logarithmic behaviour is supported by a directed calculation of χ using BCS mean-field theory [31] and is characteristic of a singularity in the three-body problem for particles with contact interactions that was pointed out first by Wu for bosons [START_REF] Wu | Ground state of a Bose system of hard spheres[END_REF] and was more recently investigated in the context of nuclear physics [START_REF] Kutschera | Proton impurity in the neutron matter: A nuclear polaron problem[END_REF] or cold atoms (see for instance [START_REF] Yi | Polarons in ultracold Fermi superfluids[END_REF][START_REF] Braaten | Quantum corrections to the energy density of a homogeneous Bose gas[END_REF][START_REF] Tan | Three-boson problem at low energy and implications for dilute Bose-Einstein condensates[END_REF][START_REF] Hammer | Three-body forces: From cold atoms to nuclei[END_REF]).

To get a better insight on the origin of this singularity, we analyze first the scattering of an impurity with a pair of free fermions. Within Faddeev's formalism [START_REF] Ljudvig | Quantum scattering theory for several particle systems[END_REF], the corresponding three-body T -matrix is written as a sum of three contributions, Ti=1,2,3 solutions of the set of coupled equations

    T1 T2 T3     =     t1 t2 t3     +     0 t1 t1 t2 0 t2 t3 t3 0     Ĝ0     T1 T2 T3     (7) 
where Ĝ0 = 1/(z -Ĥ0 ) is the free resolvant operator and ti is the two-body T -matrix leaving particle i unaffected.

The solutions of this equation can be expressed as a series of diagrams where a given two-body t-matrix never acts twice in a row and Ti corresponds to the sum of all diagrams finishing by ti . Assuming that the impurity is labeled by the index i = 3 and that its interaction with the other two atoms (i = 1, 2) is weak, we can expand the solutions of Faddeev's equation with t1 and t2 . To be consistent with the polaron-energy calculation outlined in previous section, we proceed up to second order in t1,2 .

When the full 2-body T -matrices t 1,2 = g /Ω/(1 + ia k + a R e k 2 ) are used, all terms of the expansion are finite. However, when treating them within second order Born's approximation (i.e. taking simply t 1,2 = g (1-ika )/Ω and stopping the expansion of the T -matrix at second order in a'), some diagrams are logarithmically divergent. The singular diagrams are listed in Fig. 2: they all start and end with t 3 and their contribution can be written as (t 3 ) out Γ(t 3 ) in . In Born's approximation the sums over inner momenta are divergent and the integrals are therefore dominated by the large-k behaviour of t 3 and G 0 . After a straightforward calculation, we obtain that

Γ Born ∼ Λ→∞ m 3 f 6 g 2 κ(η = m i /m f ) ln(Λ) (8) 
with

κ(η) = η 3 (η + 2) 2π 3 (η + 1) 2 - η 2π 3 arctan 1 η(η + 2) - 4 π 3 η η + 2 arctan η η + 2 2 . ( 9 
)
In the case of equal mass particles (η = 1), we obtain for instance κ(1) =

√ 3 8π 3 -1 12π 2 -1 9π √ 3
-0.0219. Since Γ is finite when the full two-body physics is taken into account we introduce a three-body characteristic length R 3 such that

Γ Born -Γ Faddeev = Λ→∞ m 3 f 6 g 2 κ(η) ln(ΛR 3 ) + o(1), (10) 
where Γ Faddeev corresponds to the value of Γ obtained by using the full two-body T-matrices t 1,2 to calculate the first three diagrams of Fig. [START_REF] Kondo | Resistance minimum in dilute magnetic alloys[END_REF]. In this perturbative approach, R 3 /a depends on η and R e /a and can be computed numerically [31]. Since we work in a regime where the polaron is the ground state and Efimov trimers are absent, we do not have to use non-perturbative approaches compatible with Efimov physics and leading to a log-periodic dependence of Γ [START_REF] Paulo F Bedaque | Renormalization of the three-body system with short-range interactions[END_REF]. Following the effective field theory approach discussed in [START_REF] Hammer | Three-body forces: From cold atoms to nuclei[END_REF], divergences plaguing Born's expansion can be cured by introducing an explicit three-body interaction described by a Hamiltonian

