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Abstract

In this paper, we investigate the construction and identification of a new random field model for representing
the constitutive behavior of laminated composites. Here, the material is modeled as a random hyperelastic
medium characterized by a spatially dependent, stochastic and anisotropic strain energy function. The
latter is parametrized by a set of material parameters, modeled as non-Gaussian random fields. From a
probabilistic standpoint, the construction is first achieved by invoking information theory and the principle of
maximum entropy. Constraints related to existence theorems in finite elasticity are, in particular, accounted
for in the formulation. The identification of the parameters defining the random fields is subsequently
addressed. This issue is attacked as a two-step problem where the mean model is calibrated in a first step,
by imposing a match between the linearized model and nominal values proposed in the literature. The
remaining parameters controlling the fluctuations are next estimated by solving an inverse problem in which
principal component analysis and the maximum likelihood method are combined. The whole framework is
illustrated considering an experimental database where multi-axial measurements are performed on a carbon-
epoxy laminate. This work constitutes a first step towards the development of an integrated framework that
will support decision making under uncertainty for the design, certification and qualification of composite
materials and structures.

Keywords: Composite; identification; hyperelasticity; random field; stochastic modeling; uncertainty
quantification.

1. Notation

The notations listed in Tabs. 1–4 will be used throughout this paper.

Table 1: Notation related to vectors and matrices.

a, a and [A] Deterministic scalar, vector and matrix
A, A and [A] Random scalar, vector and matrix
〈·, ·〉 Euclidean inner product, 〈a,b〉 =

∑n
i=1 aibi

‖ · ‖2 Euclidean norm, ‖a‖2 = 〈a,a〉
a⊗ b Outer product of vectors a and b
[I3] Identity matrix of rank 3
Tr(·) Trace of a matrix, Tr([A]) =

∑n
i=1Aii

‖ · ‖F Frobenius norm of [A], ‖[A]‖F = Tr([A]T [A])
M3

+ Set of (3× 3) matrices with strictly positive determinants
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Table 2: Notation related to kinematics.

B and B(r) Reference configuration of the composite and ply r
x Generic point in the reference configuration
ϕ Deformation map
[Fϕ] Deformation gradient associated with ϕ, [Fϕ(x)] = ∇ϕ(x)
[F ] Any deformation gradient in M3

+

Table 3: Notation related to deterministic constitutive equations.

w and w(r) Strain energy function in the composite and ply r
[P ] First Piola-Kirchhoff stress tensor

(f (r), f
(r)
⊥ ) Local basis of ply r

µ
(r)
i , 1 6 i 6 5 Material parameter defining w(r)

[M (r)] Structural tensor in ply r

2. Introduction

Characterization of the constitutive behavior of laminated polymer matrix composites (PMCs) via the
solution of deterministic inverse problems, has been pioneered and pursued by the U.S. Naval Research
Laboratory (US-NRL) for at least the last five decades [1, 2, 3, 4]. These approaches utilize dense data sets
generated by custom made multi-degree of freedom robotic testing machines capable of applying multiaxial
loading in order to activate rich sets of strain states in the tested materials. In addition, these approaches
utilized formalisms of the recoverable and irrecoverable parts of the strain-energy density to construct proper
objective functions in conjunction with the multiaxial data for determining the material properties of the
bulk lamina participating into these laminates by minimizing these objective functions via optimization
methodologies. In the context of the infinitesimal strains approximation these properties (including the
elastic moduli) essentially appear as coefficients of monomials of strain components that make up the re-
spective strain energy density functionals [3, 4]. An operationally useful assumption utilized in these studies
was that the elastic properties of each lamina were assumed to remain constant throughout the domain of
the plies consisting the laminates. However, the mechanical response of actual composites is very prone to
uncertainties, both in the linear and the nonlinear regime and prior to final failure. This variability is es-
sentially induced by complex material processing conditions during manufacturing (generating, for instance,
topological imperfections usually in the form of local defects, such as voids, fiber bundling, fiber-matrix
debonds, resin rich pockets etc.) and strongly impacts the performance of structural parts. One possible
way to assess such uncertainties is to develop stochastic constitutive models that enrich physical models with
a probabilistic description of all relevant uncertainties. While parametric models involving a few random
elastic parameters have been used for many years, information-theoretic modeling approaches in which the
elasticity tensor can be treated in full as a random matrix were proposed only recently. Such an approach
was first introduced in [5] for triclinic materials, and was latter extended to all symmetry classes in [6, 7].
Based on this formalism, statistical dependences between elastic moduli were also derived in [8]. In contrast,
the case of nonlinear constitutive laws has received much less attention to date. The proper randomization of
Ogden’s strain energy functions was first addressed in [9, 10] for homogeneous materials (see also [11]), and
the case of spatially dependent behaviors was treated in [12]. Studies reporting on the identification of such
models can be found in, e.g., [13, 14] for homogeneous biological tissues. In this context, the identification
of stochastic models for anisotropic, heterogeneous nonlinear materials remain widely unexplored.

The present work is a first step towards the construction of an uncertainty quantification (UQ) framework
that will ultimately support simple and robust decision making with respect to the design, certification and
qualification of composite materials (and structures at large) under the presence of uncertainty. As the initial
step in the development of this approach, the main goal of this paper is to introduce the formulation of a
probabilistic modeling approach that accounts for the variability exhibited by the hyperelastic strain energy
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Table 4: Notation related to stochastic constitutive equations.

W and W(r) Random strain energy function in the composite and ply r
Wε Regularized random strain energy function in the composite

{{G(r)
i (x),x ∈ B(r)}}5i=1 Random fields of material parameters defining W(r)

[M(r)] Random structural tensor in ply r

{{Ξ(r)
i (x),x ∈ B(r)}}5i=1 Normalized Gaussian random fields, associated with ply r

η 7→ R(η) Covariance function defining the Gaussian fields

L1 and L2 Correlation lengths along f (r) and f
(r)
⊥ , defining R

δ Coefficient of variation for the random material parameters

function defining the (recoverable) mechanical response of a laminated composite. Two specific contributions
are presented. First, an appropriate formulation defining the random field of anisotropic strain energy
function is proposed. This stochastic model is consistent with the anisotropy exhibited by the composite,
as well as with all mathematical requirements arising from the theory of nonlinear elasticity. Second, we
address the identification of model parameters using experimental, three-dimensional full-field data acquired
at the US-NRL [3, 15, 4] by using custom developed non-contact strain-field measurement methods [16,
17, 18]. A two-step strategy is followed where the mean model is calibrated through a linearization of
the nonlinear model, while the parameters related to statistical fluctuations are identified by combining a
principal component analysis with the maximum likelihood method.

