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Nomenclature

Cw = admissible set ofw

ηc = combustion efficiency

mw = dimension ofw or W

N = number of data points

Nsup = maximum value ofN

n = dimension ofxof X

nq = number of QoI

ν = dimension ofy or Y

νsim = number of additional realizations

pQ = pdf of Q

pQ = pdf of Q

pQmax = pdf of Qmax

pW = pdf of W

pX = pdf of X

QoI = Quantity of Interest

Q = (Q1, ...,Qnq
), random QoI

Q = any component ofQ

Qk = componentk of Q

Qmax = maximum of Q

QoI = Quantity of interest

q = (q1, . . . ,qnq
)

qℓ = ℓ-th realization ofQ

qℓ
ar = ℓ-th additional realization ofQ

qk = componentk of q

qα
max = α-th realization of Qmax

RP̄ = stagnation pressure loss ratio

R = set of all the real numbers

R
mw = Euclidean space of dimensionmw

R
n = Euclidean space of dimensionn

R
nq = Euclidean space of dimensionnq

R
ν = Euclidean space of dimensionν

TKE = wall-normal averaged turbulence kinetic energy

w = (w1, . . . ,wmw
), vector of parameters

wℓ = ℓ-th realization ofW

wℓ
ar = ℓ-th additional realization ofW

w j = componentj of w

W = (W1, . . . ,Wmw
), random parameters

Wj = componentj of W

X = (X1, . . . ,Xn ) = (W,Q)

Xj = componentj of X

x = (x1, . . . , xn ) = (w,q)

xℓ = ℓ-th realization ofX

xℓar = ℓ-th additional realization ofX

xj = componentj of x

A lower case letter such asy is a real deterministic variable.

A boldface lower case letter such asy is a real deterministic vector.

An upper case letter such asY is a real random variable.

A boldface upper case letter such asY is a real random vector.

A lower case letter between brackets such as [y] is a real deterministic matrix.
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A boldface upper case letter between brackets such as [Y] is a real random matrix.

I. Introduction

The performance of a scramjet engine is closely tied to the evolution of physical phenomena on scales ranging from

the size of the fuel injector to the geometry of the combustion chamber. Capturing the interaction between these phe-

nomena requires the resolution of mathematical models using very fine spatio-temporal discretizations that continue

to challenge the most advanced computational resources. Integrating these simulations into a model-based design op-

timization or a parametric uncertainty propagation context significantly exacerbates the computational burden as they

require multiple numerical simulations under varying design and parameter conditions. The task of optimization under

uncertainty remains elusive, requiring simplifying assumptions on the physics of the problem that put into question

the optimality and even the feasibility of the computed solution.

In general, predictions from mathematical models are grounded in conservation laws and can thus be expected

to have an implicit structure that may be conducive to numerical simplifications. As indicated previously, given the

multiscale nature of relevant phenomena, reductions that oversimplify the physics may lose sight of quantities of

interest that are critical for design or safety. Alternative reduction formalisms, as pursued in the present paper, maybe

cast in the form of probabilistic learning schemes, where intrinsic structure is progressively learned. The hope is that

sufficient learning be achieved from a relatively small number ofsimulations, in anyway far fewer than would typically

be required for optimization under uncertainty. Clearly, the learning and the simulations from which it is synthesized

are dependent on the QoI.

The objective of the present paper is to use the recent approach devoted to probabilistic learning on manifolds

[1] to the challenges presented by large-eddy simulations (LES) of reactive flows inside a scramjet combustor. While

investigations adopting probabilistic approaches for scramjet applications are growing in recent years [2–8], substantial

challenges remain in characterizing and predicting combustion properties for turbulent flows under extreme conditions

especially in conjunction with uncertainty quantification. We are particularly interested in employing and enabling

probabilistic methods with LES, since these simulations, while computationally more demanding, can allow us to

access some turbulence details and features often not available through models involving additional simplifications,

such as with Reynolds-averaged Navier-Stokes (RANS). Indeed, enabling uncertainty quantification with LES involves

pushing the limits of computational science and engineering, and is recognized as one of the grand challenges of

scramjets computations [9]. More precisely, this paper is afirst stage for enhancing the probabilistic predictability

of the computational model. The second stage could be a design optimization under uncertainty using the approach

detailed in [10], but which is not presented in this paper.

