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Abstract 

This work aimed to determine arsenic redox state distribution during As(III) sorption onto 

chemically-modified biochars. A solid-liquid extraction protocol using phosphoric (0.3 M) 

and ascorbic (0.5 M) acids at 80 °C for 20 min was established to ensure a quantitative 

recovery and stability of As(III) during the extraction. During sorption experiments, the 

redox conversions of As occurred and As(III) was either stable or partially oxidized in 

solution. The As distribution strongly varies depending on the biochar chemical treatment 
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performed as well as the selected washing procedures (batch versus column washings). 

As(III) oxidation was favored with the KOH-modified biochar washed in batch mode. This 

oxidation was mostly induced by the biochar solid compounds rather than by soluble 

compounds released in solution. The As redox state distribution of As sorbed onto the 

biochars was successfully assessed using the extraction procedure. Arsenic was 

predominantly sorbed as As(III) (76–92%) onto the biochars. 

Keywords: Sewage sludge digestate biochar, As(III) removal, arsenic redox distribution, 

sorption 

 

1. Introduction 

Elevated concentrations of arsenic (As) in water bodies represent a global environmental 

and health issue because of its toxic features. The increasing threats of As contamination 

mainly originate from anthropogenic sources, particularly mining, industrial and 

agricultural activities (Vithanage et al., 2017). Arsenic toxicity in targeted organisms is 

strongly linked to its chemical speciation, especially its redox state. Indeed, organic forms 

of As such as monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) present 

intermediate toxicity, whereas inorganic As species, i.e. arsenite (As(III)) and arsenate 

(As(V)), are known as the most toxic ones (Hughes et al., 2011). 

Regarding the acute toxicity of As, efforts have been made to efficiently remove As from 

polluted water streams by using several treatment techniques such as oxidation, 
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coagulation-flocculation, ion exchange, phytoremediation, membrane separation and 

adsorption (Jadhav et al., 2015; Jain and Singh, 2012; Singh et al., 2015). Among these 

methods, sorption is well known as a cost effective approach to remediating metal(loid)s 

polluted water (Ahmad et al., 2014). Biochar is a charcoal obtained from pyrolysis of 

biowaste materials in an oxygen-limited environment (Novotny et al., 2015). Because of 

the low-cost and the great abundance of biowaste feedstocks (e.g. sewage sludge digestate 

obtained from wastewater treatment streams), biochars are considered as alternatively 

potential sorbents for metal(loid)s removal from water (Mohan et al., 2014). Most of the 

sewage sludge biochars were used to sorb cationic metals like lead (Pb(II)) and chromium 

(Cr(VI)) (Ifthikar et al., 2017; Lu et al., 2012; Zhang et al., 2013), and to a lesser extent to 

metalloids like arsenic (As) and antimony (Sb). Thus, the development of sewage sludge 

biochar with chemical modification to improve As sorption (Sizmur et al., 2017) as well as 

the investigation of As speciation is of great interest. To date, As redox species repartition 

during the adsorption process onto biochar, and the role of biochar on redox modifications 

of As are not known. Hence, it is worthwhile to investigate the redox transformation of 

As(III) during its sorption onto biochars, since As(III) is more toxic and weakly bound to 

solid material than As(V) (Manning et al., 2002). Therefore, the As(III) oxidation induced 

by biochars is an important reaction that can possibly decrease As toxicity in As polluted 

water bodies. 

Arsenic speciation in solid-phase samples can be accessed via X-ray absorption near edge 

structure (XANES) spectroscopy (Niazi et al., 2018a, 2018b). However, the use of this 

technique is limited due to the very high operation cost and the accessibility to synchrotron 
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facilities. Solid-liquid extraction followed by separation techniques, for instance liquid 

chromatography (LC) coupled to spectrometric detection techniques such as atomic 

fluorescence spectroscopy (AFS) or inductively coupled plasma mass spectrometry (ICP-

MS), could be an effective and more accessible technique to determine the As species 

sorbed onto the solid-phase samples. 