The rest of this paper is organized as follows. The modeling framework is presented in Section 3.
Selected theoretical results related to the modeling of anisotropic stored energy functions are recalled, with
the aim to precisely identify constraints on material parameters, in accordance with existence theorems in
nonlinear elasticity. The probabilistic model is then introduced for a prototypical hyperelastic constitutive
law, relevant to transversely isotropic materials. Forward simulations are also conducted to briefly illustrate
the effect of model parameters on sample paths. Section 4 is focused on the identification of the non-Gaussian
random field model. The experimental database, associated with a carbon-epoxy laminated composite, is
first introduced. The calibration methodology is next detailed and finally deployed for the identification of
the anisotropic strain energy function random field.

3. Stochastic modeling of the hyperelastic strain energy function

3.1. Background on hyperelastic constitutive models for transversely isotropic heterogeneous materials

In this section, we recall the kinematics and constitutive equations of deterministic hyperelasticity (see,
e.g., [19, 20]). Since the laminate under consideration is made of unidirectional transversely isotropic plies,
the presentation is restricted to the case of materials exhibiting such material symmetry.

Let (f (r), f
(r)
⊥ ) be the basis of unit vectors defining the local frame of ply r (see Fig. 1) and let (e1, e2, e3)

be the canonical basis of R3. The plane of the plies is normal to e3. The local basis vectors are given by

e3

e1

e2
f (r)

f
(r)
⊥

+θ

+θ

Figure 1: Definition of the global and local basis vectors.

3



f (r) = sin(θ)e1 + cos(θ)e2 , f
(r)
⊥ = − cos(θ)e1 + sin(θ)e2 (1)

for odd plies, and read as

f (r) = − sin(θ)e1 + cos(θ)e2 , f
(r)
⊥ = − cos(θ)e1 − sin(θ)e2 (2)

for even plies, with θ ∈ [0, π/2]. In this paper, the composite is defined by a stacking sequence of [+θ,−θ]16

(meaning that the first ply is defined by an angle +θ, the second one by an angle −θ, and this two-ply
structure is stacked up 16 times; hence a total of 32 plies); see Section 4.1 for a more complete description
of the material.

Let B be the reference configuration occupied by the composite and let ∂B denote its boundary. Each
ply r has a reference configuration denoted by B(r), such that B = ∪32

r=1B
(r) with B(r) ∩ B(s) = {∅}

for r 6= s, 1 6 r, s 6 32. In the present case, all domains occupied by the plies are assumed to exhibit
the same geometrical characteristics after material processing. The material undergoes a deformation map
ϕ : B → R3 that is assumed to be injective and orientation-preserving. The associated deformation gradient
is denoted by

[Fϕ(x)] = ∇ϕ(x) , (3)

such that det([Fϕ(x)]) > 0 for all x in B. In the following, any deformation gradient evaluated at a fixed
location x in B will be denoted by [F ] ∈ M3

+. The material is assumed to be hyperelastic, meaning that
there exists a stored energy function w : B ×M3

+ → R such that the first Piola-Kirchhoff stress tensor can
be obtained by

[P (x, [F ])]ij =
∂w(x, [F ])

∂[F ]ij
, 1 6 i, j 6 3 , (4)

for all [F ] ∈M3
+. The stored energy function w is further assumed to be frame-invariant, that is, it satisfies

w(x, [F ]) = w(x, [Q][F ]) , ∀[Q] ∈ SO(3) (5)

for all x in B. The stored energy function w can thus be decomposed as

w(x, [F ]) =

32∑
r=1

χ(r)(x)w(r)(x, [F ]) , ∀[F ] ∈M3
+ , (6)

where x 7→ χ(r)(x) is the characteristic function of the r-th ply (that is, χ(r)(x) = 1 if x ∈ B(r), and
χ(r)(x) = 0 otherwise) and w(r) : B(r) ×M3

+ → R is the stored energy function in B(r).

In order to represent the material symmetry, the stored energy function w(r) must satisfy the following
invariance property:

w(r)(x, [F ]) = w(r)(x, [F ][Q]) , ∀[Q] ∈ G (r) , (7)

for all x in B(r), where G (r) ⊂ SO(3) is the symmetry group associated with the preferred direction f (r),
i.e.,

G (r) = {[Q] ∈ SO(3) : [Q]f (r) = f (r)} . (8)

In this work, and without loss of generality, the anisotropic stored energy function proposed in [21] (for
all symmetry classes) is selected to model each ply (see Appendix A). The stored energy function w(r) is
specifically decomposed as

w(r)(x, [F ]) = w
(r)
iso (x, [F ]) + w

(r)
ani(x, [F ])− ψ∗(x) , (9)

in which the isotropic and anisotropic contributions, as well as the additional term ψ∗, are defined as follows.

(I.) The isotropic potential w
(r)
iso corresponds to a compressible Mooney-Rivlin model and is given by

w
(r)
iso (x, [F ]) = µ

(r)
1 (x)‖[F ]‖2F + µ

(r)
2 (x)‖Cof([F ])‖2F + µ

(r)
3 (x) det([F ])2 − dr(x) log(det([F ])) , (10)
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for all [F ] ∈ M3
+, where {µi(x)}3i=1 are model parameters, with µ3(x) > 0, and dr(x) = 2µ

(r)
1 (x) +

4µ
(r)
2 (x) + 2µ

(r)
3 (x) ∀x ∈ B(r). The fields x 7→ µ

(r)
1 (x) and x 7→ µ

(r)
2 (x) are assumed to be uniformly

bounded from below by strictly positive constants, i.e., there exists (τ
(r)
1 , τ

(r)
2 ) such that

∀x ∈ B(r) , µ
(r)
1 (x) > τ (r)

1 > 0 , µ
(r)
2 (x) > τ (r)

2 > 0 . (11)

(II.) The anisotropic contribution w
(r)
ani is given by

w
(r)
ani(x, [F ]) =

(
Tr([F ]T [F ][M (r)(x)])

)1+β4

(1 + β4)Tr([M (r)(x)])β4
+

(
Tr(Cof([F ]T [F ])[M (r)(x)])

)1+β5

(1 + β5)Tr([M (r)(x)])β5

− 2Tr([M (r)(x)]) det([F ]) ,

(12)

where β4 > 0, β5 > 0, and [M (r)(x)] is a symmetric and positive-definite second-order tensor that is
referred to as to a structural tensor at point x. This tensor can be decomposed as

[M (r)(x)] = µ
(r)
4 (x)f (r) ⊗ f (r) + µ

(r)
5 (x)([I3]− f (r) ⊗ f (r)) , ∀x ∈ B(r) , (13)

in which x 7→ µ
(r)
4 (x) and x 7→ µ

(r)
5 (x) are fields of model parameters (note that µ

(r)
4 (x) > 0 and

µ
(r)
5 (x) > 0 for all x ∈ B(r), is implied by the positive-definiteness of [M (r)(x)]). It satisfies, by

construction, the invariance property

[M (r)(x)] = [Q][M (r)(x)][Q]T , ∀[Q] ∈ G (r) , (14)

where G (r) is given by Eq. (8).