Available data refers here to numerically generated data that, as indicated above, will be limited in view of the

expense associated with its generation. These generated data correspond to realizations of a random vectorX = (W,Q)
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that is constituted of the vectorW of the uncertain parameters of the computational model to which is added the vector

Q of all the random quantities of interest that are the outputsof the computational model. Consequently, there exists

an unknown mappingf, characterizing the computational model such thatQ = f(W) and defining a manifold (that

is unknown). The unknown probability measure ofX will be estimated using the generated data that correspond to

realizations ofX. The support of this probability measure is this manifold. The procedure permits to discover this

unknown support (the manifold) through a Markov process constructed using only the generated data [11]. A sampling

procedure is then put in place for augmenting the initial dataset with additional samples generated with the probability

measure whose support is the manifold. While the present paper focuses on this statistical augmentation step, the

extension of the results to the design optimization problemare self-evident. They do, however, require special care

that places them outside the scope of the present work. It should be noted that the methodology for solving stochastic

nonconvex optimization problems using the probabilistic learning on manifolds, which is used in this paper, has been

developed and validated on simple examples (see [10]). Thismethodology is being developed for very complex

optimization problems.

It should be noted that the statistical and probabilistic learning methods have been extensively developed [12–

20]) and play an increasingly important role in computational science and engineering [21]), in particular for design

optimization under uncertainties using large scale computational models and more generally, in artificial intelligence

for extracting information from big data. In recent years, statistical learning methods have been developed in the form

of surrogate models from which approximations of model-based function evaluations can easily be computed [22–25].

Gaussian process models are most commonly used in this context (see for instance [26, 27]), as well as the approaches

based on Bayesian methods including the Bayesian optimization as proposed in [22, 28, 29]. For the evaluations

of expensive stochastic functions in presence of uncertainties, computational challenges remain currently significant

enough to require relevant probabilistic approximations [24, 30–32]. There are many fields for which statistical and

probabilistic learning methods are used. In the field of aeronautical engineering learning procedures have been used

for over two decades with success for training neural networks [33, 34]. More recently, postprocessing of a given

set of Monte Carlo realizations has been proposed for improving integral computation [35] and a machine-learning

approach has been used [36] for improving predictive modelsof turbulence synthesized from limited experimental

data. This last paper is certainly in the spirit of the work presented in this paper for which the objective is to enhance

the knowledge extracted from limited data, but in using a non-Gaussian probabilistic learning process.

The probabilistic learning on manifold [1], which is used inthis paper for enhancing model predictability , in the

sense of improving exploration and characterization of uncertainty due to model error and input dependencies within a

probabilistic framework, proposes a new methodology for generating additional realizations of a random vector whose

non-Gaussian probability distribution is unknown and is presumed to be concentrated on an unknown manifold, for

which the available information is only constituted of a dataset of independent realizations of this random vector. The
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probabilistic learning method involves (1) discovering and taking into account the geometrical structure of the dataset

by using a diffusion maps technique in order to enrich the usual construction of the probability distribution based

on a multidimensional Gaussian kernel-density estimation(nonparametric statistics), (2) preserving the concentration

of the additional realizations around the manifold, and (3)constructing an associated Markov Chain Monte Carlo

(MCMC) generator for generating additional realizations that follow the estimated probability distribution.

The paper is organized as follows. In Section II, we summarize the physical and computational model that is

used for simulating the complex flow for a ScramJet by means ofa large scale computational fluid dynamics model.

