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THREE-BODY PHASE-DIAGRAM

In this section, we present an analysis of the three-
body problem to determine the stability domain of the
Efimov trimers with respect to the free-particle problem
and atom-dimer continuum. Specifically, the approach
is based on a model with a resonance range Re. As a
consequence, the boundaries of the stability diagram are
semi-quantitative and should depend on the model one
considers, the goal of this section being also pedagogic.

Efimov ground state

The Efimov spectrum can be obtained without further
regularization of the three-body problem using a two-
channel model described by the hamiltonian [1, 2]

Ĥ =
∑
k,σ

εkâ
†
k,σâk,σ +

∑
K,σ

(Eσ,0 + εk/2)b̂†K,σ b̂K,σ

+
~2

2m

√
2π

Re

∑
K,k,k<Λ
σ1 6=σ2 6=σ3

(b̂†K,σ1
âk+K/2σ2

â−k+K/2,σ3
+ H.c.).

(S1)

In this expression, σ ∈ {1, 2, 3} labels the three atomic
species, âk,σ is the atomic (open channel) annihilation

operator for species σ, b̂K,σ the molecular (closed chan-
nel) annihilation operator describing dimers not involv-
ing spin σ atoms, and Re the effective range of the po-
tential. For the sake of simplicity, we assume that all
three atomic species have the same mass m and that the
atom-dimer coupling is the same for all three species.
The atom-atom scattering lengths are nevertheless con-
trolled independently by the bare molecular binding en-
ergies Eσ,0.

The solutions of the two-body problem shows that the
scattering length aσ between two atoms (σ1, σ2) 6= σ is
given by

1

aσ
=

2

π
Λ− RemEσ,0

~2
, (S2)

where Λ is a UV momentum cut-off.
The three-body bound states are described by the

Ansatz

|ψ〉 =
∑
k1,k2

β(k1,k2)â†k1,1
â†k2,2

â†−k1−k2,3
|0〉

+
∑
σ,k

ασ(k)

k
â†−k,σ b̂

†
k,σ|0〉.

(S3)

where |0〉 is the vacuum.
The trimer energy E3 = −~2κ2/m is then obtained by

solving the set of three equations[√
1 + 3p2/4 + κRe(1 + 3p2/4)− 1

κaσ

]
ασ(p)

=
1

π

∫ ∞
0

dq ln

(
p2 + q2 + pq + 1

p2 + q2 − pq + 1

)∑
σ′ 6=σ

ασ′(q)

 , (S4)

Frontiers of the stability diagram

We explain here how the different domains of the sta-
bility diagram of Fig. S1 are obtained.

In experiments, Re is small compared to the interpar-
ticle distance, therefore we have Re kF � 1, where the
Fermi wavevector kF is defined by n ≡ k3

F /(3π
2). On

the BCS side of the BEC-BCS crossover of the super-
fluid, we have 1/(kFa) < 0 and 1/|kFa| ∼ 1 and there-
fore |Re/a| = Re kF /|kFa| � 1. For the same reason,
the BEC side corresponds to 1/(kFa) ∼ 1 and we have
Re/a = Re kF /(kFa) � 1. On the graph of Fig. S1,
the crossover region of the superfluid is therefore con-
centrated in a narrow region around the y-axis. The
consequence of this separation of scales is that, except
in this narrow region, for Re/a > 0, the superfluid is
made of weakly interacting tightly bound dimers, while
for Re/a < 0, it is made of extremely loose Cooper pairs
corresponding essentially to non-interacting fermions (ex-
cept for superfluid properties).

Concerning the impurity-fermion interaction regime,
we have similarly (kFa

′) = (Re/a
′)−1(kF Re), which is

a small dimensionless number for Re/a
′ not too small.

Therefore, except in a narrow region around the x-axis
in Fig. S1, we have kF |a′| � 1.

