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ABSTRACT 

Properties or characteristics of fibers are affected by their topology. In fact, these topology are 

found to have significant impacts in the functionalities of many applications.  Hence, in this 

study, the relations between the spinning techniques and the topology of the resulting fibers 

are studied with the aim to provide a guideline for future reference where fibers with certain 

topology can be fabricated to suit specific applications. For this purpose, a polyurethane is 

chosen to be the raw material to fabricate the fibers due to its versatility to be applied in 

various fields. The surface morphology, structures and alignments of the fibers are studied. It is 

found that the polymer solution properties largely influence the mechanisms in the spinning 

process and can significantly affect the topology of the fibers. For instance, viscous solutions 

enable the spinning of coiled and smooth fibers, whereas conductive solutions encourage the 

splaying of the solution jet which results in the spinning of straight fibers.  

 

 

 

 

 

 

 



INTRODUCTION 

With the emergence of electrospinning technique, polymeric fibers are becoming more and 

more common.1,2 These electrospun fibers are found to have large surface area to volume ratio, 

better mechanical strength and highly porous, which are useful in many applications, such as 

water purification,3 polymer electrolyte,4 and biomedical field.5  

The working principle of electrospinning involves the usage of high voltage to draw a solution 

jet from the orifice of a polymer solution containing reservoir. Initially, the polymer solution jet 

will form a Taylor cone at the orifice of the reservoir with the application of the high voltage. As 

the electrical potential difference increases, the viscosity and surface tension of the solution 

will be overcome. Then, a whipping instability of the jet will occur, causing it to travel in a 

vigorous spiral motion.6-9 Apart from whipping instability, the splaying or splitting of a single 

solution jet into multifilament can also happen.6,10 Both of these phenomena are found to help 

in reducing the diameters of the electrospun fibers to the submicron scale.  

Parameters optimization in electrospinning is often studied in the literature in order to obtain 

the ideal straight fibers that have the smallest diameter with the absence of beads.11-13 The 

presence of beads is frequently related to the poor mechanical properties of the fibers.14,15 

Nevertheless, the beads on the fibers are found to be functional in drug release applications in 

human bodies.16-18 The drugs encapsulated in the beads of the fibers are found to have a 

sustained release which is favourable for cell differentiation in tissue engineering rather than a 

burst release. In addition, beads on fibers are also found to have interesting photonic 



properties similar to dielectric microspheres.19 The luminescent effect is found in the beads of 

fibers due to the spatial distributions of the embedded chromophores.  

There are studies conducted to control the beads formation on the fibers. The studies 

conducted by Fong et al.20 and Liu et al.21 agree that the solution properties are playing 

important roles. Polymer solutions with high viscosity, high surface tension and low net charge 

density are prone to the formation of beads on the electrospun fibers. In a more recent study 

conducted by Krifa et al.,22 larger needle or spinneret size can also encourage the formation of 

beads on the spun fibers apart from the viscosity of the polymer solution. In the aspect of the 

spinning process, Bu et al.23 used a mechano-electrospinning method where the fibers collector 

stage is moved in a linear path during the electrospinning process. It is found that the 

movement of the stage must be below certain threshold speed to enable the formation of 

beads.  

Besides beads, the orientation of the fibers also plays an important role in their functionalities. 

As an example, cell seeding on highly aligned fibrous scaffolds is reported to be more effective 

than randomly oriented fibrous scaffolds.24,25 On the contrary, randomly oriented fibers are 

regularly applied in water purification.26  

This alignment of electrospun fibers is also commonly studied in the literature. Randomly 

oriented fibers can be easily fabricated using stationary collectors,11,12,27 whereas highly aligned 

fibers can be fabricated using high speed rotating collectors.27-29 Nonetheless, tedious 

parameters optimization may be needed to spin highly aligned fibers with high speed rotating 

collectors as the splaying and whipping instability of the solution jet during electrospinning will 



hinder the alignment of the fibers as stated by Kiselev et al..30 In order to remove the splaying 

and whipping instability of the solution jet, dry spinning can be used. It is reported that dry 

spinning is able to control and align the deposition of the fibers on to a collector. Arrays of 

properly aligned fibers is successfully fabricated by dry spinning.31-33 Unlike electrospinning, dry 

spinning directly spins the fibers onto a collector without the usage of high voltage supply in 

drawing the fibers, and hence, splaying and whipping instability of the solution jet do not occur.  