(III.) The term ψ∗ is defined as

ψ∗(x) = µ
(r)
3 (x)δ

(r)
0 (x)2 − dr(x) log(δ

(r)
0 (x))− 2Tr([M (r)(x)])δ

(r)
0 (x) , (15)

where the mapping x 7→ δ
(r)
0 (x) is defined as

δ
(r)
0 (x) = 2Tr([M (r)(x)]) +

√
(Tr([M (r)(x)]))2 + 2µ

(r)
3 (x)dr(x)

2µ
(r)
3 (x)

. (16)

In this setting, it can be shown that the stored energy function w(r) satisfies the objectivity constraint
and all the mathematical requirements involved in the existence theorems of nonlinear elasticity [22, 23] (see
also [19]); see Appendix B.

Remark 3.1. Using Eq. (13), the anisotropic invariants involved in the right-hand side of Eq. (12) can be
expressed as

Tr([F ]T [F ][M (r)(x)]) = µ
(r)
4 (x)‖[F ]f (r)‖2 + µ

(r)
5 (x)(‖[F ]f

(r)
⊥ ‖

2 + ‖[F ]e3‖2) (17)

and

Tr(Cof([F ]T [F ])[M (r)(x)]) = µ
(r)
4 (x)‖Cof([F ])f (r)‖2 + µ

(r)
5 (x)(‖Cof([F ])f

(r)
⊥ ‖

2 + ‖Cof([F ])e3‖2) . (18)

For any unit vector a, the terms ‖[F ]a‖ and ‖Cof([F ])a‖ represent the stretch along the direction defined
by a and the deformation of an area with unit normal vector a, respectively. This interpretation serves as a
physical basis to justify the use of the retained anisotropic contribution.
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3.2. Construction of the random field model

In this section, the proper randomization of the spatially dependent, anisotropic stored energy function
introduced in Section 3.1 is addressed, following the methodology proposed in [12] for hyperelastic materi-
als. The approach consists of substituting the fields of deterministic material parameters by non-Gaussian
random fields, the probabilistic models of which must be constructed. In this work, the exponents β4 and
β5 are taken deterministic and could be randomized as well, depending on the application.

Let {W(r)(x, ·),x ∈ B(r)} be the stored energy function random field, defined on a probability space
(Ω, T ,P) and corresponding to the probabilistic modeling of the anisotropic stored energy function w(r),

1 6 r 6 32. Let {G(r)(x) = (G
(r)
1 (x), . . . , G

(r)
5 (x)),x ∈ B(r)} be the random field corresponding to the

probabilistic modeling of the vector-valued model parameter field x 7→ (µ
(r)
1 (x), . . . , µ

(r)
5 (x)), associated with

{W(r)(x, ·),x ∈ B(r)}.
Some mathematical preliminaries regarding the functional form of the stochastic potential W(r)(x, ·),

x being fixed in B(r), are first discussed in Section 3.2.1. The construction of the probabilistic model for
{G(r)(x),x ∈ B(r)} is then tackled in Section 3.2.2. Note at this point that this model can be used per
se, or can be integrated as an optimal prior model in a Bayesian approach (see Chapter 26 in [24] for

methodological aspects). In the following, it is assumed that {G(r)(x),x ∈ B(r)} is a second-order random

field, and that the mean function of x 7→ G(r)(x) is independent of x and r, with

E{G(r)(x)} = g , (19)

where E denotes the mathematical expectation and g = (g
1
, . . . , g

5
) is such that g

j
> 0 for 1 6 j 6 5.

3.2.1. Regularized form of the stochastic stored energy function

In order to ensure uniform boundedness from below, a regularized form W
(r)
ε of the random stored energy

function is introduced as

W(r)
ε (x, [F ]) =

1

1 + ε
(W

(r)
1 (x, [F ]) + εw1([F ])) + W

(r)
2 (x, [F ]) + W

(r)
vol(x,det([F ]))−W

(r)
vol(x, D

(r)
0 ) , (20)

where 0 < ε � 1 is an arbitrary small parameter. The stochastic potential W
(r)
1 (x, ·) corresponds to the

stochastic modeling of the first two terms in the isotropic contribution given by Eq. (10) and writes

W
(r)
1 (x, [F ]) = G

(r)
1 (x)‖[F ]‖2F +G

(r)
2 (x)‖Cof([F ])‖2F , ∀[F ] ∈M3

+ . (21)

By construction, the mean function x 7→ E{W(r)
1 (x, ·)} is independent of x and is denoted by E{W(r)

1 (x, ·)} =
w1(·), with

w1([F ]) = g
1
‖[F ]‖2F + g

2
‖Cof([F ])‖2F . (22)

By substituting Eq. (21) and Eq. (22) into Eq. (20), a regularized, isotropic strain energy function W1,ε can
be introduced as

W1,ε(x, [F ]) = G1ε(x)‖[F ]‖2F +G2ε(x)‖Cof([F ])‖2F , (23)

with

G1ε(x) =
1

1 + ε
(G1(x) + εg

1
) (24)

and

G2ε(x) =
1

1 + ε
(G2(x) + εg

2
) . (25)

Following Eq. (12), the random contribution W
(r)
2 takes the form

W
(r)
2 (x, [F ]) =

(
Tr([F ]T [F ][M(r)(x)])

)1+β4

(1 + β4)(Tr([M(r)(x)]))β4

+

(
Tr(Cof([F ]T [F ])[M(r)(x)])

)1+β5

(1 + β5)(Tr([M(r)(x)]))β5

, (26)
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where [M(r)(x)] is now a random matrix given by

[M(r)(x)] = G
(r)
4 (x)f (r) ⊗ f (r) +G

(r)
5 (x)([I3]− f (r) ⊗ f (r)) . (27)

Similarly, from Eq. (15), the random volumetric contribution W
(r)
vol is given by

W
(r)
vol(x, δ) = G

(r)
3 (x)δ2 −Dr(x) log(δ)− 2Tr([M(r)(x)])δ , (28)

where the random variable Dr(x) reads as Dr(x) = 2G
(r)
1 (x) + 4G

(r)
2 (x) + 2G

(r)
3 (x). Finally, the expression

of the random variable D
(r)
0 involved in the very last term of the right-hand side of Eq. (20) can be deduced

from Eq. (16), i.e.,

D
(r)
0 (x) = 2Tr([M(r)(x)]) +

√
(Tr([M(r)(x)]))2 + 2G

(r)
3 (x)Dr(x)

2G
(r)
3 (x)

. (29)

In order to ensure the well-posedness of the stochastic boundary value problem, it is further assumed that

the random variables G
(r)
1 (x), . . . , G

(r)
5 (x) are such that

G
(r)
j (x) > 0 , 1 6 j 6 5 , (30)

for all x in B(r), almost surely. By substituting Eqs. (21)-(30) into the stochastic stored energy function
given by Eq. (20), it can be deduced that

W(r)
ε (x, [F ]) > cε w1([F ]) , (31)

with cε = ε/(1 + ε). Eq. (31) shows that w1 is a deterministic lower bound for the random strain energy
function, which then satisfies uniform growth conditions (see Appendix B).