In the (Re/a
′ < 0, Re/a < 0) quadrant (Fermi polaron

sector), the energy of the impurity immersed in the su-
perfluid is given by ESF + g′ n, where ESF is the ground
state energy of the superfluid without the impurity.
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FIG. S1. Phase diagram of an impurity immersed in a
fermionic superfluid. The typical energy of each phase (de-
tailed in the text) is written in each domain, the dots in
each expression contain the mean-field terms that are neg-
ligible compared to the other terms. The typical expression
of the chemical potential in the BEC-BCS crossover is given
at the top (on the BCS side, it corresponds approximately to
the Fermi energy which is negligible compared to the other
energy scales presented here, hence the 0). The four num-
bers correspond to the four frontiers described in the text.
The grey bands correspond to the parameter range where
many-body effects affect few-body physics for a typical value
kFRe = 5× 10−2.

In the Bose-polaron sector (Re/a
′ < 0, Re/a > 0), the

energy of the polaron in the superfluid is given by ESF +
g′b−f n, where g′b−f is the coupling constant between the
impurity and a dimer of the superfluid.

In the (Re/a
′ > 0, Re/a < 0) quadrant the energy of

the dimeron in the superfluid is ESF−2µf+E′2+g′b−fn+
gn. The −2µf contribution originates from Cooper pair
breaking. One of the fermions of the pair binds to the
impurity to form a dimer of energy E′2 while the second
remains unbound and contributes to the mean-field term
gn. For Re/a < 0, µf ≈ ~2k2

F /(2m) is the chemical
potential of an ideal gas. The dimer energy is given by

[3] E′2 = −~2

m κ
′
2
2, with Re κ

′
2 = 2Re

a′

(
1 +

√
1 + 4Re

a′

)−1

.

For (Re/a
′ > 0), and (Re/a > 0) , the energy of the

dimeron in the superfluid is ESF −E2 +E′2 + g′b−bn+ gn
where we have substracted the dimer energy E2 lost by
the binding of a fermion of the bath with the impurity.
The expression for E2 is obtained from the expression of
E′2 by replacing a′ by a. g′b−b is the coupling constant
characterizing the interaction between the dimeron and
the dimers of the superfluid.

Finally, the energy of the trimeron in the superfluid is
given by ESF +E3−2µf +g′t−fn. E3 is the trimer energy
(a 3-body bound state), gt−f is a trimer-fermion coupling
constant, and −2µf is the energy of the two fermions of
the trimer coming from the superfluid bath.

Depending on the parameters, we determine which

state has the lowest energy. In this limit where kF tends
to zero, all the terms containing n or kF vanish. All
these energies, minus the neglected mean-field terms, are
gathered in Fig. S1. We then consider four cases (corre-
sponding to the four numbers displayed in Fig. S1):

1. Fermi polaron (Re/a < 0) vs trimeron. The fron-
tier is obtained by solving E3(Re, a, a

′) = 0.

2. Dimeron vs trimeron. The frontier is obtained by
solving E3(Re, a, a

′) = E′2.

3. Bose polaron (Re/a > 0) vs trimeron. The frontier
is obtained by solving E3(Re, a, a

′) = E2.

4. Bose polaron vs dimeron. The frontier is obtained
by solving E′2 = E2. Since E′2 and E2 are given
by the same function evaluated for a′ and a, this
frontier is included in the line a′ = a, i.e. the first
bisector in S1.

We end this section by noticing that the Fermi polaron-
trimeron frontier approaches the x-axis for Re/a→ −∞.
In this region, the calculation is no more controlled
(kF is not negligible anymore). However, since the po-
laron/trimeron is a crossover [4], the transition line can-
not be defined precisely anyway.

Moreover we note that for a = a′, our results agree
with the calculations reported in [3] for three-component
color Fermi gases.

BCS THEORY

This section presents a derivation of the results pre-
sented in the paper within the simplified framework of
BCS mean-field theory. We first determine χ, then the
F function and finally we compare it to the exact expres-
sions presented in this paper.