The present study focused on the determination of the inorganic As redox distribution in 

raw sewage sludge digestate (SSD) biochar and the H2O2 and KOH modified biochars 

before and after As(III) sorption using an analytical approach based on a solid-liquid 

extraction. At present, no study has reported on the implementation of an extraction method 

to recover As(III) and As(V) from the solid-phase of biochar. An extraction method using 

phosphoric and ascorbic acids as extracting agents was thus investigated before studying 

the possibility of redox transformations of As(III) during sorption experiments onto the 

biochar. The main objectives of this work were to: (1) validate the extraction procedure for 

As(III) and As(V) speciation in the biochars; (2) investigate the sorption ability for As(III) 

by the raw and chemically-modified biochars; and (3) report on the redox conversions of 

arsenic during the sorption experiments. 

2. Material and methods 

2.1 Biochar production and chemical modification 

Sewage sludge digestate (SSD) was collected from a wastewater treatment plant (WWTP) 

located in Limoges (France), after its dewatering and drying processes. Biochar was 
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produced from the SSD sample under slow pyrolysis conditions (at 350 °C for 15 min) 

(Wongrod et al., 2018a). The SSD biochar (100 g) was then modified with a 1 L of 10% 

H2O2 solution (modified from Xue et al., 2012) or with a 2.5 L of 2 M KOH solution 

(modified from Jin et al., 2014). For each biochar modification, the mixed biochar-solution 

was continuously stirred at room temperature for 2 h. 

Raw and modified biochars were further washed with ultrapure water (18.2 MΩ, MilliQ 

Gradient A10, Millipore SAS 67120, Molsheim, France) in a batch system (triplicate in a 

row) followed by a continuous column washing (Wongrod et al., 2018a). These washing 

steps were performed to eliminate releasable organic compounds and inorganic ions (i.e. 

PO4
3−, HCO3

−, CO3
2−, Ca2+ and Mg2+) from the prepared biochars, particularly after 

chemical modification. The KOH modified biochar was also submitted to only a triple 

batch washing (Huang et al., 2017; Regmi et al., 2012; Wongrod et al., 2018a; Wu et al., 

2017) to study the influence of washing steps onto As sorption and redox transformations. 

The raw, H2O2 and KOH modified SSD biochars are labeled as BSS, BH2O2 and BKOH, 

respectively. The KOH modified SSD biochar with only batch washing is denoted as 

BKOHbat. 

2.2 Biochar characterization 

The pH of the biochar was measured using a pH-meter (LPH 330T, Tacussel, France) after 

stirring 1 g biochar in 20 mL deionized water for 5 min and allowed it to settle for 15 min. 

The electrical conductivity (EC) of biochar was measured using a conductivity meter at 20 

°C (CDM 210, Radiometer, Denmark). 
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The Brunauer-Emmett-Teller surface area (SBET) of biochar was measured using N2 

sorption at 77 K (3Flex, Micromeritics, USA) after pretreatment of biochar by drying at 

105 °C for 5 h. The pH of point of zero charge (pHPZC) of the biochar was determined from 

the zeta potential at different pH ranges (Mahmood et al., 2011). The cation exchange 

capacity (CEC) of the biochar was determined by using a cobalt hexamine trichloride 

solution (99% w/w, Sigma-Aldrich) (Aran et al., 2008). 

2.3 Sorption experiments 

A 13.33 mM stock solution of arsenite (As(III)) was prepared from AsNaO2 (98% w/w, 

Merck) and was diluted to 50 µM prior to As(III) sorption and arsenic speciation (i.e. 

As(III) and As(V)) experiments. Biochar (0.15 g) was separately added to 37.5 mL of 

As(III) solution in a polyethylene tube to obtain an initial 146 µg of As(III) in the solution. 

The initial pH was adjusted to 5.0 (± 0.5) by adding 0.01 M HNO3 or NaOH. The sorption 

experiments were performed in triplicate at 20 (± 2) °C at 180 rpm for 24 h using an orbital 

shaker (KS 501 digital, IKATM, USA). 