This section allows also for defining the uncertain parameters of the computational fluid dynamics model (which are

modeled as random variables), the random quantities of interest, the specifications of the computational model, and

the simulations performed. Section III presents a brief summary of the probabilistic learning on manifold that is

used for analyzing ScramJet data. The reader can find all the details of the algorithm in [1]. Section IV is devoted

to the description of the ScramJet model representation, tothe definition of the random parameters and the random

quantities of interest that are retained for the ScramJet analysis, and finally, to the definition of the dataset used for

the probabilistic learning. Section V presents the statistical estimation and analysis using the probabilistic learning

on manifold that allows for generating additional realizations used for estimating the probability density functionsof

quantities of interest and of their maximum statistics (which are extreme value statistics). The numerical simulations

and the analysis of the ScramJet database is presented in Section VI. In particular, we analyze the robustness of the

probabilistic learning approach and we show how such an approach allows for enhancing model predictability.

II. Physical and Computational Model

We concentrate on a scramjet configuration studied under theHIFiRE (Hypersonic International Flight Research

and Experimentation) program [37, 38]. One of its flight tests, the HIFiRE Flight 2 (HF2) project [39–41], involved

a payload depicted in Figure 1(a) and was tested under flight conditions of Mach 6–8+. The configuration consists

of a cavity-based hydrocarbon-fueled dual-mode scramjet.A ground test rig, designated the HIFiRE Direct Connect

Rig (HDCR) (Figure 1(b)), was developed to duplicate the isolator/combustor layout of the flight test hardware, and

to provide ground-based measurements for comparisons withflight test data, verifying engine performance and oper-

ability, and designing fuel delivery schedule [42, 43]. Since the HDCR ground test data are publicly available [42, 44],

we aim to simulate and assess reactive flows inside the HDCR with the intention of leveraging existing experimental

datasets to drive future modeling developments.

The rig consists of a constant-area isolator (planar duct) attached to a combustion chamber. It includes four primary

injectors mounted upstream of flame stabilization cavitieson both the top and bottom walls. Four secondary injectors

along both walls are positioned downstream of the cavities.Flow travels from left to right in thex-direction (stream-
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wise), and the geometry is symmetric about the centerline inthe y-direction. Numerical simulations take advantage

of this symmetry by considering a domain that covers only thebottom half of this configuration. The consequence of

this approximation is to exclude any asymmetric modes of theflow dynamics from the present modeling framework.

To further reduce the computational cost, we consider one set of primary/secondary injectors and impose periodic

conditions in thez-direction (spanwise). The overall computational domain is highlighted by the red lines in Figure 2.

JP-7 surrogate fuel [45], composed of 36% methane and 64% ethylene by volume, enters through these injectors. A

(a) HIFiRE Flight 2 payload

 

    

 

Figure 3. Three dimensional view of the HDCR instrumentation layout
(b) HDCR

Fig. 1 HIFiRE Flight 2 payload [40] and HDCR cut views [42].

reduced, three-step mechanism [46, 47] is initially adopted to describe the combustion process:

CH4 + 2(O2 + fNON2) → CO2 + 2H2O+ 2 fNON2 (1)

C2H4 + 3(O2 + fNON2) → 2CO2 + 2H2O+ 3 fNON2 (2)

2CO+O2 ⇋ 2CO2, (3)

where fNO = 0.79/0.21 is the ratio between the mole fractions of N2 and O2 in the oxidizer streams. Arrhenius kinetic

parameters are selected to retain robust/stable combustion in the current simulations.

LES calculations are then performed using the RAPTOR code framework developed by Oefelein [48, 49]. The

theoretical framework solves the fully coupled conservation equations of mass, momentum, total-energy, and species

for a chemically reacting flow while accounting for detailedthermodynamics and transport processes at the molecular

level. It is designed to handle high Reynolds number, high-pressure, real-gas and/or liquid conditions over a wide

Mach operating range. Noteworthy is that RAPTOR is designedspecifically for LES using non-dissipative, discretely

conservative, staggered, finite-volume differencing. This eliminates numerical contamination of the subfilter models

due to artificial dissipation and provides discrete conservation of mass, momentum, energy, and species, which is

imperative for high quality LES. Representative results and case studies using RAPTOR can be found in studies by
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Fig. 2 The HDCR experimental setup and schematic of the full computational domain.