Ĥ3b = g 3 (Λ) d 3 r ψ † ↑ (r) ψ † ↓ (r) φ † (r) φ(r) ψ↓ (r) ψ↑ (r) (11)
The contribution of this three-body interaction to Γ corresponds to the fourth diagram of Fig. 2 and yields the following expression

Γ 3b = g 3 (Λ) 1 Ω k<Λ 1 2ε (f) k 2 . ( 12 
)
Using this three-body interaction to cure Born's approximation, we must have Γ Born + Γ 3b = Γ Faddeev , hence the following expression for the three-body coupling constant

g 3 (Λ) 1 Ω k<Λ 1 2ε (f) k 2 = - m 3 f 6 g 2 κ(η) ln(ΛR 3 ) (13)
The introduction of the three-body Hamiltonian implies a new contribution to the second-order energy shift [START_REF] Kutschera | Proton impurity in the neutron matter: A nuclear polaron problem[END_REF].

This new term amounts to

∆E 3b = g 3 (Λ) 0| ψ † ↑ (r) ψ † ↓ (r) ψ↓ (r) ψ↑ (r)|0 .
Using Hellman-Feynman's theorem, we can recast this correction as

∆E 3b = g 3 (Λ) ∂E 0 ∂g 0 , (14) 
where E 0 is as before the energy of the ground state of the fermionic ensemble and g 0 is the bare fermion-fermion coupling constant. Expressing g 0 using the physical coupling constant g = 4π 2 a/m f yields

∆E 3b = - g 3 (Λ) g 2 0 ∂E 0 ∂1/g (15) ∼ Λ→∞ -g 3 (Λ) 1 Ω k<Λ 1 2ε (f) k 2 ∂E 0 ∂1/g , (16) 
where we have used the fact that for large Λ, 1/g 0 diverges as

-1 Ω 1 2ε (f) k
. Using Eq. ( 13) as well as Tan's adiabatic sweep theorem, we then obtain after a straightforward calculation

∆E 3b = -g 2 κ(η) m f C 2 2 Ω ln(ΛR 3 ). ( 17 
)
Adding this contribution to Eq. ( 4), we obtain for the polaron energy ∆E = ∆E pert + ∆E 3b :

∆E = g n 1+k F a F 1 k F a -2π m f m r κ(η) a C 2 N ln(k F R 3 ) + ... , (18) 
with

F 1 k F a = Λ→∞ 2π k F 2 m r q<Λ d 3 q (2π) 3 1 ε (r) q -χ(q, ε (i) q ) - m f m r κ(η) C 2 N ln(Λ/k F ) (19) 
Eq. ( 18) and ( 19) are the main results of this paper. They show that the second order correction of the polaron energy is the sum of two terms: a regular term characterized by the function F defined by Eq. ( 18), as well as a second term, characterized by a logarithmic singularity and proportional to the fermionic contact parameter.

The function F is in general hard to compute exactly but we can obtain its exact asymptotic expression in the BEC and BCS limits. When the fermions of the background ensemble are weakly interacting, we must recover the Fermi-polaron problem. For the mass-balanced case η = 1, we obtain F (-∞) = 3/2π. In the strongly attractive limit, the fermionic ensemble behaves as a weakly interacting Bose-Einstein condensate of dimers and the polaron energy takes a general mean-field form g ad n/2, where g ad is the impurity-dimer s-wave coupling constant and n/2 is the dimer density. Since in the BEC limit, C 2 /N = 4π/a, identifying Eq. ( 18) with the mean-field impurity-dimer interaction implies that

F 1 k F a = a→0 + 8π 2 κ(η) m f m r ln (k F a) k F a + ... (20) 
and

g ad = 2g 1 -8π 2 κ(η) m f m r a a (ln(R 3 /a) + C ad ) ... , (21) 
where the constant C ad can be obtained from the direct analysis of the atom-dimer scattering problem [31].