The significant presence in solution of releasable dissolved compounds (RDC) from 

BKOHbat (Wongrod et al., 2018a) could affect arsenic speciation. To determine whether the 

arsenic oxidation was mainly induced by the biochar itself or by these RDC, a control 

experiment was carried out. For this purpose, 1 g BKOHbat in 250 mL ultrapure water was 

stirred at 180 rpm for 24 h at room temperature (20 °C). The resulting solution was filtered 

with a 0.2 µm polyethersulfone (PES) membrane filter to remove the solid biochar. The 
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resulting solution thus only contains the RDC. A control experiment was then performed by 

replacing the BKOHbat by this solution of RDC during sorption kinetics experiments. 

In all these experiments, samples were collected at 1, 3, 7, 16 and 24 h. The total sampled 

volume was less than 5% of the initial volume to avoid any disturbance on the sorption 

equilibrium. Solutions were filtered through a 0.2 µm PES syringe filter and stored in a 

dark cold room at 4 °C until analysis. 

2.4 Arsenic redox state distribution in biochars 

Total As and its redox state distribution in raw and chemically-modified biochars before 

and after As(III) sorption experiments were determined through solution analysis, 

extraction and acid digestion as described in the following subsections. 

2.4.1 Arsenic analysis in solution and deduction of sorbed arsenic. 

Total arsenic analysis was performed using graphite furnace atomic absorption 

spectrometry (GF-AAS) (240Z, Agilent Technologies, USA) at λ 193.7 nm. The standard 

calibrations of As were prepared in the ranges of 10–50 µg L−1. The detection limit was 

estimated from the mean of the blank and standard deviation, and the analyte solution was 

measured to produce a signal of at least 3 times higher signal than the noise level. 

The arsenic redox distribution was assessed by liquid chromatography coupled to atomic 

fluorescence spectroscopy (LC-AFS) with hydride generation (HG) (PS Analytical 

Millennium Excalibur, PS Analytical, UK). The chromatographic separation was performed 

using a Hamilton PRP-X100 column with a phosphate buffer solution as the mobile phase 
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at pH 6.9 and at a flow rate of 1 mL min−1. The details of the experimental conditions for 

speciation analysis can be found in a previous study reported by Wan et al. (2014). To 

avoid any transformation between As(III) and As(V), arsenic speciation on both liquid and 

extracted solutions was performed within 5 h after sample recovery. 

The amount of As sorbed onto the biochar was calculated from differences between initial 

and final concentrations of arsenic during sorption experiments. The sorbed As onto 

biochar can be calculated following Equation (1): 

         (             (1), 

where Qsol. is the amount of arsenic sorbed onto biochar (µg) (based on 0.15 g of biochar in 

this study), Ci and Cf are, respectively, initial and final equilibrium concentrations of 

arsenic in the solution, and V is the total volume of the solution (L). 

2.4.2 Extraction of As(III) and As(V) from biochar 

Due to the lack of a soft extraction procedure for arsenic from biochar in the literature, this 

study designed one extraction method based on the extraction procedures described by 

Thomas et al. (1997), Montperrus et al. (2002) and Zhang et al. (2015). The extractant was 

prepared from 0.3 M phosphoric acid (H3PO4, 85% w/w, Carlo ERBA) with or without the 

addition of 0.5 M ascorbic acid (99.5% w/w, Fluka). Ascorbic acid was used to prevent the 

oxidation of As(III) in the solution during the extraction (Xu et al., 2015). 

After the sorption experiments, 0.15 g of biochar was quickly rinsed 3 times with ultrapure 

water and transferred into a Teflon digestion tube with 25 mL of the extracting solution. 
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The extraction was operated using microwave assistance (Multiwave GO, Anton Paar, 

France) by heating at 80 °C for 20 min. The resulting solution was then centrifuged 

(Multifuge X3 FR, Thermo Fisher Scientific) at 3400 rpm for 20 min. The supernatant was 

collected and filtered through a 0.2 µm PES syringe filter and diluted to a constant volume 

of 50 mL. Samples were analyzed for As speciation using LC-AFS as mentioned in section 

2.4.1. 