Oefeleinet al. [50–52].

In our numerical studies, we allow a total of 11 input parameters to be variable and uncertain, shown in Table 1

along with their uncertainty distributions. The uncertainparameters reflect uncertainty in inlet and fuel inflow bound-

ary conditions as well as turbulence model parameters from utilizing the Smagorinsky model. The nominal values

of the operating conditions for our combustor domain correspond to the Mach 5.84 flight condition, and these values

were calculated in past CFD analysis and employed for the HDCR ground tests [42]. With lower and upper bounds

suggested by domain experts, we invoke the maximum entropy principle [53, 54] and endow the parameters with

uninformative uniform “prior” distributions across the ranges indicated in the table. Our simulation data are from

two-dimensional scramjet computations, employing grid resolutions where cell sizes are 1/8 (referred as “d08” grids)

and 1/16 (referred as “d16” grids) of the injector diameterd = 3.175 mm. Calculations are performed on the two

grid levels from their respective warm-start solutions that were engineered from a quasi-steady state nominal condition

simulation. A run length of 105 time steps is selected to balance between washing out transient start-up behavior and

operating under practical constraints of limited computational resources. The last halves of these runs time-histories

are used for time-averaging. Timestep sizes are determinedadaptively based on guidance from the Courant-Friedrichs-

Lewy (CFL) condition. A total number of 256 simulations is performed for both the d08 and d16 grids in establishing

our database, and their average CPU times per run are roughly743 hours and 2160 hours, respectively.

We would also like to point out some limitations of our numerical results in the current paper stemming from ad-

ditional simplifications necessitated by practical considerations. In particular, constraints on computational resources

both encouraged and compelled a current investigation involving simulations in a two-dimensional geometry, where

we placed a single cell in thez-direction at ax-y plane intersecting the injectors. We fully acknowledge thedecreased

7



fidelity of these runs as a result of the reduced geometric description as well as the relatively simple chemical model

in Eq.(1-3). Indeed, certain physical features and phenomenon are eroded or otherwise not representable in a two-

dimensional setting. Nonetheless, given the scale of computations demanded by any form of statistical assessments,

enabling computational methods under a probabilistic framework even with these emulatory settings has not been

achieved previously. At the same time, fully three-dimensional simulations are computationally possible but only for

relatively coarse grids and where only a very small number ofruns can be completed under the present computational

budget; they are thus not ready to support a meaningful demonstration of the centerpiece of this paper—the manifold

learning technique. While certainly desirable under idealsituations, seeking higher-fidelity scramjet LES datasetsfor

the purpose of this study would be practically impossible toachieve at this time. Nonetheless, we emphasize the high

degree of information, and enhanced fidelity, available from the present LES computations of this flow, in terms of

both flow/flame structure and dynamics, as opposed to, say RANS simulations. The present results highlight what

is indeed currently achievable in the context of UQ for scramjet LES computations emplolying state of the art UQ

methods.

We focus on three quantities of interest (QoIs): (1) combustion efficiency (ηc) that is related to the burned equiva-

lence ratio (φB), (2) stagnation pressure loss ratio (RP̄), and (3) wall-normal averaged turbulence kinetic energy (TKE)

at various streamwise locations. The first two QoIs reflect the overall scramjet performance, while the third contains

more localized descriptions that can offer insights for turbulence modeling. All QoIs are time-averaged variables.

• Combustion efficiency (ηc) is the combustion efficiency based on static enthalpy quantities [43, 55]:

ηc =
H (Tref,Ye) − H (Tref,Yref)

H (Tref,Ye,ideal) − H (Tref,Yref)
. (4)

HereH is the total static enthalpy, the “ref” subscript indicatesa reference condition derived from the inputs,

the “e” subscript is for the exit, and the “ideal” subscript is for the ideal condition where all fuel is burnt to

completion. The reference condition corresponds to that ofa hypothetical non-reacting mixture of all inlet air

and fuel at thermal equilibrium. The numerator,H (Tref,Ye) − H (Tref,Yref), thus reflects the global heat released

during the combustion, while the denominator represents the total heat release available in the fuel-air mixture.