3.2.2. Definition of the probabilistic model for the set of coefficients

Given the inequality constraints raised by the well-posedness of the stochastic boundary value problem,

the random fields {{G(r)
i (x),x ∈ B(r)}}5i=1 cannot be Gaussian and must be modeled as non-Gaussian

random fields. Following the methodology proposed in [5] for anisotropic linear elastic materials (see also
[6, 7]) and advanced in [12] for spatially dependent anisotropic stored energy functions, each random field

{G(r)
i (x),x ∈ B(r)} is then expressed through a nonlinear transformation of a Gaussian random field, that

is:
G

(r)
i (x) = Hi

(
Ξ

(r)
i (x)

)
, ∀x ∈ B(r) , 1 6 i 6 5 , (32)

where the mapping Hi is constructed below and such that all considered constraints (e.g., Eq. (30)) hold,

and {Ξ(r)
i (x),x ∈ B(r)} denotes the restriction to B(r) of a real-valued, homogeneous and normalized

Gaussian random field. Furthermore, and since the constraints on material parameters do not contain cross
information between them (see Section 3.1), the information-theoretical framework (see below) implies that

{G(r)
i (x),x ∈ B(r)} and {G(r)

j (x),x ∈ B(r)} (and similarly, {Ξ(r)
i (x),x ∈ B(r)} and {Ξ(r)

j (x),x ∈ B(r)}),
1 6 i 6= j 6 5, are statistically independent random fields. In order to make the identification of the
probabilistic model tractable, it is assumed below that (i) the covariance functions defining the underlying
Gaussian random fields exhibit the same algebraic form, regardless of the material parameter; (ii) the
hyperparameters defining the random fields do not change from one ply to another. Note that this latter
assumption is consistent with the very structure of the material (which is manufactured by stacking up
independent samples of unidirectional plies), provided that the impact of the curing process (which may
generate spatial fluctuations in the mean fields for thick composite parts, for instance) can reasonably be
neglected.
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Let η 7→ R(η) denote the selected covariance function of the Gaussian fields. For a given ply r, this
function is given by

R(η) = ρ1(〈η, f (r)〉)× ρ2(〈η, f (r)
⊥ 〉) , (33)

where 〈·, ·〉 denotes the Euclidean inner product and the univariate covariance functions are defined as

ρk(dk) =

(
2Lk

πdk

)2

sin2

(
πdk
2Lk

)
, 1 6 k 6 2 . (34)

In the equation above, the parameters L1 and L2 correspond to the correlation lengths along the directions

f (r) and f
(r)
⊥ , respectively.

The definition of the mappings Hi, 1 6 i 6 5, is then achieved by invoking the maximum entropy principle

[25, 26, 27] to construct the probability distributions of G
(r)
i (x), with 1 6 i 6 5 and x fixed in B(r) [12]; see

[9, 10] for the case of homogeneous hyperelastic materials, as well as [13] for a discussion regarding model
identification. The knowledge of these probability distributions will be used, below, to derive analytical
expressions for the transformations {Hi}5i=1. From a probabilistic standpoint, this approach completely
defines the full systems of marginal distributions of these fields. Under the constraints

E{G(r)
i (x)} = g

i
(35)

and
E{log(G

(r)
i (x))} = χ

(r)
i , |χ(r)

i | < +∞ , (36)

arising from Eq. (19) for the former and from the fact that G
(r)
i (x) > 0 for the latter (see [28]), it can be

shown that the random variable G
(r)
i (x) (x being fixed) follows a Gamma distribution. Consequently, the

random field {G(r)
i (x),x ∈ B(r)} can simply be defined, in the present case, as

G
(r)
i (x) = F−1

Γ(ki,θi)

(
Φ(Ξ

(r)
i (x))

)
, 1 6 i 6 5 , (37)

where F−1
Γ(ki,θi)

is the inverse cumulative distribution function of the Gamma law with parameters (ki, θi)

and Φ is the cumulative distribution function of the normal distribution. Eq. (37) explicitly defines the
mapping Hi, introduced in Eq. (32), and upon expressing the parameters of the Gamma distribution in
terms of second-order properties, it can be written as

G
(r)
i (x) = F−1

Γ(δ−2,δ2g
i
)

(
Φ(Ξ

(r)
i (x))

)
, 1 6 i 6 5 , (38)

in which it was assumed that all random fields exhibit the same level of statistical fluctuations, measured
by the coefficient of variation δ.

As pointed out in [12], it should be noticed that the above stochastic modeling step encompasses the
case of isotropic materials and can readily be generalized to other types of strain energy functions.

3.3. Simulations of the random field model
In this section, forward simulations are performed in order to qualitatively illustrate the effect of model

parameters on sample characteristics. The random field is generated on the geometry depicted in Fig. 2,
which corresponds to the configuration that will be considered in the identification of the random field model
in Section 4. Here, a single-ply laminate is considered, and simulations are conducted for the first material

parameter random field {G(1)
1 (x),x ∈ B(1)}, with g

1
= 1. The numerical simulation of the associated

Gaussian field {Ξ(1)
1 (x),x ∈ B(1)} is carried out using a spectral expansion [29, 30]. Realizations of the

Gaussian field for different sets of correlation lengths (L1,L2) are shown in Figs. 3-4.
It can be seen that the samples exhibit patterns that are characteristic of an isotropic correlation structure

for L1 = L2. In contrast, the realizations of the Gaussian field show pronounced anisotropy along either
f⊥ or f , depending on the ordering of the spatial correlation lengths L1 and L2. Realizations of the

non-Gaussian field {G(1)
1 (x),x ∈ B(1)} are then shown in Figs. 5-6, for different values of the correlation

lengths and coefficient of variation δ. It can be observed that the field {G(r)
j (x),x ∈ B(r)} inherits the

aforementioned patterns associated with the underlying Gaussian field.
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Figure 2: Representation of the geometry under consideration, with L = 50mm, ` = 25mm and e = 4.1mm.