2.4.3 Biochar acid digestion for total arsenic measurements 

After the sorption experiments, the biochar (about 0.15 g) was rinsed with ultrapure water 

and transferred into a digestion tube (Teflon). Concentrated nitric acid (HNO3, 69.5% w/w, 

Panreac ITW) (6 mL) was added to the digestion tube. Hydrogen peroxide (H2O2, 30% 

w/w, Carlo ERBA) (6 mL) was then slowly added into the digestion tube with a caution 

regarding its strong oxidizing property. The digestion tube was left overnight (12 h) to 

oxidize and digest organic matter in biochar prior to a microwave acid digestion (in order to 

avoid over-pressure due to the high initial release of CO2). Finally, 3 mL of concentrated 

hydrochloric acid (HCl, 37% w/w, VWR) were added before starting the digestion that was 

operated at 180 °C for 4 h (4 cycles) using a microwave digestion (1 cycle per 1 h) to 

sufficiently digest all biochar particles. After digestion, the resulting solution was recovered 

and the dilution in a 50 mL volume was made with ultrapure water. It was filtered through a 

0.2 µm PES syringe filter before analysis. Total arsenic content was analyzed by GF-AAS 

as previously mentioned in section 2.4.1. Regarding the analysis of total arsenic in the 

biochars, the As content that is already present in each biochar (before sorption) was 



  

26 
 

deduced from the sorbed As after the As(III) sorption experiments. This deduction was 

made to avoid errors in the experimental results. 

2.5 Statistical analysis 

The biochar characteristics and As(III) sorption experiments were carried out in triplicate. 

Results are reported as the mean value followed by standard deviation. Constants for 

sorption parameters were obtained by the non-linear regression using Statistica software 

(v6.1, StatSoft). Statistical analysis of the experimental data was performed by the t-test 

with two-tailed distribution at a statistical significance level of p ≤ 0.01. 

3. Results and discussion 

3.1 Characterization of raw and chemically-modified biochars 

The total As content in the raw and chemically-modified biochars is given in Table 1. 

Results show a significant (p ≤ 0.01  decrease of the As content after treating the raw 

biochar with H2O2 or KOH from 47 (± 1) µg g−1 for BSS to 29 (± 1) and 13 (± 1) µg g−1, 

respectively, for BH2O2 and BKOH. These reductions can be due to the ability of KOH to 

dissolve ash contents (Lin et al., 2012; Liou and Wu, 2009; Liu et al., 2012) and H2O2 to 

oxidize organic matter present in the solid phase of the biochars (Xue et al., 2012). As a 

result, the As bound to the biochar matrix could be chemically altered and thus the As 

contents were lower in the chemically-modified biochars compared to the raw biochar 

(Table 1). 
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Considering BKOH and BKOHbat, an almost 2 times decrease of As, from 23 (± 2) µg g−1 

for BKOHbat to 13 (± 1) µg g−1 for BKOH, was found after the subsequent continuous 

column washing. 

The pH values of all biochar suspensions are also provided in Table 1. The pH of BSS (6.4 

± 0.1) increased to 8.4 (± 0.1) and 10.1 (± 0.1) for BKOH and BKOHbat, respectively, 

whereas H2O2 induced no significant change (p ≤ 0.01  on the pH suspension of biochar. 

The electrical conductivity (EC) of biochar suspensions remained in similar ranges from 

4.0 (± 0.1) to 4.1 (± 0.3) and 6.2 (± 0.5) µS cm−1 for BSS, BH2O2 and BKOH, respectively. 

However, a significantly higher EC value (324 ± 2 µS cm−1) for BKOHbat was found, 

compared to BKOH (Table 1). This highlights the ability of BKOHbat to release a relatively 

high amount of dissolved ions as previously reported by Wongrod et al. (2018a). 