The required fiber structure is also dictated by the application. For instance, the randomly 

oriented fibers reported to be applicable in water purification are always straight in structure26 

while highly aligned fibers applicable in tissue engineering have wavy structures.34,35 More 

interestingly, helical or coiled structure of the fibers are found to be similar to many helical 

filaments found in organisms.36 These helical biological filaments have inspired the fabrication 

of helical microfibers useful in crude oil cleanup.37  

In order to modify the structure of the fibres, normal straight electrospun fibers can be post 

treated with heat or solvent to make the fibres wavy according to a study conducted by Chao et 

al..35 The wavy fibers can also be directly spun using a modified electrospinning technique, 

magnetic – field – assisted electrospinning technique in the study conducted by Liu et al..34 The 

wavy fibers can be introduced by increasing the injection rate of the polymer solution. Another 

structure of the fibers, the coiled or helical fibers are said to be originated from the whipping 

instability of the solution jet in electrospinning.10,37  

Without prejudice, fibers with all kinds of structures, morphology and alignment are useful in 

one way or another as discussed in the aforementioned paragraphs. In fact, ideal fibers should 



not be just confined to straight smooth fibers. An ideal fiber should be defect and orientation 

controllable as described by Raghavan et al..1  

In the literature, some of the common polymer fibers are spun from thermoplastics such as  

poly(methyl methacrylate),11,38,39 polyvinylidene fluoride,12,40 and polyethylene 

terephthalate41,42 due to their high mechanical strength. However, the elasticity of these fibers 

is low, typically having less than 50% maximum elastic strain. Apart from the mechanical 

strength, the elasticity of the fibers is also crucial to ensure their mechanical durability in harsh 

working environments. Hence, in this study, a polyurethane is used as the raw material in 

spinning the fibers as it is known to be a thermoplastic elastomer, possessing the elasticity of an 

elastomer with more than 100% maximum elastic strain and the strength of a thermoplastic.43  

In addition to the elastic mechanical behaviours, the polyurethane is also versatile with many 

interesting properties. Some of these properties are flame retardant ability,44 

biodegradability,45 and self – healing capability.46 This variety of properties can be tailored by 

changing the chemical composition of the polyurethane. It is also common that fillers are added 

to the polyurethane to add in certain property as a composite material. Examples of the fillers 

are zinc oxide nanoparticles for ultraviolet light blocking and antimicrobial properties,47 carbon 

nanotubes for electromagnetic shielding,48,49 and carbon black for gas sensing.50 Apart from 

adding fillers, blending of polyurethane with other polymers can also impart certain properties 

to the blends. For instance, polyurethane/poly(3,4 – 

ethylenedioxythiophene):poly(styrenesulfonate) blends are having high electrical conductivity51, 



whereas poly(L-lactide)/thermoplastic polyurethane/poly(D-lactide) blends are having high heat 

resistance capability.52   

Despite of the suitability in the property of polyurethanes for various applications, the property 

alone is not sufficient or effective in certain applications. In fact, the structure or morphology of 

the polyurethane samples is essential as well as mentioned in the previous paragraphs. 

Following the structure, alignment and morphology needs of polyurethane, polyurethane fibers 

with different topology are investigated in this study.  The fibers are spun using normal basic 

electrospinning and dry spinning set-ups without involving complex modifications as in the 

studies23,34 mentioned in the previous paragraphs. There are not post treatments to the fibers 

to alter their topology as well, unlike the studies mentioned in the previous paragraphs.35 A 

number of polyurethane fibers topology are spun, different from most studies47,53-55 where the 

focus is only on certain topology, such as beads, diameter and alignment without detail study 

on the fibers structures. In short, this study is aimed to give readers guidelines to spin 

polyurethane fibers easily with specific topology without complex spinning set-ups and post 

treatments by understanding the relations between the spinning mechanisms and fibers 

topology.  

 

 

 

 



EXPERIMENTAL  

Materials  

N,N-Dimethylformamide (DMF) and Tetrahydrofuran (THF) with purity more than 99% are 

mixed to dissolve MDI-polyester/polyether polyurethane (CAS Number: 68084-39-9) pellets 

into solutions. Three polymer solutions with different polymer concentrations and solvent 

ratios, denoted by Solution A, B and C are prepared as shown in Table 1. These polyurethane 

pellets and solvents are purchased from Sigma Aldrich and used directly without further 

processing.  