Eq. ( 18) can be used to benchmark approximation schemes used to address this problem. Using a purely BCS approach yields a similar form but with a value of κ where the third term of Eq. ( 9) is missing [31]. This discrepancy is easily understandable. Indeed, this term corresponds to the third diagram of Fig. [START_REF] Kondo | Resistance minimum in dilute magnetic alloys[END_REF] where the two fermions interact between their interaction with the impurity, which contradicts the BCS assumption of non-interacting Bogoliubov excitations. For η = 1, κ/κ MF 15, showing that BCS approximation underestimates strongly beyond mean-field contributions. This contribution was recovered in [START_REF] Yi | Polarons in ultracold Fermi superfluids[END_REF] whose numerical results agree with Eq. 18 albeit with a mean-field value for the contact parameter C 2 .

Eq. ( 21) can also be compared to the numerical calculation of the atom-dimer scattering length reported in [START_REF] Zhang | Calibration of the interaction energy between Bose and Fermi superfluids[END_REF]. The comparison between numerics and our analytical result for experimentally relevant mass ratios is shown in Fig. (3) which demonstrates a very good agreement between the two approaches [41]. Note also that Eq. ( 21) clarifies the range of validity of the perturbative expansion. In addition to the diluteness assumption k F |a | 1, the validity of Born's expansion requires the additional condition |a |/a 1 when a > 0. Finally, the convergence of Eq. ( 19) entails that χ must obey the large momentum asymptotic behavior

χ(q, ε (i) q ) = q→∞ 1 ε (r) q 1 -π 2 κ(η) m f m r C 2 N q + ... (22) 
For m i → ∞, ε

= 0, we have κ(∞) = -1/4π and we recover the asymptotic result derived in [START_REF] Hofmann | Deep inelastic scattering on ultracold gases[END_REF] using operator product expansion. Note that mean-field theory predicts κ MF (∞) = 0, and therefore disagrees with this independent result.

In conclusion, we have shown that by encapsulating three-body interactions within a field theoretical approach, we could obtain an expression for the beyond mean-field corrections of the polaron energy unifying within the same framework the Fermi and Bose polarons problems, as well as the scattering properties of an atom with a halo dimer. Using the mean-field estimate for F at unitarity, we see that the second-order correction to the polaron energy (Eq. ( 18)) is dominated by the logarithmic contribution. In the case of the polaron oscillation experiments reported in [START_REF] Ferrier-Barbut | A mixture of Bose and Fermi superfluids[END_REF], the predicted correction amounts to a 5% shift of the oscillation frequency. Although small, this correction is within the reach of current experimental capabilities and shows that the results presented in this work are necessary to achieve the percent-level agreement between experiment and theory targeted by state of the art precision quantum manybody physics.
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THREE-BODY PHASE-DIAGRAM

In this section, we present an analysis of the threebody problem to determine the stability domain of the Efimov trimers with respect to the free-particle problem and atom-dimer continuum. Specifically, the approach is based on a model with a resonance range R e . As a consequence, the boundaries of the stability diagram are semi-quantitative and should depend on the model one considers, the goal of this section being also pedagogic.

Efimov ground state

The Efimov spectrum can be obtained without further regularization of the three-body problem using a twochannel model described by the hamiltonian [

1, 2] Ĥ = k,σ k â † k,σ âk,σ + K,σ (E σ,0 + k /2) b † K,σ bK,σ + 2 2m 2π R e K,k,k<Λ σ1 =σ2 =σ3
( b † K,σ1 âk+K/2σ2 â-k+K/2,σ3 + H.c.).

(S1)

In this expression, σ ∈ {1, 2, 3} labels the three atomic species, âk,σ is the atomic (open channel) annihilation operator for species σ, bK,σ the molecular (closed channel) annihilation operator describing dimers not involving spin σ atoms, and R e the effective range of the potential. For the sake of simplicity, we assume that all three atomic species have the same mass m and that the atom-dimer coupling is the same for all three species. The atom-atom scattering lengths are nevertheless controlled independently by the bare molecular binding energies E σ,0 .