Figure 3: One realization of the Gaussian field {Ξ
(r)
1 (x),x ∈ B(r)} for an even ply, with L1 = L2 = 2 (left) and L1 = L2 = 10

(right).

Figure 4: One realization of the Gaussian field {Ξ
(r)
1 (x),x ∈ B(r)} for an even ply, with (L1,L2) = (2, 10) (left) and

(L1,L2) = (10, 2) (right).

4. Description of the experimental setup and model identification

In this section, the identification of the random field model for the anisotropic strain energy function is
pursued. The experimental database is first described in detail in Section 4.1. The proposed methodology
enabling the identification of the hyperparameters is then discussed and applied in Section 4.2.

4.1. Description of the experimental database

In this application, the unidirectional ply corresponds to a 3501-6 epoxy resin matrix, reinforced with
AS4 carbon fibers. Four ply angles θ were considered and two specimens were tested in tension for each angle

9



Figure 5: One realization of {G(r)
1 (x),x ∈ B(r)} for (L1,L2, δ) = (2, 2, 0.1) (left) and (L1,L2, δ) = (2, 2, 0.2) (right).

Figure 6: One realization of {G(r)
1 (x),x ∈ B(r)} for (L1,L2, δ) = (2, 10, 0.1) (left) and (L1,L2, δ) = (2, 10, 0.2) (right).

(hence, a total of 8 specimens tested). As indicated previously, the layup stacking sequence of each specimen
was [θ,−θ]16. A displacement distribution ud was applied on the top and fixed boundary conditions were
prescribed at the bottom of the composite samples; see Fig. 7. This loading condition represents one of 72
loading paths defined to homogeneously sample a 4-dimensional loading space spanned by the tension and
the 3-rotation loading bases. This loading path is linear and starts from the origin (0,0,0,0) and corresponds
to the case of pure tension. The particular loading subspace where this path is defined is one of the 15
4-dimensional subspaces that can be selected out of the full 6-dimensional loading space that NRL66.3
can apply loads in and it was selected by a process described in [31]. The loading paths sampling this
4-dimensional subspace are linear combinations of the loading space bases and are applied (one loading path
per specimen) on the upper edge of the specimen via the US-NRL’s NRL66.3 6-DoF robotic loading frame
as described in [3, 4]. Note that the geometry presents two notches that were specifically introduced to
disturb the strain field and ensure that some areas of the material will exhibit material nonlinearity in their
response [4]. Snapshots of the displacement and strain fields were acquired using the digital imaging based
method described in [18] on the front and rear faces of the composite coupons, until failure was reached (see
[4] for a complete description of the experimental setup). The measurement was performed on the front and
rear faces motivated by the need to have access to the largest data set possible from each test performed.
It should be noted that marking the specimens from both sides at the same x, y is particularly challenging
and some misalignment of the optical metrology patterns is always expected. For this reason, the present
analysis does not make any assumption about alignment or not of the front and back patterns. Instead, it
allows for calculating the displacement and strain fields through vector and tensor interpolation respectively,
at the locations required for further analysis. A summary of the experimental parameters is given in Tab. 5,
where nexp denotes the number of observation points on the back and front faces and Texp is the number of
loading steps until the maximum displacement maxs∈Texp

ud(s) imposed on the top of the specimen has been
reached. For further developments related to the statistical inverse problem, the experimental database was
postprocessed as follows. The set of observation points with the lower number of entries (nexp = 2357) was
selected as the reference set. For every observation point in this set, the nearest neighbors belonging to the
seven remaining sets were then determined using the k-nearest neighbors algorithm. An additional set of
observation points was then obtained by solving an optimization problem such that this new set constitutes
an accurate approximation of all the sets of observation points for all the experimental realizations. The
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Figure 7: Representation of the boundary conditions applied to the composite specimens.

θ θ1 = 15◦ θ2 = 30◦ θ3 = 60◦ θ4 = 75◦

Realization ωexp
` ωexp

1 ωexp
2 ωexp

1 ωexp
2 ωexp

1 ωexp
2 ωexp

1 ωexp
2

nexp 2380 2380 2380 2375 2357 2380 2378 2380

Texp 731 686 410 471 211 272 195 179

maxs∈Texp ud(s) [mm] 0.123 0.116 0.158 0.150 0.485 0.745 0.715 0.614

Table 5: Summary of experimental parameters.

resulting set contains ñexp = 2355 observation points.

Similarly, the sets of loading steps were approximated by a single set T̃exp such that the maximum
prescribed displacement on the top is given by 0.1mm with 10 equally spaced steps, regardless of the ply
angle and realization. In this setting, the failure of the composite material is not taken into account and
may be addressed in the future. The experimentally obtained boundary conditions in terms of the applied
displacement evolution and the corresponding reaction forces evolution for all four values of the lamination
angle are presented in Fig.8 while their associated approximations are shown in Fig.9.

The available realizations of the component x 7→ [Eexp(s∗; x, θ)]22 of the strain field are shown in Figs. 10-
13, where [Eexp(s; x, θ)] is the experimental Green-Lagrange deformation tensor at loading step s and point
x, for a composite defined by a stacking sequence of [+θ,−θ]16, and s∗ is the final loading step such that
the prescribed displacement is ud = 0.1 mm. The variability in the reconstructed strain field is clearly
observed and will be exploited in the next section of identify the parameters of the random field model.

4.2. Identification methodology

This section is focused on the identification of the random field model for the anisotropic strain energy
function, presented in Section 3.2. This model depends on the mean vector g, the deterministic exponents
(β4, β5), the coefficient of variation δ, and the spatial correlation lengths (L1,L2). In this work, the
identification problem is attacked through a two-step strategy. The mean model and the deterministic
exponents are first determined in Section 4.2.1, by imposing a fit of the linearized elasticity tensor. The
hyperparameter controlling the statistical fluctuations and the correlation lengths are then identified in
Section 4.2.2, using the maximum likelihood method.

It is assumed below that the level of experimental noise is negligible as compared to that of intrinsic
material variability, so that it can be neglected in the calibration stages. In addition, we note that this noise

11
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Figure 8: Left: experimental vertical displacement prescribed on the top of the specimens. Right: experimental reaction force
on the top the specimens with respect to the prescribed displacement.
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Figure 9: Left: approximation of the experimental boundary conditions by a single set of displacements (white bullets). Right:
associated reaction forces with respect to the prescribed displacement.

should also be modeled and identified, and that its consideration is more relevant in a Bayesian approach
to model calibration.