After dissolving the polyurethane pellets, the viscosity and electrical conductivity of the 

solutions are measured using Brookfield DV-II + Pro EXTRA viscometer with S18 spinneret and 

Mettler Toledo SevenCompact Benchtop Meter respectively.  

Spinning of Fibers  

Two spinning techniques are used to fabricate the fibers in this study, which are the 

electrospinning and dry spinning. The two are detailed in the following sections.  

Electrospinning  

The basic setup of electrospining is presented in Figure 1 (a, b). It consists of three main 

components, a high voltage supply, a syringe pump and a collector. In this study, syringes with 

27 gauge size needles are used to contain the polymer solution while the syringe pump is used 

to control the solution injection rate. A 10 kV of electrical potential difference is applied 

between the tip of the syringe needle and the collector. The fibers are drawn from the syringe 



to the collector by the strong electrical force. Two types of collectors are used, a stationary and 

rotating collector as shown in Figure 1 (a) and (b) respectively. For the rotating collector, a high 

rotating speed of ± 1000 rpm is applied to increase the alignment of the fibers.27-29 The 

processing parameters of the electrospinning techniques are as shown in Table 2.  

Dry Spinning  

Dry spinning is a less complicated technique in the fabrication of fibers as compared to 

electrospinning. It uses mechanical force to draw fibers out of the solution to the collector.33,56 

The setup of dry spinning in this study only comprises of a syringe pump and a rotating collector 

as shown in Figure 1 (c). Similar to the electrospinning, syringes with 27 gauge size needles are 

used to contain the polymer solution while a syringe pump is used to control the solution 

injection rate.  

In order to start the dry spinning process, a fiber is drawn manually from the syringe to the 

rotating collector. Then, the rotating collector takes up the spinning of the fibers by mechanical 

drawing force. The polyurethane solution must be viscous and volatile enough, so that a fiber 

can be continuous drawn from the solution in the syringe. In this case, Solution C is used to be 

dry spun. The rotational speed used in this dry spinning is very low, ± 100 rpm as compared to 

the ± 1000 rpm of rotational speed used in electrospinning. This is to ensure that the rotational 

force is not too strong to break the continuous drawn fibers. If the continuous fibers break, 

manual drawing of the fibers has to be repeated. A weak voltage is also applied between the tip 

of the syringe needle and collector during the spinning process in order to study the effect of 

the electrical force on the dry spun samples. However, it is important to note that the applied 



voltage is not strong enough to initiate the electrospinning process. The processing parameters 

are listed in the Table 3.  

Surface Characterizations  

Phenom ProX desktop scanning electron microscope (SEM) is used to observe the surface of the 

fibrous samples. Then, the OrientationJ Distribution processing method in OrientationJ plugin 

of ImageJ 1.48v software is used to evaluate the orientation of the fibers in the micrographs 

under the magnification of 1000 ×. In this fibers orientation analysis, assumptions are made, 

such that the fibers orientation is in plane and the orientation at the top layer is considered to 

represent the average fibers orientation of the whole sample.12 As for the diameters 

measurement of the fibers, measuring tools in the ImageJ 1.48v software is used. The 

diameters of 100 fibers in the micrographs under 5000 × magnification are measured.  

 

 

 

 

 

 

 

 



RESULTS AND DISCUSSION  

Properties of the Polymer Solutions   

The viscosities and electrical conductivities of the polyurethane solutions with different 

concentrations and solvent ratios are as shown in Table 4.  

With reference to Table 1, the viscosity of the polyurethane solution is highly dependent on the 

concentration of the solution. An obvious increase in the viscosity of the polyurethane solution 

from 1.50 to 8.16 Pa.s is measured when the solution concentration increases just from 10 to 

15 wt %. The solvent used in the solution does not affect much in the viscosity. Solution B and C 

with the same concentration are having similar viscosity, 8.16 and 8.20 Pa.s respectively despite 

having different solvent ratios.  

Although having not much effects in the viscosity of the solution, the solvent ratio seems to 

affect the electrical conductivity of the solution. Solution C has lower electrical conductivity 

than Solution B as the THF in Solution C is having lower electrical conductivity than DMF. 

Besides solvent ratio, the electrical conductivity of the polymer solution seems to be affected 

by the polymer concentration as well. Solution B with higher polymer concentration, 15% are 

having lower electrical conductivity than Solution A with lower polymer concentration, 10% 

despite having the same solvent ratio.  