The solutions of the two-body problem shows that the scattering length a σ between two atoms (σ 1 , σ 2 ) = σ is given by

1 a σ = 2 π Λ - R e mE σ,0 2 , ( S2 
)
where Λ is a UV momentum cut-off. The three-body bound states are described by the Ansatz

|ψ = k1,k2 β(k 1 , k 2 )â † k1,1 â † k2,2 â † -k1-k2,3 |0 + σ,k α σ (k) k â † -k,σ b † k,σ |0 . ( S3 
)
where |0 is the vacuum. The trimer energy E 3 = -2 κ 2 /m is then obtained by solving the set of three equations

1 + 3p 2 /4 + κR e (1 + 3p 2 /4) - 1 κa σ α σ (p) = 1 π ∞ 0 dq ln p 2 + q 2 + pq + 1 p 2 + q 2 -pq + 1   σ =σ α σ (q)   , (S4) 

Frontiers of the stability diagram

We explain here how the different domains of the stability diagram of Fig. S1 are obtained.

In experiments, R e is small compared to the interparticle distance, therefore we have R e k F 1, where the Fermi wavevector k F is defined by n ≡ k 3 F /(3π 2 ). On the BCS side of the BEC-BCS crossover of the superfluid, we have 1/(k F a) < 0 and 1/|k F a| ∼ 1 and therefore |R e /a| = R e k F /|k F a| 1. For the same reason, the BEC side corresponds to 1/(k F a) ∼ 1 and we have R e /a = R e k F /(k F a)

1. On the graph of Fig. S1, the crossover region of the superfluid is therefore concentrated in a narrow region around the y-axis. The consequence of this separation of scales is that, except in this narrow region, for R e /a > 0, the superfluid is made of weakly interacting tightly bound dimers, while for R e /a < 0, it is made of extremely loose Cooper pairs corresponding essentially to non-interacting fermions (except for superfluid properties).

Concerning the impurity-fermion interaction regime, we have similarly (k F a ) = (R e /a ) -1 (k F R e ), which is a small dimensionless number for R e /a not too small. Therefore, except in a narrow region around the x-axis in Fig. S1, we have k F |a | 1. In the (R e /a < 0, R e /a < 0) quadrant (Fermi polaron sector), the energy of the impurity immersed in the superfluid is given by E SF + g n, where E SF is the ground state energy of the superfluid without the impurity. In the Bose-polaron sector (R e /a < 0, R e /a > 0), the energy of the polaron in the superfluid is given by E SF + g b-f n, where g b-f is the coupling constant between the impurity and a dimer of the superfluid.

In the (R e /a > 0, R e /a < 0) quadrant the energy of the dimeron in the superfluid is E SF -2µ f +E 2 +g b-f n+ gn. The -2µ f contribution originates from Cooper pair breaking. One of the fermions of the pair binds to the impurity to form a dimer of energy E 2 while the second remains unbound and contributes to the mean-field term gn. For R e /a < 0, µ f ≈ 2 k 2 F /(2m) is the chemical potential of an ideal gas. The dimer energy is given by

[3] E 2 = - 2 m κ 2 2 , with R e κ 2 = 2 Re a 1 + 1 + 4 Re a -1
.

For (R e /a > 0), and (R e /a > 0) , the energy of the dimeron in the superfluid is E SF -E 2 + E 2 + g b-b n + gn where we have substracted the dimer energy E 2 lost by the binding of a fermion of the bath with the impurity. The expression for E 2 is obtained from the expression of E 2 by replacing a by a. g b-b is the coupling constant characterizing the interaction between the dimeron and the dimers of the superfluid.

Finally, the energy of the trimeron in the superfluid is given by E SF +E 3 -2µ f +g t-f n. E 3 is the trimer energy (a 3-body bound state), g t-f is a trimer-fermion coupling constant, and -2µ f is the energy of the two fermions of the trimer coming from the superfluid bath.

Depending on the parameters, we determine which state has the lowest energy. In this limit where k F tends to zero, all the terms containing n or k F vanish. All these energies, minus the neglected mean-field terms, are gathered in Fig. S1. We then consider four cases (corresponding to the four numbers displayed in Fig. S1):

1. Fermi polaron (R e /a < 0) vs trimeron. The frontier is obtained by solving E 3 (R e , a, a ) = 0. We end this section by noticing that the Fermi polarontrimeron frontier approaches the x-axis for Re/a → -∞. In this region, the calculation is no more controlled (k F is not negligible anymore). However, since the polaron/trimeron is a crossover [START_REF] Kutschera | Proton impurity in the neutron matter: A nuclear polaron problem[END_REF], the transition line cannot be defined precisely anyway.