4.2.1. Identification of the mean model and deterministic exponents

In order to identify the mean vector g and the exponents (β4, β5), the mean elasticity tensor at small
strains is fitted with known values available in [15, 3]. From the definition of the stochastic stored energy
function, it can be deduced that the associated random elasticity tensor at small strains reads as

JA(r)
ε (x)K =

1

1 + ε

(
JA(r)

iso (x)K + εE{JA(r)
iso (x)K}

)
+ JA(r)

sym(x)K , (39)

where the isotropic contribution writes

JA(r)
iso (x)K = (4G

(r)
2 (x) + 4G

(r)
3 (x))[I3]⊗ [I3] + (4G

(r)
1 (x) + 4G

(r)
2 (x))[I3]� [I3] (40)

12



Figure 10: One experimental realization of the strain field x 7→ [Eexp(s∗;x, θ)]22, for θ = 15◦, on the front (left) and back
(right) surfaces.

Figure 11: One experimental realization of the strain field x 7→ [Eexp(s∗;x, θ)]22, for θ = 30◦, on the front (left) and back
(right) surfaces.

and the anisotropic term is given by

JA(r)
sym(x)K = 4(β4 + β5)

[M(r)(x)]⊗ [M(r)(x)]

Tr([M(r)(x)])
+ 4Tr([M(r)(x)])(1 + β3 + β5)[I3]⊗ [I3]

− 4(1 + β5)([I3]⊗ [M(r)(x)] + [M(r)(x)]⊗ [I3]) + 4([I3]� [M(r)(x)] + [M(r)(x)]� [I3]) .

(41)

Let h = (g, β4, β5) be the sought-for vector of mean values, and denote by JA(h)K the nominal value of the
non-regularized linearized elasticity tensor, obtained by summing up the right-hand sides in Eqs. (40)-(41):

JA(h)K = (4g
2

+ 4g
3
)[I3]⊗ [I3] + (4g

1
+ 4g

2
)[I3]� [I3]

+ 4(β4 + β5)
[M (r)]⊗ [M (r)]

Tr([M (r)])
+ 4Tr([M (r)])(1 + β3 + β5)[I3]⊗ [I3]

− 4(1 + β5)([I3]⊗ [M (r)] + [M (r)]⊗ [I3]) + 4([I3]� [M (r)] + [M (r)]� [I3]) .

(42)

In the equation above, the mean value [M (r)] of the structural tensor [M(r)(x)] is given by (see Eq. (27))

[M (r)] = g
4
f (r) ⊗ f (r) + g

5
([I3]− f (r) ⊗ f (r)) . (43)

For given values of the mean model and deterministic exponents, Eq. (42) allows for computing the mean
engineering constants, namely the longitudinal and transversal moduli (EL, ET , GL), and Poisson’s ratios
(V L, V T ). The vector of mean parameters and deterministic exponents is then defined as:

h = min
q∈Hh

5∑
i=1

(zi(q)− zi)2

z2
i

, (44)
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Figure 12: One experimental realization of the strain field x 7→ [Eexp(s∗;x, θ)]22, for θ = 60◦, on the front (left) and back
(right) surfaces.

Figure 13: One experimental realization of the strain field x 7→ [Eexp(s∗;x, θ)]22, for θ = 75◦, on the front (left) and back
(right) surfaces.

where z(q) = (EL(q), ET (q), V L(q), V T (q), GL(q)) is the vector gathering the mean engineering constants
associated with the tensor JA(q)K, obtained by substituting q for h in Eq. (42), and z is the vector of target
mean values defined in [15, 3] as z = (139.1400, 10.3620, 0.2860, 0.3080, 6.6478) (units for elastic moduli:
GPa). Following the constraints on material parameters introduced in Section 3, the admissible set Hh is
defined as Hh = (0,+∞)5 × [0,+∞)2. The optimization problem defined by Eq. (44) is solved with Matlab
function fmincon, for a series of 100 independent guesses obtained from Latin Hypercube Sampling (LHS).
The final values of the cost function with respect to the index of the (vector-valued) starting point are shown
in the left panel of Fig. 14, in which filled bullets are used to highlight starting points for which the final
value of the cost function is below 10−10. The convergence of the optimization algorithm is shown in the
right panel of Fig. 14 for the optimal starting point.

Similarly, the identified values of the mean parameters g
1
, . . . , g

5
and exponents β4, β5 are shown for all

starting points in Figs. 15, 16 and 17. The filled bullets represent the cases for which the cost function is
below 10−10, and it can be seen that the identification turns out to be robust with respect to the initial guess
of the solution. Note that the point associated with sample index 57 (see the right panel in Fig. 15, as well
as the left panel in Fig. 16 and the right panel in Fig. 17) is not a robust candidate, since the corresponding
final value of the cost function is the largest among all other combinations (see Fig. 14, left).

The mean parameters are finally identified as follows:

g
1

= 1771.52 , g
2

= 65.07 , g
3

= 67.49 , g
4

= 1403.72 , g
5

= 72.06 , (45)

in MPa, and the deterministic exponents are given by

β4 = 25.42822 , β5 = 0.04549 . (46)

14



0 20 40 60 80 100
10

-15

10
-10

10
-5

10
0

10
5

0 50 100 150 200
10

-20

10
-10

10
0

10
10

10
20

Figure 14: Left: final values of the cost function for 100 starting points obtained by Latin Hypercube Sampling. Filled bullets
correspond to the cases for which the cost function is below 10−10. Right: convergence of the optimization algorithm for the
82th starting guess.
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Figure 15: Identified optimal values of the mean parameters g
1

and g
2
, obtained for the 100 starting points. Filled bullets

correspond to cases for which the final value of the cost function is below 10−10. In the case of g
2
, the limits of the y-axis have

been reduced for readability.

4.2.2. Identification of the fluctuation parameter and correlation lengths

Let ξ = (L1,L2, δ) be the vector-valued parameter to be identified, gathering the fluctuation parameter
and the correlation length, and denote by Hξ = (0,+∞)2 × (0, 1) its admissible set. For any angle θ (which
specifies the laminate configuration), ζ ∈ Hξ and the value of h identified in Section 4.2.1, we introduce
the Rñexp -valued random variable Y(ζ; θ) (recall that ñexp is the number of observation points) defined
component-wise as

Yi(ζ; θ) = log

 ∑
s∈ T̃ exp

‖[Ecomp(s; x(i), ζ, θ)]‖2F

 , 1 6 i 6 ñexp , (47)

where [Ecomp(s; x(i), ζ, θ)] is the Green-Lagrange deformation tensor associated with the computational

model at loading step s ∈ T̃ exp, taken at location x(i) on the observed boundaries. A few remarks regarding
the definition of the random variable Y(ζ; θ) are relevant at this point. First, the summation in the right-
hand side of Eq. (47) corresponds, for a given component Yi(ζ; θ) (that is, for a given observed point), to
the natural discretization of the L2 norm along the loading paths. Second, it should be noticed that the
logarithm is introduced to make the random variable more sensitive to small values of the norm. Finally,
the introduction of a vector-valued variable allows spatial information to be preserved and will allow us to
formulate the identification problem in reduced coordinates, using a statistical reduction (see below). Let
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Figure 17: Identified optimal values of the exponents β3 and β4, obtained for the 100 starting points. Filled bullets correspond
to cases for which the final value of the cost function is below 10−10. In the case of β5, the limits of the y-axis have been
reduced for readability.

mY(ζ; θ) and [CY(ζ; θ)] be the mean vector and covariance matrix of Y(ζ; θ). For notational convenience,
the dependence of these second-order properties on ζ and θ is briefly dropped below.