 

 

 



Surface Analysis of Electrospun Fibers  

Figure 2 shows the representative SEM micrographs of 5 electrospun samples. All these 

electrospun samples are in the form of mat or film made up of assemblies of fibers. The main 

characteristics of the samples can be summarized in Table 5.  

Orientation of Fibers  

Figure 3 shows the orientation distribution curves of the electrospun fibers. PU1, PU2 and PU4 

fabricated using stationary collector have very small or no peak in the orientation distribution 

curves, indicating the random orientation of the fibers similar to the study of Wong et al..12  

An obvious peak can be observed in the orientation distribution curves of PU3 and PU5 at 

around 0o angle, which corresponds to the horizontal direction of the micrographs indicated by 

the blue arrow in Figure 2 (c, e). The fibers are partially oriented in the horizontal direction as 

shown in Figure 2 (c, e). This is due to the usage of high speed rotating collector in 

electrospinning27-29. The strong rotational force is able to drive the fibers to align in the 

circumferential direction of the rotation indicated by the blue arrow as shown in Figure 2 (c, e).  

The peak in the orientation distribution curve of PU3 is much sharper than PU5 although both 

samples are fabricated using the rotational speed of ± 1000 rpm. This is due to the wavy 

structure of the fibers in PU5 which will be discussed further in the later session. In this fibers 

orientation analysis by ImageJ software, a straight fiber is considered to be oriented in one 

direction whereas a wavy fiber is considered to be oriented in more than one direction. 



Therefore, the peak in the curve of PU5 is not as sharp as PU3 although the overall orientation 

is similar.  

Beads on Fibers  

If a fiber does not have a uniform diameter along its axis, beads can be observed as shown in 

the micrograph of PU1 in Figure 2 (a). The beads appear to be swollen segments along the axes 

of fibers. These beads can reduce the cohesions or interactions between fibers in the sample14 

and act as stress concentrations during mechanical loadings,15 resulting in poorer mechanical 

properties.  

Low viscosity of the Solution A may be the causation of the beads on the fibers. It is found that 

solution with low viscosity encourages the formation of the beads.20,22,55,57 This is due to the 

insufficient viscoelastic force to overcome the surface tension of the solution jet from the 

syringe, favouring the formation of larger beads. Thus, by using polyurethane Solution B and C 

with much higher viscosities, the electrospun fibers do not possess beads. 

Structure of Fibers 

Regarding the structures of fibers, 3 types of structures can be observed: straight, coiled and 

wavy fibers.  

Straight Fibers   

The straight fibers in PU1 could be originated from the splaying of the polymer solution jet, 

where multifilament are split out from a single solution jet.6,7 This splaying of the solution jet is 

likely to be attributed to the DMF solvent in Solution A as stated in Table 1. It is found that DMF 



can increase the electrical conductivity of a polymer solution along with the reduction of 

surface tension, thus encourages the splaying of the solution jet.58 The split out fibers are in a 

straight manner and deposited on the stationary collector as illustrated in Figure 4. On the 

contrary, the straight fibers in PU3 is not originated from the splaying effect mentioned. Instead, 

it is due to the usage of rotating collector. Without considering the type of collector, PU2 and 

PU3 have the same solution and processing parameters. Hence, the fibers in PU3 should have 

the same coiled structures as in PU2. However, the rotating collector stretches the supposedly 

coiled fibers in PU3 into straight fibers.30,37,59  

Coiled Fibers  

Most electrospun fibers are straight7,12,14,15,27-29,57,60 and only small traces of coiled fibers can be 

found in some studies.11,59,61 It is unique to have all coiled fibers in PU4 and high portion of 

coiled fibers in PU2.   

According to a study conducted by Bagchi et al.,10 this coiled fibers originate from the whipping 

instability of the polymer solution jet. Whipping instability causes the fibers to travel in a spiral 

path and deposit as coiled fibers on the collector37 as illustrated in Figure 5. The polymer 

solution jet travels in a straight path before the chaotic motion of whipping instability starts. In 

the cases of PU2 and PU4, it is hypothesized that the degree of whipping instability is low, 

where the straight path is long with very small diameter of spiral motion before reaching the 

collector. This may be due to the highly viscous Solution B and C as high viscosity solution is 

found to decrease the degree of chaotic motion in whipping instability.62 



As shown in Figure 6, these coiled fibers tend to stack up to form tower like structures in PU4. 