Moreover we note that for a = a , our results agree with the calculations reported in [START_REF] Warren | Localized magnetic states in metals[END_REF] for three-component color Fermi gases.

BCS THEORY

This section presents a derivation of the results presented in the paper within the simplified framework of BCS mean-field theory. We first determine χ, then the F function and finally we compare it to the exact expressions presented in this paper.

Since these results will only confirm the general behaviour but will not yield quantitative predictions, we restrain our calculations to the simplest case m f = m i = m so for η = 1, a ratio close to the mass ratio we have with our Lithium experiment (7/6).

Mean-field compressibility

As described in the main text, second order perturbation theory relates the polaron energy shift to the fermionic superfluid dynamical compressibility χ(q, E) defined by

χ(q, E) = 1 N α | α|ρ -q |0 | 2 E α -E 0 + E . (S5)
Here, we derive the expression of χ using BCS theory where the fermionic medium is described by the meanfield Hamiltonian

Ĥmb = k,σ ξ k ĉ † kσ ĉkσ + ∆ * k ĉk↑ ĉ-k↓ + h.c. (S6) with ξ k = (f)
kµ, µ is the chemical potential, and the gap ∆ is defined by

∆ = g 0 Ω k ĉ-k↓ ĉk↑ . ( S7 
)
The Hamiltonian is diagonalized by introducing Bogoliubov operators γk± defined by:

ĉk↑ = u k γk+ -v k γ-k- (S8) ĉk↓ = u k γk-+ v k γ-k+ , (S9) 
with

u k = 1 2 (1 + ξ k E k ), v k = 1 2 (1 - ξ k E k ) (S10)
and

E k = ξ 2 k + |∆| 2 .
To derive the BCS expression of the compressibility, we express the matrix elements α|ρ -q |0 = σ α|ĉ † k-q,σ ĉk,σ |0 using the Bogoliubov creation and annihilation operators. After a straightforward calculation, we finally obtain

χ MF (q, E) = 1 N k 2u 2 k-q v 2 k + 2u k v k u k-q v k-q E k + E k-q + E , (S11) 
where we have used the fact that the excited states |α correspond to pairs of Bogoliubov excitations, hence E α -

E 0 = E k + E k-q .
We use the notation MF to signify that this result is only valid in BCS theory, a mean-field theory.

Perturbative calculation of the energy

In order to calculate the polaron energy shift, we need to consider the perturbative development we obtained in the article, adapted to BCS theory:

∆E MF pert = g n + g 2 n Ω q 1 ε (r) q -χ MF (q, ε (i) q )
(S12) After turning sums to integrals and performing the angular integrations we can write this expression as:

∆E MF pert = g n + g 2 8π 4 m 2 k 2 dk q 2 dq 4v 2 k q 2 - 2u 2 q v k 2 + 2u k v k u q v q kq ln E k + E q + 2 (k+q) 2 2m E k + E q + 2 (k-q) 2 2m (S13)
To study the behaviour of these integrals for high k, we perform the variable change

k → u = (k/k F )/ |∆|/E F , q → v = (q/k F )/ |∆|/E F and we get ∆E MF pert = g n 1 + k F a 3 2π ∆ E F 2 I(Λ/k F ) (S14)
with I corresponding to the integral left to calculate in Eq. (S13) that depends on the cut-off Λ and also on the ratio µ/|∆|. In the limit u, v 1, we can simplify greatly the expression of the integral I.