For 1 6 m 6 ñexp, let Y(m) be the reduced statistical model of the random variable Y obtained through
a principal component analysis:

Y(m) = mY +

m∑
k=1

√
λkηkϕ

(k) , (48)

where {(λk,ϕ(k))}k are the sets of associated eigenvalues and eigenvectors of [CY], and ηk is the real-valued
random variable such that

ηk =
1√
λk
〈Y −mY,ϕ

(k)〉 , (49)

The order m of the reduced model is deduced from a standard convergence analysis, looking at the conver-
gence of the error function m 7→ E(m) defined as

E(m) = 1−
∑m
α=1 λα∑ñexp

α=1 λα
. (50)

Note at this stage that m is implicitly depending on both θ and ζ. For a given fiber orientation θ, let
Yexp(θ) be the vector-valued random variable with components

Y
exp
i (θ) = log

 ∑
s∈ T̃ exp

‖[Eexp(s; x(i), θ)]‖2F

 , 1 6 i 6 ñexp , (51)
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where we recall that [Eexp(s; x(i), θ)] is the experimental version of the random Green-Lagrange deformation
tensor at loading step s and location x(i). Note that Y(ζ; θ) and Yexp(θ) are not defined on the same
probability space. Let yexp(θ, ωexp

` ), ` ∈ {1, 2}, denote the experimental realizations of Yexp(θ). Consider
next the reduced coordinates defined as the projection of the experimental samples onto the basis obtained
from the computational model (for fixed values of the hyperparameters, that is, for a fixed value of ζ):

ηexp
k (ζ; θ, ωexp

` )
def
=

1√
λk(ζ; θ)

〈yexp(θ, ωexp
` )−mY(ζ; θ),ϕ(k)(ζ; θ)〉 , 1 6 k 6 m(θ, ζ) , (52)

where the set of eigenpairs {(λk,ϕ(k))}k was introduced below Eq. (48) and parameter dependence is now
recalled. The vector-valued parameter ξ is then defined as

ξ = arg max
ζ ∈Hξ

L(ζ) , (53)

where L : Hξ → R denotes the log-likelihood function given by

L(ζ) =

4∑
j=1

2∑
`=1

m(θj ,ξ)∑
k=1

log
{
f̂ηk(θj ,ζ)

(
ηexp
k

(
ζ; θj , ω

exp
`

))}
. (54)

In Eq. (54), f̂ηk(θj ,ζ) is the probability density function of random variable ηk(θj , ζ) (see Eq. (49)) estimated
with a kernel density estimator, using Monte Carlo simulations (with 400 independent realizations) and
the computational model parametrized by ζ (and the value of h identified in the previous section) for the
configuration defined by θj (i.e., with a stacking sequence [+θj ,−θj ]16). The definition of the angles {θj}4j=1

is provided in Tab. 5. From a computational standpoint, the mesh of the composite domain contains 139 200
8-node hexahedral finite elements (395 721 degrees of freedom). The nonlinear problem is solved with an
in-house finite element implementation, using a standard Newton-Raphson method with a load stepping
scheme (used libraries: boost, ParMETIS, Trilinos). Linear systems are solved with the preconditioned
conjugate gradient method.

Given the computational burden associated with this identification step, the non-convex optimization
problem given by Eq. (53) is solved by evaluating the cost function on a grid with equally spaced points.
Other strategies could be pursued to solve this problem and in particular, to decrease the computational
cost associated with the propagation of uncertainties through nonlinear models. A detailed discussion about
stochastic solvers is outside the scope of this work, and the reader is referred to the general review [24].
Here, the grid is specifically defined by imposing reasonable physics-guided constraints, in particular for the
correlation lengths (which are, for instance, assumed to be smaller than the smallest characteristic length
of the specimens). The graph of ζ 7→ L(ζ) is shown in Fig. 18, and the optimal values are found as

ξ = (11.18, 11.18, 0.1) . (55)

The fact that the correlation lengths along f (r) (which is the direction of the fibers) and f
(r)
⊥ are found to be

equal constitutes an unexpected result. However, this may be a consequence of the relative “isotropization” of
the bulk response of the composite with respect to the loading conditions, achieved by the stacking sequence
(recall that only boundary measurements are made). The level of statistical fluctuations is rather contained
(δ = 0.1), and is consistent with typical values obtained from multiscale simulations with non-separated
scales on similar materials (see, e.g., Section 4.2 in [10]). Realizations of the random fields associated with
the engineering constants for transversely isotropic materials are shown in Figs. 19, 20 and 21, hence showing
the substantial variability of the mechanical properties over the considered ply. It should be noticed that the
fluctuation patterns and ranges in these figures are induced by the values of the hyperparameters identified
using the database. In particular, the parameters L1 and L2 control the frequency of the spatial oscillations
along the local principal directions in the ply, while the range of fluctuations is controlled by the parameter
δ.
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Figure 18: Graph of the log-likelihood function ζ 7→ L(ζ). Note that marker size is proportional to the value of the cost
function.

Figure 19: One realization of the longitudinal and transversal Poisson coefficients (from left to right) in the first ply (with
θ = 60◦, L1 = L2 = 11.18, δ = 0.1).

Figure 20: One realization of the longitudinal and transversal Young moduli (from left to right) in the first ply (with θ = 60◦,
L1 = L2 = 11.18, δ = 0.1).

Given the very limited number of experimental realizations, quality assessment is finally achieved by
controlling that most experimental realizations for some components of the Green-Lagrange deformation
tensor at observable points are included in the support of the associated probability density functions
estimated with the identified stochastic model (note at this point that the experimental realizations of the
deformation fields cannot be compared with numerical ones, since the probability spaces are different). The
plots for the components 11 and 22 of the deformation tensor at a given point xobs, located near a notch
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Figure 21: One realization of the longitudinal shear modulus in the first ply (with θ = 60◦, L1 = L2 = 11.18, δ = 0.1).

on the upper surface of the composite samples, are shown in Fig. 22. It is seen that the two observed data
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Figure 22: Probability density functions of [Ecomp(s∗;xobs, ξ, 30)]11 (left) and [Ecomp(s∗;xobs, ξ, 30)]22 (right) estimated with
100 independent realizations of the identified probabilistic model, and associated experimental realizations (red marks).

points for the component 22 exhibit a non-vanishing probability level, whereas the realizations for component
11 fall outside the estimated support of the probability density function. A possible explanation for this
result is the small magnitude of the uniaxial deformation along e1, which makes experimental data more
sensitive to measurement noise. Moreover, it should be noticed that this constitutes a severe validation test
for the proposed model and identification strategy, since (i) no statistical treatment (e.g., local averaging)
is performed on the experimental data, and (ii) potential measurement noise is not accounted for. In this
context, the use of a Bayesian approach would be a very natural extension that is left for future works.