• Stagnation pressure loss ratio (RP̄) is defined as

RP̄ = 1−
Ps,e

Ps,i

, (5)

wherePs,e and Ps,i are the wall-normal-averaged stagnation pressure quantities at the exit and inlet planes,

respectively.

• Turbulence kinetic energy (TKE) is characterized by the root-mean-square (RMS) velocity fluctuations at a
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given location:

TKE =
1
2

(

u2
rms+ v

2
rms+ w

2
rms

)

, (6)

where the RMS quantity isurms =

√

u2 − u2, with u indicating time-averaged quantity. In the numerical investi-

gations of this paper, we will look at TKE from multiple streamwise locations (i.e., differentx locations).

Parameter Range Description

Inlet boundary conditions:
p0 [1.406,1.554]× 106 Pa Stagnation pressure

T0 [1472.5,1627.5] K Stagnation temperature

M0 [2.259,2.759] Mach number

Li [0,8] × 10−3 m Inlet turbulence length scale

I i [0,0.05] Turbulence intensity horizontal component

Ri [0.8,1.2] Ratio of turbulence intensity vertical to horizontal components

Fuel inflow boundary conditions:

I f [0,0.05] Turbulence intensity magnitude

L f [0,1] × 10−3 m Turbulence length scale

Turbulence model parameters:

CR [0.01,0.06] Modified Smagorinsky constant

Prt [0.5,1.7] Turbulent Prandtl number

Sct [0.5,1.7] Turbulent Schmidt number

Table 1 Uncertain input parameters. The probability distri butions are assumed uniform across the ranges
defined.

III. Probabilistic Learning on Manifold for Analyzing Scra mJet Data

In this section, we summarize the probabilistic learning methodology [1] that will be used throughout the paper

for predicting the statistics and for performing model exploration and uncertainty quantification to enhance model

predictability of LES simulations of a ScramJet.

This probabilistic learning on manifold uses only a datasetof N data points{x1, . . . ,xN } in R
n, which are assumed to

be N independent realizations of a random vectorX with values inR
n. The probability distribution ofX is unknown

and is assumed to be concentrated in a neighborhood of a subset of R
n (a manifold) that is also unknown and that

has to be discovered. For the ScramJet database, vectorX will be constituted of the 11 uncertain parameters of the

computational model (modeled by random variables as explained in Section II) to which are added all the random
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quantities of interest (QoIs) that are outputs of the stochastic computational model. The objective of the probabilistic

learning on manifold is to construct a probabilistic model of random vectorX using only dataset{x1, . . . ,xN }, which

allows for generatingνsim ≫ N additional independent realizations{x1
ar, . . . ,x

νsim
ar } in R

n of random vectorX. The

proposed method preserves the concentration of the additional realizations around the manifold. For the ScramJet

analysis, we can then generate a very large number,νsim ≫ N, of additional realizations that allow for estimating

the probability density functions of various QoIs, including the statistics of their maxima. The main steps of this

methodology can be roughly summarized as follows.

1) A principal component analysis ofX is carried out in order to normalize the dataset, which yields a new

normalized dataset ofN data points{y1, . . . ,yN } in R
ν . This means that the random vectorY with values inRν

for which {y1, . . . ,yN } areN independent realizations, has a zero empirical mean and an empirical covariance

matrix that is the unity matrix.

2) Dataset{y1, . . . ,yN } is rewritten as a (ν × N) rectangular matrix [yd ] that is construed as one realization of a

(ν×N) rectangular random matrix [Y] = [Y1 . . .YN ] in which Y1, . . . ,YN areN independent random vectors.

A modification [56] of the classical multidimensional Gaussian kernel-density estimation method [57, 58] is

then used to construct and estimate the probability densityfunction (pdf)p[Y] ([y]) of random matrix [Y] with

respect to the volume elementd[y] on the set of all the (ν × N) real matrices.