First, we can see that the terms u 2 k and v 2 k can be rewritten, in this limit:

u 2 k ∼ 1, v 2 k ∼ 1 4 |∆| 2 ξ 2 k → 1 4u 4 (S15)
From this last expression, we can also get Tan's contact for two fermions C 2 in BCS theory. Indeed, using the property of momentum distribution [START_REF] Zuo | 1s0 proton and neutron superfluidity in β-stable neutron star matter[END_REF]:

n ↑ (k) ∼ k→∞ n ↓ (k) ∼ k→∞ C 2 k 4 (S16)
and knowing that in BCS theory we have n

(k) = n ↑ (k) + n ↓ (k) = 2v 2
k Ω, we see that we have the right dependence for the momentum distribution and we can extract the contact

C 2 N = 3π 2 4 ∆ E F 2 k F . (S17) 
The integral can then be simplified in this limit as

I(Λ/k F ) = du u dv u 1- 1 2 v u + u v ln 1 + v/u + (v/u) 2 1 -v/u + (v/u) 2 . (S18)
The second integral (over v/u) converges towards 2π 4 κ MF and the first integral (over u) gives the logarithmic divergence. We can finally write:

I = 2π 4 κ MF (ln(Λ/k F ) + ...) (S19) 
with κ MF :

κ MF = √ 3 8π 3 - 1 12π 2 .
(S20)

In the main text we found:

κ(1) = √ 3 8π 3 - 1 12π 2 - 1 9π √ 3 (S21)
The two results are very similar except for the last term of κ(1) which does not appear in the mean-field approach because BCS theory does not account for interactions between excitations of the superfluid. This missing term is actually pretty important since it is the leading term in κ, therefore we get a ratio κ(1)/κ MF 15.

The F function

We find out analytically that there is again a logarithmic divergence of this second order term, consistently with what we stated before. By combining equations (S14), (S17) and (S19), we get the expression of the energy calculated up to second order in perturbation using BCS theory :

∆E MF pert = g n 1 + k F a F MF 1 k F a + 4πκ MF a C 2 N ln(Λ/k F ) (S22)
with F MF a function that can be computed numerically throughout the BEC-BCS crossover by calculating the difference between the exact expression of the integral I defined in Eq. (S13) and the logarithmic term we obtained in Eq. (S19). These numerical calculations show that this function does not depend on the cut-off but only on the parameter 1/(k F a). Then, by introducing a similar renormalization with a three-body term, we can rewrite the energy as:

∆E MF = g n 1 + k F a F MF 1 k F a -4πκ MF a C 2 N ln(k F R 3 ) + ... , (S23) 
We get a very similar expression to the one we found in this letter, only we replaced F and κ(1) by F MF and κ MF .

The function F MF is represented in Fig. S2, and we can observe the two asymptotic behaviours on the BCS and BEC sides: 1. In the BCS limit we recover once again the Fermipolaron, hence F MF (-∞) = 3/2π for η = 1.

2. In the BEC limit, we get a behaviour consistent with the Bose-Polaron: 16π 2 κ MF X ln(1/X) + A0X with A0 an adjustable parameter found out to be, after optimization, A0

F MF 1 k F a = 16π 2 κ MF ln (k F a) k F a + ... ( 
1.1. Green curve: asymptotic behaviour on the BEC side using the true value of κ, C ad and R3 (the last two are given in the last section of this Supplementary material).

In conclusion, BCS theory predicts the correct qualitative behaviour for the polaron energy shift but is quantitatively wrong, which is illustrated in Fig. S5 at the end of this supplementary material.

THREE-BODY PARAMETERS Calculating R3

We can obtain the three-body parameter R 3 introduced in the equation

Γ Born -Γ Faddeev = Λ→∞ g 2 κ(η) ln(ΛR 3 ) + o(1) (S25)
by calculating numerically this difference. We break down this term into three parts, each corresponding to one of the first three diagram of Fig. 2 from this letter. Firstly, in the effective range approximation, the twobody T-matrix is given by ti

= g /Ω 1 + ika + R e a k 2 (S26)
where R e is the effective range of the potential and k is given by:

k = 2m r (E + i0 + )/ 2 (S27)
with E the energy of the initial state in the center-ofmass frame of the three particles at the moment of the interaction. For the diagrams we want to calculate, we only have to consider the case where the fermions have impulsions of p and -p and the impurity has an impulsion equal to zero (cf Fig. 2 from the article). This leads to:

E/ 2 = 0 -( p 2 2m f + p 2 2(m f + m i ) ) = - η(2 + η) (1 + η) 2 p 2 m r ( 
S28) Finally, the two-body T-matrix can be written as:

ti = g /Ω 1 -η(2+η) (1+η) 2 a p -η(2+η) (1+η) 2 ( Re a )(a p) 2 + i0 + = g Ω t(p) ( 
S29) Then, we can write below the expressions corresponding to each of these three diagrams.