Since these results will only confirm the general be-
haviour but will not yield quantitative predictions, we re-
strain our calculations to the simplest case mf = mi = m
so for η = 1, a ratio close to the mass ratio we have with
our Lithium experiment (7/6).

Mean-field compressibility

As described in the main text, second order pertur-
bation theory relates the polaron energy shift to the
fermionic superfluid dynamical compressibility χ(q, E)
defined by

χ(q, E) =
1

N

∑
α

|〈α|ρ̂−q|0〉|2

Eα − E0 + E
. (S5)
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Here, we derive the expression of χ using BCS theory
where the fermionic medium is described by the mean-
field Hamiltonian

Ĥmb =
∑
k,σ

ξk ĉ
†
kσ ĉkσ + ∆∗

∑
k

ĉk↑ĉ−k↓ + h.c. (S6)

with ξk = ε
(f)
k − µ, µ is the chemical potential, and the

gap ∆ is defined by

∆ =
g0

Ω

∑
k

〈ĉ−k↓ĉk↑〉. (S7)

The Hamiltonian is diagonalized by introducing Bo-
goliubov operators γ̂k± defined by:

ĉk↑ = ukγ̂k+ − vkγ̂−k− (S8)

ĉk↓ = ukγ̂k− + vkγ̂−k+, (S9)

with

uk =

√
1

2
(1 +

ξk
Ek

), vk =

√
1

2
(1− ξk

Ek
) (S10)

and Ek =
√
ξ2
k + |∆|2.

To derive the BCS expression of the compress-
ibility, we express the matrix elements 〈α|ρ̂−q|0〉 =∑
σ〈α|ĉ

†
k−q,σ ĉk,σ|0〉 using the Bogoliubov creation and

annihilation operators. After a straightforward calcula-
tion, we finally obtain

χMF(q, E) =
1

N

∑
k

2u2
k−qv

2
k + 2ukvkuk−qvk−q

Ek + Ek−q + E
, (S11)

where we have used the fact that the excited states |α〉
correspond to pairs of Bogoliubov excitations, hence Eα−
E0 = Ek + Ek−q. We use the notation MF to signify
that this result is only valid in BCS theory, a mean-field
theory.

Perturbative calculation of the energy

In order to calculate the polaron energy shift, we need
to consider the perturbative development we obtained in
the article, adapted to BCS theory:

∆EMF
pert =

[
g′n+

g′
2
n

Ω

∑
q

(
1

ε
(r)
q

− χMF(q, ε(i)
q )

)]
(S12)

After turning sums to integrals and performing the an-
gular integrations we can write this expression as:

∆EMF
pert = g′n+

g′2

8π4

m

~2

∫
k2dk

∫
q2dq

(
4v2
k

q2
−

2u2
qvk

2 + 2ukvkuqvq

kq
ln

(
Ek + Eq + ~2(k+q)2

2m

Ek + Eq + ~2(k−q)2
2m

))
(S13)

To study the behaviour of these integrals for high
k, we perform the variable change k → u =
(k/kF )/

√
|∆|/EF , q → v = (q/kF )/

√
|∆|/EF and we

get

∆EMF
pert = g′n

[
1 + kFa

′ 3

2π

∣∣∣∣ ∆

EF

∣∣∣∣2 I(Λ/kF )

]
(S14)

with I corresponding to the integral left to calculate in
Eq. (S13) that depends on the cut-off Λ and also on the
ratio µ/|∆|.

In the limit u, v � 1, we can simplify greatly the ex-
pression of the integral I.