The diameter of the spiral motion of polymer jet could be as small as 24.6 µm as evidenced by 

the diameter of the hollow section of the tower like structure. However, this structure is only 

observed in certain areas of the sample. It is most likely caused by the disruption of  orderly 

organisation of the fibers due to the repulsions between fibers63 since electrospun fibers are 

found to have residual charges.64,65 As the stacking of coiled fibers increases, the packing of 

fibers becomes denser and the accumulation of residual charges increases. To a certain extent, 

the electrical repulsive force is strong enough to repel the incoming fibers. Thus, stacking is no 

longer possible. Then, fibers start to scatter all around the surface of collector away from the 

tower like structures as clear gaps are observed between the tower like structures and 

scattered fibers.  

Wavy Fibers 

Wavy fibers are found in PU5 similar to a study conducted by Kiselev et al.30 but not in PU3 

despite that both samples are actually fabricated using a rotating collector with ± 1000 rpm. 

However, PU3 is spun using Solution B whereas PU5 is spun using Solution C as stated in Table 1. 

In Solution B, polyurethane is dissolved in DMF only but polyurethane is dissolved in a mixture 

of DMF and THF in Solution C. It is known that THF is more volatile than DMF.53,66 Hence, 

Solution C is more volatile than Solution B. The solution jet of Solution C may dry and solidify 

into fibers earlier than Solution B. As a result, the fibers spun from Solution C may experience 

greater stretching forces by the rotating collector. Thus, greater contraction maybe 



experienced by the fibers in PU5 when they are removed from the collector, which manifested 

into the wavy fiber structure.34  

Diameter of Fibers  

Based on the micrographs in Figure 2, an obvious non-uniformity in the fiber diameters of PU2 

and PU3 can be observed in Figure 2 (b, c) respectively.  

Two fibers in PU3 which have apparent difference in diameters are measured. The diameters 

are 1.461 and 0.866 µm respectively as shown in Figure 2 (c). The reason for this observation is 

unaccountable.  

Observations in Figure 2 (b), however, show that coiled fibers have relatively larger diameters 

than the straight fibers in PU2. Thus, further analysis on the fiber diameters are carried out. 100 

diameter measurements are taken from coiled fibers and straight fibers respectively. Coiled 

fibers have an average diameter of 2.897 ± 0.16 µm, whereas straight fibers have an average 

diameter of 0.933 ± 0.048 µm. The separate diameter measurements of coiled and straight 

fibers could not be done on PU3 since the rotating collector stretched the coiled fibers into 

straight fibers.  

As mentioned in the previous session, coiled fibers are due to the whipping instability of 

polymer solution jet while straight fibers are due to the splaying of polymer solution jet. Both 

fibers structures present in PU2 indicate that both whipping instability and splaying of polymer 

solution occurred during the fabrication of this sample. With reference to the diameter 

measurements of coiled fibers and straight fibers, it can be inferred that the splaying of 



polymer solution jet can fabricate smaller diameter fibers than the whipping instability of 

polymer solution jet.  

In the literature, high electrical conductivity polymer solutions help in reducing the fiber 

diameter53,67 and this reduction in diameter may be due to the splaying of polymer solution 

jet58 as mentioned in the previous paragraph. The electrical conductivity of the polyurethane 

solution is in the order of Solution A, B to C from the highest to lowest magnitude as shown in 

Table 1. By using Solution A with the highest electrical conductivity, the fabricated fibers in PU1 

are all straight due to splaying of solution jet. Solution B has the intermediate electrical 

conductivity and therefore, the fabricated fibers in PU2 are partially coiled and straight due to 

both phenomena. Lastly, Solution C with the lowest electrical conductivity is used to fabricate 

coiled fibers in PU4 due to the whipping instability of the solution jet.  

The average diameters of all the electrospun fibers are tabulated in Table 5. In this study, two 

concentrations of polyurethane solution, 10 and 15 wt % are used for electrospinning. Many 

studies have reported that electrospun fibers with lower concentration of polymer solution 

have smaller diameters.7,11,12,54 PU1 is the only sample electrospun from 10 wt% polyurethane 

solution and it has smaller average diameter than all the samples, except for PU5. This is 

because PU5 is fabricated using a high speed rotating collector of ± 1000 rpm despite being 

spun from 15 wt % polyurethane solution. The high rotational speed can stretch the fibers 

further and therefore, decreases the diameters of the fibers.68,69 Electrospun fibers using 

rotating collector in PU3 shows 44.4% of reduction in average diameter as compared to the 

electrospun fibers in PU2 using stationary collector although the other processing and solution 



parameters are the same. Similar reduction in average diameter of fibers can also be observed 

between PU5 and PU4, where the reduction is 50.1%.  