Γ (1) = 2 m 2 f 4 g Ω p 1 p 4 t(p) (S30) Γ (2) = -2 m 3 f 6 g 2 Ω 2 p1,p2 1 p 2 1 p 2 2 t(p 1 )t(p 2 ) (p 2 1 + p 2 2 )( η+1 2η ) -1 η p 1 . p 2 (S31) Γ (3) = 4 m 3 f 6 g 2 Ω 3 p1,p2,p3 1 p 2 1 p 2 3 4π 1/a -p 2 η+2 4η × t(p 1 ) p 2 1 + p 2 2 ( η+1 2η ) -p 1 . p 2 t(p 3 ) p 2 3 + p 2 2 ( η+1 2η ) -p 3 . p 2 (S32) 
In order to calculate the Faddeev term for Γ, one has to use the expression of t(p) given in S29. On the other hand, to obtain the Born term, one has to expand this expression of t(p) up to first order in a for Γ (1) and up to zero order for the other two components (so just replacing it by 1), so that all three components of Γ are expanded up to order two in a .

For Γ (3) , we calculate the sum in the limit 1/a 1/a (highly interacting fermions) in which the difference between the Faddeev term and the Born term does not depend on a. To calculate these different sums we proceed similarly as we did in the previous section for BCS theory.

In this framework, one can show that R 3 /a only depends on the ratio R e /a and the mass ratio. We show in Fig. S3 the numerical calculations of the difference Γ Born -Γ Faddeev for the mass ratio η = 7/6 and R e /|a | = 1. We see that we indeed get the logarithmic behaviour with κ(7/6) as the proportionality constant. At this point we should remind that we consider expansions for Λ|a | 1 but with R e /|a | as an independent parameter with a given value. Consequently, we consider this exponential term as a constant included in R 3 in our perturbative calculations.

To see the dependence on the mass ratio η, Table I lists numerical values of the parameter R 3 that were computed for experimentally relevant mass ratios and R e = 0. 

√

X , with A an adjustable parameter. A 0.8 after optimization.

Atom-dimer scattering

The atom-dimer T-matrix can be computed using the same approach. Indeed, since the fermions are asymptotically bound, we can treat the impurity-fermion interaction as a perturbation. This leads to the same diagrams as in the three-body scattering problem and the atom-dimer scattering length consequently suffers from the same logarithmic divergence when the range of the potential vanishes. For large Λ the associated T -matrix scales as T (S34) where the constant C ad is computed numerically and is given in Table II for experimentally relevant values of the impurity-fermion mass ratios. where T ad,Born = 2g /Ω corresponds to an atom-dimer scattering length a ad,Born /a = 4(1 + η)/(2 + η). As pointed out in [START_REF] Fukushima | Polyakov loop modeling for hot qcd[END_REF], in the Efimovian regime R e |a | not considered here, T ad acquires a log-periodic dependence in a .

Finally, to highlight the shortcomings of BCS theory and the consistency of our three-body calculations, we fit the atom-dimer scattering length calculated in [START_REF] Levinsen | Universality of the unitary Fermi gas: a few-body perspective[END_REF], see Fig. S5. There is no hesitation possible in seeing that the coefficient before the log obtained through BCS theory (including κ MF ) is too small to show the logarithmic behaviour whereas the real κ enables a much better fit. [START_REF] Levinsen | Universality of the unitary Fermi gas: a few-body perspective[END_REF] showing the ratio of the atom-dimer scattering length a ad over a , for η = 7/6. Red solid curve: fit to the blue dots using the function a ad, Born /a (1 + AX(ln X + B)) where A is a fixed parameter corresponding to the analytical result obtained through BCS theory (A ∝ κ MF ) and B is an adjustable parameter. Green solid curve: theoretical curve obtained through threebody calculations, its equation is the same as the one used for the red curve but now with A ∝ κ and B obtained through C ad and R3. We see that the curve corresponding to BCS theory (red) does not match at all the results reported in [START_REF] Levinsen | Universality of the unitary Fermi gas: a few-body perspective[END_REF], contrary to the other one (green). 