First, we can see that the terms u2
k and v2

k can be
rewritten, in this limit:

u2
k ∼ 1, v2

k ∼
1

4

|∆|2

ξ2
k

→ 1

4u4
(S15)

From this last expression, we can also get Tan’s contact
for two fermions C2 in BCS theory. Indeed, using the
property of momentum distribution [5]:

n↑(k) ∼
k→∞

n↓(k) ∼
k→∞

C2

k4
(S16)

and knowing that in BCS theory we have n(k) = n↑(k)+
n↓(k) = 2v2

kΩ, we see that we have the right dependence
for the momentum distribution and we can extract the
contact

C2

N
=

3π2

4

∣∣∣∣ ∆

EF

∣∣∣∣2 kF . (S17)

The integral can then be simplified in this limit as

I(Λ/kF ) =

∫
du

u

∫
dv

u

[
1−

1

2

( v
u

+
u

v

)
ln

(
1 + v/u+ (v/u)2

1− v/u+ (v/u)2

)]
.

(S18)

The second integral (over v/u) converges towards
2π4κMF and the first integral (over u) gives the loga-
rithmic divergence. We can finally write:

I = 2π4κMF(ln(Λ/kF ) + ...) (S19)
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with κMF:

κMF =

√
3

8π3
− 1

12π2
. (S20)

In the main text we found:

κ(1) =

√
3

8π3
− 1

12π2
− 1

9π
√

3
(S21)

The two results are very similar except for the last term
of κ(1) which does not appear in the mean-field approach
because BCS theory does not account for interactions
between excitations of the superfluid. This missing term
is actually pretty important since it is the leading term
in κ, therefore we get a ratio κ(1)/κMF ' 15.

The F function

We find out analytically that there is again a logarith-
mic divergence of this second order term, consistently
with what we stated before. By combining equations
(S14), (S17) and (S19), we get the expression of the en-
ergy calculated up to second order in perturbation using
BCS theory :

∆EMF
pert = g′n

[
1 + kFa

′FMF

(
1

kFa

)

+ 4πκMFa′
C2

N
ln(Λ/kF )

] (S22)

with FMF a function that can be computed numerically
throughout the BEC-BCS crossover by calculating the
difference between the exact expression of the integral I
defined in Eq. (S13) and the logarithmic term we ob-
tained in Eq. (S19). These numerical calculations show
that this function does not depend on the cut-off but only
on the parameter 1/(kFa).

Then, by introducing a similar renormalization with a
three-body term, we can rewrite the energy as:

∆EMF = g′n

[
1 + kFa

′FMF

(
1

kFa

)
−4πκMF a

′C2

N
ln(kFR3) + ...

]
,

(S23)

We get a very similar expression to the one we found
in this letter, only we replaced F and κ(1) by FMF and
κMF.

The function FMF is represented in Fig. S2, and we
can observe the two asymptotic behaviours on the BCS
and BEC sides:

1. In the BCS limit we recover once again the Fermi-
polaron, hence FMF(−∞) = 3/2π for η = 1.

2. In the BEC limit, we get a behaviour consistent
with the Bose-Polaron:

FMF

(
1

kFa

)
= 16π2κMF ln (kFa)

kFa
+ ... (S24)
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FIG. S2. Blue dots: Representation of the function FMF

through the crossover for η = 1. Red curves: Asymptotic be-
haviours described in the text on the BCS side: FMF(−∞) =
3
2π

, and the BEC Side : FMF(X) ' 16π2κMFX ln(1/X) +
A0X with A0 an adjustable parameter found out to be, after
optimization, A0 ' 1.1. Green curve: asymptotic behaviour
on the BEC side using the true value of κ, Cad and R3 (the
last two are given in the last section of this Supplementary
material).

In conclusion, BCS theory predicts the correct qualita-
tive behaviour for the polaron energy shift but is quanti-
tatively wrong, which is illustrated in Fig. S5 at the end
of this supplementary material.

THREE-BODY PARAMETERS

Calculating R3

We can obtain the three-body parameter R3 intro-
duced in the equation

ΓBorn − ΓFaddeev =
Λ→∞

g′
2
κ(η) ln(ΛR3) + o(1) (S25)

by calculating numerically this difference. We break
down this term into three parts, each corresponding to
one of the first three diagram of Fig. 2 from this letter.