The pHPZC and zeta potential (at pH 5) values of the raw and chemically-modified biochars 

are given in Table 1. Results showed similar pHPZC ranges (2.7–3.4) among the raw and 

modified biochars. Currently, there is still a lack of information regarding pHPZC of 

biochars reported in the literature. Nevertheless, these findings are consistent with previous 

studies from Qiu et al. (2009) who reported a pHPZC of 1.9 on straw biochar and Petrovic et 

al. (2016) with pHPZC values of 4.5 and 6.0, respectively, on grape pomace biochar and its 

KOH modified biochar. Moreover, the negative zeta potential values of the biochars 

implied that all biochars carried net negative charges at pH 5, particularly for the BH2O2 (-

16.5 mV) and BKOHbat (-17.1 mV). These negatively charges may hinder the sorption 

ability for arsenic oxyanions at pH 5. 
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The BET surface area (SBET) of all biochars is reported in Table 1. The SBET was 

significantly improved by 7–20 times after H2O2 or KOH modification of the biochar 

compared to the non-treated biochar. In this case, the SBET increased from 0.4 (± 0.1) (the 

raw biochar) to 5.7 (± 0.1) and 7.9 (± 0.1) m2 g−1 for BH2O2 and BKOH, respectively. This 

implies that H2O2 and KOH induced higher porosity on the modified biochars, thus As 

sorption can be enhanced for these biochars (Mohan et al., 2014). These SBET results are in 

agreement with those reported for sewage sludge biochars (4.0–14.3 m2 g−1) (Agrafioti et 

al., 2013; Yuan et al., 2015), but lower than biochar made from wood (475 m2 g−1) (Niazi et 

al., 2018b). Nevertheless, they remain very low compared to activated carbon which 

displays specific surface area beyond 1000 m2 g−1 in most cases (Gonzalez-Garcia, 2018) 

(e.g. 1215.0–1316.0 m2 g−1 for activated carbon prepared from coal) (Gong et al., 2015). 

The CEC values for all biochars are also given in Table 1. Results demonstrate a similar 

CEC of the biochar after H2O2
 modification, i.e. from 2.0 (± 0.1) to 3.0 (± 0.1) cmol+ kg−1, 

whereas the CEC values were much higher (7–10 times) for BKOH (13.4 ± 0.1 cmol+ kg−1) 

and BKOHbat (20.8 ± 0.1 cmol+ kg−1) (Table 1). Nevertheless, in the literature much higher 

CEC values are reported for wood and straw derived biochars, ranging from 45.7 to 483.4 

cmol+ kg−1 (Ding et al., 2016; Jiang et al., 2014). 

The biochar properties reported in Table 1 highlight that the total As content, zeta potential 

and SBET are the key indicators that were significantly affected by the biochar treatment. 

Due to its lower negative charge and its higher SBET, BKOH can potentially sorb more As 

compared to other biochars. Furthermore, the biochar washing procedure is an important 
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parameter to be considered after the chemical treatment, since the biochar properties 

significantly change between BKOH and BKOHbat. 

3.2 As redox state evolution during sorption kinetics by BKOHbat and its dissolved solutions 

Fig. 1a shows the As redox state distribution in the solution during adsorption experiments 

for As(III) onto BKOHbat. The results demonstrate that while As was gradually sorbed onto 

BKOHbat (corresponding to the decrease of total As over time), the oxidation of As(III) to 

As(V) occurred continuously. To elucidate whether this oxidation was promoted by 

compounds released from the biochar into the solution or by the biochar itself, a control 

experiment was performed by replacing the biochar by a solution of released dissolved 

compounds (RDC) from BKOHbat. The experimental data and corresponding results is 

shown in Fig. 1b. From the results, a slight oxidation of As(III) with a final proportion of 

9% As(V) in the RDC solution was found, compared to 43% oxidation with the presence of 

biochar. This demonstrates that the oxidation of As(III) to As(V) was mainly induced by 

the biochar material itself and to a lesser extent by the dissolved compounds being released 

from the BKOHbat. At present, there is still a lack of information on the role of biochars and 

the released dissolved compounds towards the As(III) oxidation. Nevertheless, the findings 

are supported by Niazi et al. (2018a, 2018b) who found the oxidation of As(III) sorbed onto 

biochars prepared from Japanese oak wood and perilla leaf. However, Dong et al. (2014) 

showed the high potential oxidation of As(III) (up to 25%) induced by the dissolved 

organic matter from sugar beet tailing and Brazilian pepper derived biochars. 
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3.3 Extraction procedure for As redox state distribution in biochars 

In order to assess the redox state distribution of As sorbed onto biochar by LC-AFS, it was 

first necessary to validate an extraction procedure that allows a quantitative As recovery 

without any conversion of As species, especially As(III) being oxidized to As(V). 