3) A (ν × N) matrix-valued Itô stochastic differential equation (ISDE), associated with the random matrix [Y],

is constructed and corresponds to a stochastic nonlinear dissipative Hamiltonian dynamical system, for which

p[Y] ([y]) d[y] is the unique invariant measure. This construction is performed using the approach proposed in

[56, 59] belonging to the class of Hamiltonian Monte Carlo methods [59–61], which is an MCMC algorithm

[62].

4) The diffusion-map approach [11] is then used to discover and characterize the local geometry structure of

the normalized dataset [yd ]. The subset of the diffusion-maps basis, represented by a (N × m) matrix [g] =

[g1 . . . gm ], are thus constructed withm≪ N. They are associated with the firstm eigenvalues of the transition

matrix of a Markov chain relative to the local geometric structure of the given normalized dataset [yd ].

5) As proposed in [1], a reduced-order representation [Y] = [Z] [g]T is constructed in which [Z] is a (ν × m)

random matrix for whichm ≪ N. A reduced-ISDE, associated with random matrix [Z], is obtained by pro-

jecting the ISDE introduced in Step 3 onto the subspace spanned by the reduced-order vector basis represented

by matrix [g]T . It should be noted that such a projection corresponds to a reduction of the dataset dimension

and not to a reduction of the physical components of random vectorY that already results from a PCA applied

to X. Such a projection preserves the concentration of the generated realizations around the manifold. The

constructed reduced ISDE is then used for generating additional realizations [z1
ar], . . . , [z

nMC
ar ] of random matrix

[Z], and therefore, for deducing the additional realizations[y1
ar], . . . , [y

nMC
ar ] of random matrix [Y]. Reshap-
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ing thesenMC matrices yields theνsim = N × nMC independent realizations{y1, . . . ,yνsim} of random vectorY.

Using the PCA constructed in Step 1 allows for generating theνsim ≫ N additional independent realizations

{x1
ar, . . . ,x

νsim
ar } in R

n of random vectorX.

Remark 1. For the general case of the probabilistic learning on manifolds, the pdf ofpX of X is unknown. As ex-

plained in Section I,X is written asX = (W,Q) in which W is the random vector of the uncertain parameters of the

computational model andQ is the random vector of the quantities of interest that are the outputs of the computational

model. Consequently, the pdfpW (w) of W is not supposed to be known. However, for certain applications for which

the probabilistic learning on manifolds is used,pW (w) is known and is used for generating the realizations ofW in

order to generate the dataset{xℓ = (wℓ,qℓ ), ℓ = 1, . . . ,N} in which qℓ is the realization ofQ computed with the

computational model forW = wℓ (this point will be detailed in Section IV for the ScramJet application). One could

then wonder if the knowledge ofpW could be useful in the probabilistic learning on manifolds in addition to its use to

generate theN points of the dataset. In fact, it is not so for the following reasons. Starting from the dataset ofN points

constituted of realizations of random vectorX = (W,Q), we want to generateνar ≫ N additional realizations{xℓar}ℓ

(by the probabilistic learning) in order to improve the estimate of the probability distribution ofX whose support is

the manifold defined by the mapping that mapsW in Q. For such a characterization, the joint probability distribution

pW,Q(w,q) dw dq is required, which means that we need the probability distributionpX (x) dx of X. The pdfpW (w) of

W is only used for generate the initial dataset constituted ofN points. The use ofpW (w) in the learning process would

require to introduce the conditional pdfpQ |W (q|w) of Q givenW = w such thatpW,Q(w,q) = pQ |W (q|w) pW (w).

Formulated in terms of such a conditional pdf, the probabilistic learning process would be strictly equivalent to the

probabilistic learning formulated in terms ofpW,Q(w,q) dw dq = pX (x) dx, because the number of additional real-

izations ofQ|w givenW = w must be the same that the number of additional realizations of W in order to correctly

represents the manifold. In addition, each realization ofQ should then be associated with the corresponding realiza-

tion of W. It would be a nontrivial time-consuming problem because itwould require an additional smoothing step.

Consequently, there would be a loss of efficiency without improving the learning procedure that is proposed.