Firstly, in the effective range approximation, the two-
body T-matrix is given by

t̂i =
g′/Ω

1 + ika′ +Rea′k2
(S26)
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where Re is the effective range of the potential and k is
given by:

k =
√

2mr(E + i0+)/~2 (S27)

with E the energy of the initial state in the center-of-
mass frame of the three particles at the moment of the
interaction. For the diagrams we want to calculate, we
only have to consider the case where the fermions have
impulsions of p and −p and the impurity has an impul-
sion equal to zero (cf Fig. 2 from the article). This leads
to:

E/~2 = 0− (
p2

2mf
+

p2

2(mf +mi)
) = −

√
η(2 + η)

(1 + η)2

p2

mr

(S28)
Finally, the two-body T-matrix can be written as:

t̂i =
g′/Ω

1−
√

η(2+η)
(1+η)2 a

′p− η(2+η)
(1+η)2 (Re

a′ )(a′p)2 + i0+
=
g′

Ω
t(p)

(S29)
Then, we can write below the expressions correspond-

ing to each of these three diagrams.

Γ(1) = 2
m2
f

~4

g′

Ω

∑
p

1

p4
t(p) (S30)

Γ(2) = −2
m3
f

~6

g′2

Ω2

∑
p1,p2

1

p2
1p

2
2

t(p1)t(p2)

(p2
1 + p2

2)(η+1
2η )− 1

η ~p1. ~p2

(S31)

Γ(3) = 4
m3
f

~6

g′2

Ω3

∑
p1,p2,p3

[
1

p2
1p

2
3

4π

1/a− p2

√
η+2
4η

× t(p1)

p2
1 + p2

2(η+1
2η )− ~p1. ~p2

t(p3)

p2
3 + p2

2(η+1
2η )− ~p3. ~p2

] (S32)

In order to calculate the Faddeev term for Γ, one has
to use the expression of t(p) given in S29. On the other
hand, to obtain the Born term, one has to expand this
expression of t(p) up to first order in a′ for Γ(1) and up to
zero order for the other two components (so just replacing
it by 1), so that all three components of Γ are expanded
up to order two in a′.

For Γ(3), we calculate the sum in the limit 1/a� 1/a′

(highly interacting fermions) in which the difference be-
tween the Faddeev term and the Born term does not
depend on a. To calculate these different sums we pro-
ceed similarly as we did in the previous section for BCS
theory.

In this framework, one can show that R3/a
′ only de-

pends on the ratio Re/a
′ and the mass ratio. We show

in Fig. S3 the numerical calculations of the differ-
ence ΓBorn − ΓFaddeev for the mass ratio η = 7/6 and
Re/|a′| = 1. We see that we indeed get the logarithmic
behaviour with κ(7/6) as the proportionality constant.
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FIG. S3. Blue dots: numerical calculations of the left-hand
side of eq. (S25), divided by g′2, for η = 7/6 and Re =
|a′|. Red curve: fitting curve of the blue dots in the limit
Λ|a′| � 1. We fit the data for Λ|a′| � 1 with the function
κ(7/6) ln(X×A0) with A0 a fitting parameter. The parameter
A0 gives us the value of R3/|a′|: here we get A0 ' 3.10.

We show in Fig. S4 the parameter R3/|a′| for dif-
ferent values of the ratio Re/|a′| in the case η = 7/6.
For Re/|a′| � 1, we get the asymptotic behaviour R3 '
1.50|a′|. For Re/|a′| � 1, we see that R3 increases expo-
nentially:

R3 ∝
Re
|a′|�1

√
Re|a′| exp

( √
3

16π2|κ(7/6)|

√
Re
|a′|

)
. (S33)

At this point we should remind that we consider expan-
sions for Λ|a′| � 1 but with Re/|a′| as an independent
parameter with a given value. Consequently, we consider
this exponential term as a constant included in R3 in our
perturbative calculations.