5. Conclusions and Plans

In this work, we have addressed the construction and inverse identification of a random field model
describing an anisotropic stored energy function relevant to transversely isotropic materials. The stochastic
model relies in part on information theory, which is used to properly integrate constraints related to the
well-posedness of the nonlinear boundary value problem. In order to account for potential data paucity
at the identification stage, the formulation involves a limited number of parameters that control mean and
dispersion values, as well as spatial correlation lengths along appropriate directions. The calibration strategy
was tackled as a two-step problem where the linearized model is first considered to identify the mean values.
In a second step, principal component analysis is combined with the maximum likelihood method to estimate
the dispersion parameter and the correlation lengths. The framework was finally deployed to identify the
hyperelastic constitutive model of a carbon-epoxy laminate.
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This research effort is a first step towards the construction of a UQ framework that will support the
development of an approach providing simple and robust decision making with regard to design, certification
and qualification of composite materials and structures under the presence of uncertainty. Two envisioned
improvements of the framework are the inclusion of additional multiaxial loading paths and the extension
of the approach to include the irrecoverable part of the strain energy density. Another potential extension
of this work that would be applicable for the high performance high strength high stiffness PMCs, would be
to utilize an infinitesimal strain approximation for the strain energy density and the typical Hooke’s tensor
as the container of the anisotropic elastic properties.
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Appendix A. Definition of the anisotropic strain energy function

A generic form for anisotropic strain energy functions is proposed in [21] as (see Eq. (3.7) in [21]):

ψ(I1, I2, I3, J4, J5) = ψiso(I1, I2, I3) + ψani(I1, I2, I3, J4, J5) . (A.1)

where {Ii}3i=1 and {Ji}5i=4 are appropriate invariants, defined below. The isotropic contribution is specifically
given by (see Eq. (3.12) in [21]):

ψiso(I1, I2, I3) = α1I1 + α2I2 + δ1I3 − δ2 ln(
√
I3) , (A.2)

where I1 = ‖[F ]‖2F , I2 = ‖Cof([F ])‖2F and I3 = (det([F ]))2; {αi}2i=1 and {δi}2i=1 are model parameters.
Various forms for the anisotropic contribution were proposed in [21]. In this paper, the form given in Tab.
1 is selected, with m = n = 1, ξ11 = 1 and γ11 = −1/2:

ψani(I3, J4, J5) =
1

α+ 1

1

gα
Jα+1

4 +
1

β + 1

1

gβ
Jβ+1

5 − 2gI
1/2
3 , (A.3)

where J4 = Tr([F ]T [F ][M ]), J5 = Tr(Cof([F ]T [F ])[M ]) and g = Tr([M ]).
Using the following correspondence between the notations in [21] and those considered in this paper:

α1 = µ1 , α2 = µ2 , δ1 = µ3 , δ2 = d , α = β4 , β = β5 , (A.4)

it follows that

ψ(x, [F ]) =µ1(x)‖[F ]‖2F + µ2(x)‖Cof([F ])‖2F + µ3(x)(det([F ]))2 − d(x) ln(det([F ]))

+
J4(x)β4+1

(β4 + 1)g(x)β4
+

J5(x)β5+1

(β5 + 1)g(x)β5
− 2g(x) det([F ]) ,

(A.5)

where spatial dependency has been introduced. For homogeneous material properties, rigorous proofs of
polyconvexity and coercivity can be found in [21]. In order to accommodate the case of heterogeneous
material parameters, the latter are assumed to be uniformly bounded from below (see Eq. (11)) in this
paper, and an additional term ψ∗(x) was added to bound the volumetric contribution from below. This
leads to the final decomposition

w(x, [F ]) = ψ(x, [F ])− ψ∗(x) (A.6)

of the final energy function, given by Eq. (9) (for a given ply).
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Appendix B. Mathematical properties of the stored energy function

Under the constraints stated in Section 3.2.1, it can be shown that the stored energy function w(r)

satisfies the following properties.

i. Strong polyconvexity. There exist a constant ε > 0 and a convex function f (r) (see below) such that

w(r)(x, [F ]) = ε‖[F ]‖2F + f (r)(x, [F ],Cof([F ]),det([F ])) (B.1)

for all x ∈ B(r) and [F ] ∈ M3
+. This generalized convexity condition is stronger than the usual

polyconvexity condition [22, 32], due to the presence of the constant ε. In the present case, the latter

can be chosen as ε = τ
(r)
1 and the function f (r) can be defined as

f (r)(x, [F ], [H], δ) = (µ
(r)
1 (x)− τ (r)

1 )‖[F ]‖2F + µ
(r)
2 (x)‖[H]‖2F + w

(r)
vol(x, δ)− w

(r)
vol(x, δ0)

+

(
Tr([F ]T [F ][M (r)(x)])

)1+β4

(1 + β4)Tr([M (r)(x)])β4
+

(
Tr([H]T [H][M (r)(x)])

)1+β5

(1 + β5)Tr([M (r)(x)])β5
.

(B.2)

The convexity of the function ([F ], [H], δ) 7→ f (r)(·, [F ], [H], δ) then follows from standard arguments
[33, 21].

ii. Coercivity. For all x in B(r) and [F ] in M3
+, there exist k

(r)
1 > 0, p > 2 and q > 3/2 such that

w(r)(x, [F ]) > k(r)
1 (‖[F ]‖pF + ‖Cof([F ])‖qF ) , (B.3)

with k
(r)
1 = min{τ (r)

1 , τ
(r)
2 }.

The strong polyconvexity implies that the stored energy function is uniformly elliptic, that is, it satisfies
the (strong Legendre-Hadamard) condition

∂2w(r)(x, [F ])

∂[F ]ij∂[F ]k`
ξiηjξkη` > ε‖ξ‖2‖η‖2 , ∀(ξ,η) ∈ R3 × R3 , (B.4)

with ε = τ
(r)
1 . Following existence theorems in finite elasticity [22, 23], the above properties ensure the

existence of solutions to the nonlinear boundary value problem.
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