The importance of adding ascorbic acid in the extraction solution to stabilize As(III) was 

assessed by applying the extraction procedure to a biochar sample with and without spiking 

with a known amount of As(III) just before performing the extraction step. In this study, the 

BKOHbat was selected due to its release of dissolved compounds and its ability to oxidize 

As(III) as previously reported by Wongrod et al. (2018a, 2018b). 

Table 2 shows the recoveries of the arsenic species and total As after the extraction using 

H3PO4 with or without addition of ascorbic acid onto the BKOHbat sample, and with and 

without As(III) spiking just before the extraction. Results show that all spiked arsenic was 

recovered by the extraction procedure. The results also highlight that when using only 0.3 

M H3PO4, a significant amount of spiked As(III) was oxidized. Indeed, the addition of 12.5 

µg of As(III) to the biochar before performing the extraction step resulted in an increase of 

8.8 (± 0.7) µg and 3.5 (± 0.3) µg for As(III) and As(V), respectively. Thus, 29% of spiked 

As(III) was converted into As(V). In contrast, no oxidation of As(III) was observed during 

extraction with H3PO4 and ascorbic acid: the difference between the As(III) amount before 

and after spiking is 12.6 (± 0.7) µg, which is in agreement with the amount of As(III) added 

(12.5 µg). Therefore, the addition of ascorbic acid is essential to ensure As(III) stability 

during the extraction step. The findings are also in agreement with the study of Xu et al. 
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(2015) who reported the efficiency of using both phosphoric and ascorbic acids as 

extracting agents to quantitatively recover As(III) and As(V) from fly ash. 

To estimate the extraction yield of As sorbed onto the biochar after the As(III) sorption 

experiments, the biochars were recovered and submitted to both acid digestion and 

extraction procedures (see section 2.4). The corresponding results are presented in Table 3. 

For BSS and BH2O2, the amount of total sorbed As was too low to allow an accurate 

determination after the acid digestion and/or extraction. As a result, no extraction yield was 

calculated. For BKOHbat, the total amount of sorbed As was quantitatively recovered by the 

extraction procedure. In the case of BKOH, most of the sorbed As was recovered but about 

one fourth could not be extracted under the applied conditions. This difference in the 

extraction efficiency may result from different sorption mechanisms of As from one 

biochar type to the other. Nevertheless, the majority of As could be extracted from the 

biochars and thus the identification of the As species in the extracted solutions gives the 

main As species sorbed onto the biochars. 

3.4 Determination of As(III) and As(V) sorbed onto biochars  

Different types of biochars were exposed in the solution containing an initial As(III) 

amount of 146 µg. After 24 h of As(III) sorption, the biochars were recovered and the 

exposure solutions were analyzed to determine the remaining amount of As and to assess its 

distribution between As(III) and As(V). The biochars were separately submitted to acid 

digestion for the determination of the total quantity of sorbed As and to the extraction for 

the assessment of the redox distribution of sorbed As. The amounts of As(III), As(V) and 
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total As in the exposure solutions and sorbed onto the biochars (determined after acid 

digestion and extraction steps) are shown in Table 4. 

Results showed that the total As (i.e. As(III) + As(V)) remaining in the final exposure 

solutions of BSS and BH2O2 were not significantly different from the initial As(III), 

indicating that no As was sorbed onto these biochars. In contrast, As was removed from the 

exposure solutions by both BKOH and BKOHbat, corresponding to an As sorption 

efficiency of 67% and 50%, respectively. These results are in agreement with the sorption 

yield estimated with the amount of As quantified in the digestate-based biochars (Table 4). 

The arsenic redox distribution in the final exposure solution shows almost no As(III) 

oxidation for both BSS and BH2O2 as the final amount of As(III) remained the same as the 

initial As(III) amount (Table 4). For the KOH treated biochars, the assessment of the redox 

distribution only concerned the unsorbed As. In the case of BKOH, no significant oxidation 

of As(III) was observed, whereas for BKOHbat about 28% of the remaining As was 

oxidized to As(V) (Table 4). These findings are in agreement with a previous study from 

Wongrod et al. (2018b) with a large oxidation of As(III) in BKOHbat and a partial oxidation 

in BKOH during As(III) sorption. As previously discussed (Fig. 1a and 1b), the majority of 

As(III) oxidation was induced by the biochar solid compounds. 