To see the dependence on the mass ratio η, Table I
lists numerical values of the parameter R3 that were
computed for experimentally relevant mass ratios and
Re = 0.

η 7/40 23/40 7/6 87/6 133/6

R3/a
′ 1.03 1.41 1.50 1.46 1.46

TABLE I. Dimensionless parameter characterizing the Born
expansion of the three-body scattering amplitude (Eq. (S25))
for Re = 0 .



6

æ æ æ æ æ æ æ æ æ
æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

0.01 0.1 1 10 100
1

5
10

50
100

500
1000

Re

a '

R
3 a
'

FIG. S4. Blue dots: numerical calculations of R3/|a′| for
different Re/|a′| ratios and η = 7/6. Red curve: fit for

Re/|a′| � 1 using a function A
√
X exp

( √
3

16π2|κ(7/6)|

√
X
)

,

with A an adjustable parameter. A ' 0.8 after optimization.

Atom-dimer scattering

The atom-dimer T-matrix can be computed using the
same approach. Indeed, since the fermions are asymp-
totically bound, we can treat the impurity-fermion inter-
action as a perturbation. This leads to the same dia-
grams as in the three-body scattering problem and the
atom-dimer scattering length consequently suffers from
the same logarithmic divergence when the range of the
potential vanishes. For large Λ the associated T -matrix
scales as

T
(1)
ad =

2g′

Ω

[
1 + 8π2mf

mr
κ(η)

a′

a
(ln(Λa) + Cad + ...)

]
(S34)

where the constant Cad is computed numerically and is
given in Table II for experimentally relevant values of
the impurity-fermion mass ratios.

η 7/40 23/40 7/6 87/6 133/6

Cad 1.52 1.59 1.56 1.37 1.36

TABLE II. Dimensionless parameter characterizing the Born
expansion of the atom-dimer scattering amplitude (Eq. (S34))
for Re = 0.

The logarithmic divergence is once again cured by in-
troducing the three-body interaction. Using the renor-
malized expression of g3(Λ) the three-body interaction
contribution to the atom-dimer T -matrix amounts to

T
(2)
ad = −16π2g′

Ω

mf

mr
κ(η)

a′

a
ln(ΛR3). (S35)

We indeed recover the asymptotic result Eq. [20] from
the main text since we have

Tad = T
(1)
ad + T

(2)
ad =

Tad,Born [1− 8π2mf

mr
κ(η)

a′

a
(ln(R3/a) + Cad + ...)

]
(S36)

where Tad,Born = 2g′/Ω corresponds to an atom-dimer
scattering length aad,Born/a

′ = 4(1 + η)/(2 + η). As
pointed out in [6], in the Efimovian regime Re � |a′| not
considered here, Tad acquires a log-periodic dependence
in a′.

Finally, to highlight the shortcomings of BCS theory
and the consistency of our three-body calculations, we
fit the atom-dimer scattering length calculated in [7], see
Fig. S5. There is no hesitation possible in seeing that
the coefficient before the log obtained through BCS the-
ory (including κMF) is too small to show the logarithmic
behaviour whereas the real κ enables a much better fit.
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FIG. S5. Blue dots: Points from [7] showing the ratio of
the atom-dimer scattering length aad over a′, for η = 7/6.
Red solid curve: fit to the blue dots using the function
aad,Born/a

′(1 + AX(lnX + B)) where A is a fixed parame-
ter corresponding to the analytical result obtained through
BCS theory (A ∝ κMF) and B is an adjustable parameter.
Green solid curve: theoretical curve obtained through three-
body calculations, its equation is the same as the one used for
the red curve but now with A ∝ κ and B obtained through
Cad and R3. We see that the curve corresponding to BCS
theory (red) does not match at all the results reported in [7],
contrary to the other one (green).
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