FIG. 1 .

 1 FIG.1. Sketch of the energy branches of an impurity (red dot) immersed in an ensemble of Cooper-paired fermions when the impurity/fermion scattering length a' is varied. Blue: polaron branch; green: ground-state Efimov trimer branch; orange: dimer branch.

FIG. 2 .

 2 FIG.2. Singular diagrams at second order of Born's approximation. The red line corresponds to the impurity.

  FIG. S1. Phase diagram of an impurity immersed in a fermionic superfluid. The typical energy of each phase (detailed in the text) is written in each domain, the dots in each expression contain the mean-field terms that are negligible compared to the other terms. The typical expression of the chemical potential in the BEC-BCS crossover is given at the top (on the BCS side, it corresponds approximately to the Fermi energy which is negligible compared to the other energy scales presented here, hence the 0). The four numbers correspond to the four frontiers described in the text. The grey bands correspond to the parameter range where many-body effects affect few-body physics for a typical value kF Re = 5 × 10 -2 .

2 . 3 . 4 .

 234 Dimeron vs trimeron. The frontier is obtained by solving E 3 (R e , a, a ) = E 2 . Bose polaron (R e /a > 0) vs trimeron. The frontier is obtained by solving E 3 (R e , a, a ) = E 2 . Bose polaron vs dimeron. The frontier is obtained by solving E 2 = E 2 . Since E 2 and E 2 are given by the same function evaluated for a and a, this frontier is included in the line a = a, i.e. the first bisector in S1.

  FIG. S2. Blue dots: Representation of the function F MFthrough the crossover for η = 1. Red curves: Asymptotic behaviours described in the text on the BCS side:F MF (-∞) = 3 2π, and the BEC Side : F MF (X) 16π 2 κ MF X ln(1/X) + A0X with A0 an adjustable parameter found out to be, after optimization, A01.1. Green curve: asymptotic behaviour on the BEC side using the true value of κ, C ad and R3 (the last two are given in the last section of this Supplementary material).

2 FIG 1 .

 21 FIG. S3. Blue dots: numerical calculations of the left-hand side of eq. (S25), divided by g 2 , for η = 7/6 and Re = |a |. Red curve: fitting curve of the blue dots in the limit Λ|a | 1. We fit the data for Λ|a | 1 with the function κ(7/6) ln(X ×A0) with A0 a fitting parameter. The parameter A0 gives us the value of R3/|a |: here we get A0 3.10. We show in Fig. S4 the parameter R 3 /|a | for different values of the ratio R e /|a | in the case η = 7/6. For R e /|a | 1, we get the asymptotic behaviour R 3 1.50|a |. For R e /|a | 1, we see that R 3 increases exponentially:

η 7 /

 7 FIG. S4. Blue dots: numerical calculations of R3/|a | for different Re/|a | ratios and η = 7/6. Red curve: fit for Re/|a | 1 using a function A √ X exp √ 3 16π 2 |κ(7/6)|

  Λa) + C ad + ...)

η 7 /

 7 [START_REF] Zhang | Calibration of the interaction energy between Bose and Fermi superfluids[END_REF] 23/40 7/6 87/6 133/6 C ad 1.52 1.59 1.56 1.37 1.36TABLE II. Dimensionless parameter characterizing the Born expansion of the atom-dimer scattering amplitude (Eq. (S34)) for Re = 0.The logarithmic divergence is once again cured by introducing the three-body interaction. Using the renormalized expression of g 3 (Λ) the three-body interaction contribution to the atom-dimer T -matrix amounts toT (2) ad = -16π 2 g Ω m f m r κ(η) a a ln(ΛR 3 ). (S35)We indeed recover the asymptotic result Eq.[START_REF] Hu | Bose polarons in the strongly interacting regime[END_REF] from the main text since we have T ad = T R 3 /a) + C ad + ...) (S36)
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