Dry Spinning  

The idea of Kiselev et al.30 is adapted in this study. It is proposed that the polymer solution jet 

should travel in a straight path to reach the rotating collector, so that the fibers fabricated 

would align following the rotation.  

Parameters optimization on the electrospinning set up in this study is conducted to drive the 

polymer solution jet to travel in a linear manner before depositing onto the rotating collector. 

Consequently, the splaying in electrospinning is successfully eliminated and the whipping 

instability is reduced to a minimum extent through the parameter optimization. However, only 

partial alignment can be observed in PU3 and PU5 as shown in Figure 3.  

Due to the difficulties to completely eliminate the whipping instability in electrospinning due to 

the high voltage application, a dry spinning technique is opted to fabricate highly aligned 

polyurethane fibers in this study. The polymer solution jet is able to travel in the straight 

manner to reach the rotating collector without the application of high voltage as illustrated in 

Figure 7. Nonetheless, the dry spun fibers are in bundles, unlike the electrospun fibers, are in 

mats.  

 

 

 



Surface Analysis of Dry Spun Fibers 

The micrographs of all the dry spun samples are as shown in Figure 8. All the samples have the 

similar topology. The observed fibers are without beads, highly aligned, and uniform in 

diameters. Although these fibers are dry spun, the three characteristics mentioned are ideal for 

electrospun fibers as described by Raghavan et al..1  

Orientation of Fibers 

The orientation distribution curves of all the dry spun samples are plotted in Figure 9 (a). All the 

distribution curves show a sharp peak, in line with the observations on the SEM micrographs in 

Figure 8. The blue arrows correspond to the direction of the 0o angle.  

Orientation distribution curves of PU2, PU3 and PU7, corresponding to not aligned, partial 

aligned and highly aligned fibers are plotted in Figure 9 (b) for comparison purpose. The 

orientation distribution curve of PU7 is a representative of all the dry spun fibers as the 

orientation distributions are similar as shown in Figure 9 (a). It is obvious that dry spun fibers 

have the sharpest peak and thus, the fibers are highly aligned as compared to the electrospun 

fibers in this study.  

Diameter of Fibers 

The average diameters of the dry spun fibers range from 2.620 to 2.799 µm are much larger as 

compared to the electrospun fibers, which range from 0.618 to 1.915 µm. Nevertheless, the 

diameters of these dry spun fibers still fall into the range of the diameters fabricated through 

electrospinning which is ranged from nanometre to micrometer.36 



In spite of the application of 0 to 5 kV voltage during the dry spinning process respectively, the 

diameters of the fibers do not change much as shown in Figure 10. It is common that the 

diameter of fibers changes with the change in the applied voltage during electrospinning.1,11,66 

Apparently, the applied voltages in this dry spinning are too low to have significant effects on 

the diameter of the fibers.  

 

 

 

 

 

 

 

 

 

 

 

 

 



CONCLUSIONS 

In this study, polyurethane fibers with different topology are fabricated through electrospinning 

and dry spinning techniques.  

By adjusting the solution parameters in electrospinning, the polymer solution jet from the 

syringe can be controlled before the deposition of fibers on the stationary collector.  Solutions 

with high viscosity and low electrical conductivity are able to induce the whipping instability of 

the solution jet to form coiled fibers, while solution with low viscosity and high electrical 

conductivity are able to induce the splaying of the solution jet to form straight fibers.  

As for the fibers orientation, randomly oriented electrospun fibers are deposited on the 

stationary collector, whereas highly aligned fibers are deposited on the high speed rotating 

collector.  Despite being able to align the fibres, the high speed rotating collector can impose 

excessive stretching on the fibers, evidenced by the fibers with wavy structure due to 

contraction. Thus, dry spinning is a more suitable technique to be used. Results show that the 

dry spun fibers are straight and highly aligned although having larger diameters.  