Considering As(III) and As(V) extracted from the biochars after the sorption experiment, a 

similar distribution of the As species was found for BKOH and BKOHbat (Table 4). Arsenic 

was mainly sorbed as As(III) (90–92%) and only 8–10% was sorbed as As(V) onto the 

KOH biochars. In the case of BKOH, the redox distribution of As sorbed onto the biochar 
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is quite similar to the distribution observed in the final exposure solution. However, for 

BKOHbat, the evolution of the As species in solution and on the biochar was different: 

As(V) represents only 8% of the sorbed arsenic whereas it corresponds to 28% of the 

dissolved As(V) (Table 4). This suggests that the As(III) sorption onto the KOH biochar 

was favored compared to As(V) sorption. This finding is consistent with results previously 

reported by Wongrod et al. (2018b) when comparing As(III) and As(V) sorption onto such 

biochars. Another possible explanation would be that As(V) could be reduced into As(III) 

during the sorption process, as observed by Niazi et al. (2018a, 2018b) who studied the 

speciation of As onto wood and leaf derived biochars using the solid-phase XANES 

technique. Depending on the nature and chemical treatment applied to the biochar, it could 

also contain chemical functions that act as electron donors to facilitate the As reduction 

(Choppala et al., 2016).  

Comparison of the two KOH biochars showed that the adsorption capabilities for As(III) 

were quite similar for both the BKOH (410 µg g−1) and BKOHbat (385 µg g−1) at As(III) 

concentration ranges of 0–4000 µM (or 0–54 µg L−1) and the initial solution pH at 5.0. 

Nevertheless, a much higher As(III) sorption was observed onto the Japanese oak wood 

derived biochar (3,890 µg g−1) (concentrations of 27–144 µg L−1 and at pH 7.0 ± 0.1) 

(Niazi et al., 2018b). This is probably due to different biochar properties between the SSD-

based biochars and the Japanese oak wood biochar. For instance, the specific surface area 

was substantially lower with the KOH modified biochars from SSD (3.0–7.9 m2 g−1) (Table 

1) compared to the oak wood biochar (475 m2 g−1) (Niazi et al., 2018b). 
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In the case of BH2O2, the amount of sorbed As being low, the results of the As redox 

distribution were less accurate and should thus be taken with caution. The percentage of 

As(V) sorbed onto the H2O2-modified biochar appears to be higher than into solution, 

highlighting a potential oxidation of As(III) during sorption. This phenomenon was also 

observed by Niazi et al. (2018a, 2018b), who suggested that redox active species present at 

the biochar surface such as NO3
− or FeO(OH) could induce As(III) oxidation. Therefore, 

the presence of iron (Fe) (65 g kg−1) and manganese (Mn) (769 mg kg−1) on the SSD 

biochar, that could be partially in metal oxide forms (Wongrod et al., 2018a), could 

promote the redox transformation of As(III) to As(V) on metal oxides associated onto the 

biochars (Vithanage et al., 2017). Such a phenomenon is also reported by several studies 

(Han et al., 2011; Manning et al., 2002; Wang et al., 2015). 

4. Conclusions 

The extraction using phosphoric and ascorbic acids allowed recovering sorbed arsenic, 

while preserving As(III) oxidation state. Arsenic redox distribution could thus be assessed 

in both solid and liquid phases. Arsenic was mainly sorbed onto biochar as As(III) but 

during sorption, As(III) oxidation may occur over time. This oxidation, mainly induced by 

biochar solid compounds rather than by soluble compounds released from biochar, can 

strongly vary depending on the chemical treatment and efficiency of washing procedures 

applied to biochar after chemical treatment. The KOH modification efficiently improves the 

biochar sorption capacity but also promotes As(III) oxidation, especially with an 

incomplete washing. 
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Table and figure legends 

Table 1. pH, electrical conductivity and surface area of the raw and chemically-modified 

biochars. 