In the case of fibers diameter, fibers electrospun with higher concentration of polymer solution 

are without beads but having larger diameters. Further reduction of the fibers diameters can be 

achieved by depositing the fibers on a rotating collector to elongate the solution jet further 

during the spinning process.  
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CAPTIONS OF FIGURES  

Figure 1. Electrospinning of fibers with (a) splaying6,7 and (b) whipping instability6,10; (c) Dry 

spinning assisted by weak electrical field.33  

Figure 2. SEM micrographs of (a) PU1, (b) PU2, (c) PU3, (d) PU4 and (e) PU5.  

Figure 3. Orientation distribution curves of fibers in electrospun samples.  

Figure 4. Illustration of deposition of straight and randomly oriented fibers on the stationary 

collector due to the splaying of the solution jet.  

Figure 5. Illustration of deposition of coiled fibers on the stationary collector due to the 

whipping instability of the solution jet.  

Figure 6. Tower like structures in PU4.  

Figure 7. Illustration of deposition of straight and aligned fibers on the rotating collector as the 

solution jet is travelling in a straight manner.  

Figure 8. SEM micrographs of (a) PU6, (b) PU7, (c) PU8 and (d) PU9.  

Figure 9. Orientation distribution curves of (a) dry spun samples; (b) PU2, PU3 and PU7.  

Figure 10. Variation of the fiber diameter with the applied voltage.  
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Figure 4. Illustration of deposition of straight and randomly oriented fibers on the stationary 

collector due to the splaying of the solution jet.  

 

 

 

 

 

 

 

 



 

Figure 5. Illustration of deposition of coiled fibers on the stationary collector due to the 

whipping instability of the solution jet.  

 



 

Figure 6. Tower like structures in PU4.  

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 7. Illustration of deposition of straight and aligned fibers on the rotating collector as the 

solution jet is travelling in a straight manner.  



 

Figure 8. SEM micrographs of (a) PU6, (b) PU7, (c) PU8 and (d) PU9.  



 

Figure 9. Orientation distribution curves of (a) dry spun samples; (b) PU2, PU3 and PU7.  



 

Figure 10. Variation of the fiber diameter with the applied voltage.  

 

 

 

 

 

 

 

 



Table 1. Polymer solution parameters.  

Solution Solvent Ratio (DMF:THF) Polymer Concentration (wt %) 

A 1:0 10 

B 1:0 15 

C 1:1 15 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 2. Processing parameters of electrospinning.  

Sample Solution 
Applied 

Voltage (kV) 

Tip to Collector 

Distance (cm) 

Rotational 

Speed (rpm) 

Solution Injection 

Rate (mlhr-1)  

PU1  A  10  15  0  0.5  

PU2  B  10 15  0  0.5  

PU3  B  10  15  ± 1000  0.5  

PU4  C  10  15  0  0.5  

PU5 C 10 15 ± 1000  0.5  

 

 

 

 

 

 

 

 

 

 

 



Table 3. Processing parameters of dry spinning.  

Sample Solution 
Applied 

Voltage (kV) 

Tip to Collector 

Distance (cm) 

Rotational 

Speed (rpm) 

Solution Injection 

Rate (mlhr-1) 

PU6  C  0  15  ± 100 0.05  

PU7  C  1 15  ± 100 0.05  

PU8  C  3  15  ± 100 0.05  

PU9  C  5  15  ± 100 0.05  

 

 

 

 

 

 

 

 

 

 

 

 



Table 4. Viscosities and electrical conductivities of the polymer solutions.  

Solution 
Solvent Ratio 

(DMF:THF) 

Polymer 

Concentration (wt %) 

Viscosity 

(Pa.s) 

Electrical 

Conductivity (µScm-1) 

DMF -  -  0.71 4.650 

THF -  -  0.37 0.029  

THF and 

DMF 
1:1  -  0.50 1.481  

A  1:0  10  1.50 1.822  

B  1:0  15 8.16  1.550  

C  1:1  15  8.20  1.380  

 

 

 

 

 

 

 

 



Table 5. Surface morphology, structure and alignment of the fibers.  

Sample 
Alignment of 

Fibers  

Beads on 

Fibers  
Structure of Fiber  

Diameter of Fibers 

(µm) 

PU1 Random Present Straight 0.712 ± 0.026  

PU2 Random Absent 

Partially Straight 

and 

Partially Coiled 

1.915 ± 0.162 

PU3 Partially Absent Straight 1.064 ± 0.080  

PU4 Random Absent Coiled  1.238 ± 0.014  

PU5  Partially  Absent  Wavy  0.618 ± 0.019  

 

 

 

 

 

 