Table 2. Arsenic speciation stability using H3PO4 with or without ascorbic acid (BKOHbat 

sample, with and without As(III) spiking just before extraction). 

Table 3. Comparison of total amount of sorbed arsenic determined after acid digestion or 

extraction procedure. 

Table 4. Comparison of As speciation and total As in exposure solutions and sorbed onto 

biochars (initial As(III) amount in exposure solution: 146 µg). 

 

Figure 1. Arsenic redox distribution in solution during adsorption kinetics for As(III) by 

BKOHbat (a) and for the control with only released dissolved compounds (RDC) from 

BKOHbat (b). 
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Tables 

Table 1 

a SBET refers to Brunauer-Emmett-Teller surface area of biochar. 

b CEC refers to cation exchange capacity of biochar. 

Note: all values reported are mean of triplicate followed by standard deviation, except pHPZC and zeta 

potential. 

Biochar Total As 

(µg g−1) 

pH in 

water 

pHpzc Zeta potential 

at pH 5  

(mV) 

Electrical 

conductivity 

(at 20 °C) 

(µS cm−1) 

SBET
a  

(m2 g−1) 

CECb 

(cmol+ kg−1) 

BSS 47 ± 1 6.4 ± 0.1 2.7 -9.8 4.0 ± 0.1 0.4 ± 0.1 2.0 ± 0.1 

BH2O2 29 ± 1 6.5 ± 0.1 2.9 -16.5 4.1 ± 0.3 5.7 ± 0.1 2.9 ± 0.1 

BKOH 13 ± 1 8.4 ± 0.1 3.4 -8.1 6.2 ± 0.5 7.9 ± 0.1 13.4 ± 0.1 

BKOHbat 23 ± 2 10.0 ± 0.1 2.9 -17.1 324.0 ± 2.4 3.0 ± 0.1 20.8 ± 0.1 
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Table 2 

Extraction method Extracted arsenic (µg) Spiking recoverya (%) 

As(III) As(V) As(III) Total As 

No ascorbic acid Before As(III) spiking 0.3b ± 0.1 1.1 ± 0.1 - - 

After As(III) spiking 

(12.5 µg) 

9.1 ± 0.7 4.6 ± 0.3 71 99 

With ascorbic acid Before As(III) spiking 0.4b ± 0.1 0.8b ± 0.1 - - 

After As(III) spiking 

(12.5 µg) 

13.0 ± 0.7 0.8b ± 0.1 101 101 

a Recovery: amount of spiked As(III) recovered by extraction either as As(III) or total arsenic (i.e. 

As(III)+As(V)). 

b Value close to limit of quantification. 
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Table 3 

a na refers to not available due to very low values detected by liquid chromatography coupled to atomic 

fluorescence spectroscopy (LC-AFS) and/or graphite furnace atomic absorption spectrometry (GF-AAS). 

Biochar Total arsenic (µg) Recovery from extraction (%)  

Extraction Acid digestion 

BSS 0.2 ± 1 1 ± 1 naa 

BH2O2 3 ± 1 6 ± 1 na 

BKOH 70 ± 3 93 ± 3 75 ± 4 

BKOHbat 63 ± 4 60 ± 3 105 ± 9 
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Table 4 

Biochar Exposure solution Sorbed As onto biochar 

Initial Final Acid digestion Extraction 

As(III) 

(µg) 

As(III)+

As(V) 

(µg) 

As(III) 

(%) 

As(V) 

(%) 

Total 

As 

(µg) 

Sorption 

yield (%) 

As(III)+

As(V) 

(µg) 

As(III) 

(%) 

As(V) 

(%) 

BSS 146 145 ± 2 99 1 1 ± 1 <1 0.2 ± 1 naa na 

BH2O2 146 143 ± 3 96 4 6 ± 1 4 3 ± 1 76 24 

BKOH 146 48 ± 3 98 2 93 ± 3 64 70 ± 3 90 10 

BKOHbat 146 72 ± 5 72 28 60 ± 3 41 63 ± 4 92 8 

a na refers to not available due a value close to limit of quantification. 
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Figure 

 

Fig. 1.  
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