Remark 2. The transition kernel of the homogeneous Markov chain of the Markov Chain Monte Carlo (MCMC)

method can be constructed using the Metropolis-Hastings algorithm (that requires the definition of a good proposal

distribution), the Gibbs sampling (that requires the knowledge of the conditional distribution) or the slice sampling

(that can exhibit difficulties related to the general shape of the probability distribution, in particular for multimodal

distributions). In general, these algorithms are efficient, but can also be not efficient if there exist attraction regions

which do not correspond to the invariant measure under consideration and tricky even in high dimension. These cases

cannot easily be detected and are time consuming. The MCMC method used for constructing the probabilistic learning

on manifolds [1], which is based on a nonlinear Itô stochastic differential equation (ISDE) formulated for a dissipative
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Hamiltonian dynamical system (first introduced in [59]), has been used for the following reasons:

(i) This Hamiltonian MCMC method is very robust. It looks similar to the Gibbs approach but corresponds to

a more direct construction of a random generator of realizations for random matrix [Y] that can be in very high

dimension and for which its probability distributionp[Y] ([y]) d[y] can have a support that is not a connected set and

that is multimodal. The difference between the Gibbs algorithm and the proposed algorithm is that the convergence

properties in the proposed method can be studied with all themathematical results concerning the existence and

uniqueness of Itô stochastic differential equation. In addition, a parameter is introduced,which allows the transient part

of the response to be killed in order to get more rapidly the stationary solution corresponding to the invariant measure.

The construction of the transition kernel by using the detailed balance equation is replaced by the construction of an

Itô Stochastic Differential Equation (ISDE), which admitsp[Y] ]) d[y] as a unique invariant measure.

(ii) The second fundamental reason is the possibility to take into account the local geometry structure of the dataset

by projecting the nonlinear ISDE on the subspace spanned by the diffusion-maps basis. This aspect is the main innova-

tion introduced in the construction of the probabilistic learning on manifolds [1], thanks to this choice of the MCMC

generator.

Remark 3. The methodology of the probabilistic learning on manifolds (see [1]) introduces two hyperparameters. The

construction of the diffusion-maps basis involves an isotropic-diffusion kernel with a first hyperparameterε. The sec-

ond hyperparameter in the dimension,m≪ N, of the diffusion-maps basis for projecting the ISDE. In a recent work,

an entropy-based closure has been developed for identifying optimal values ofε andm using only theN points of the

dataset. This entropy argument ensures that out of all possible models, this is the one that is the most uncertain beyond

any specified constraints, which is selected. The presentation of this complement of the methodology is outside the

scope of the present paper.

IV. ScramJet Model Representation, Parameters, QoI, and Dataset
for the Probabilistic Learning

A. ScramJet Model Representation

The ScramJet database is generated with the physical and computational model presented in Section II. The uncer-

tain parameter of the computational model is a vectorw = (w1, . . . ,wmw
) that belongs to a subsetCw of R

mw in

which mw = 11. This uncertain parameterw is modeled by a second-orderR
mw -valued random variableW =

(W1, . . . ,Wmw
) defined on a probability space (Θ,T ,P) for which the support of its known probability distribution

PX (dx) is the setCw that is defined in Table 1.

The vector-valued QoI that is deduced from the outputs of thecomputational model is denoted byq = (q1, . . . ,qnq
)
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∈ R
nq in which nq = 10. There is an unknown measurable mappingw 7→ f(w) from Cw ⊂ R

mw into R
nq such that

q = f(w). Consequently, the random QoI is theR
nq -valued random variable defined on (Θ,T ,P), which is such that

Q = f(W). The probability distributionPQ(dq) of Q is the image ofPW (dw) under mappingf. It is assumed thatQ

is a second-order random variable. The realizations ofW andQ will be denotedwℓ = W(θℓ) andqℓ = Q(θℓ ) with

θℓ ∈ Θ. The probability distribution ofQ is unknown.

Remark. The probabilistic learning on manifolds can be used for a more general case for whichQ = F(W) in which

F is a random mapping that can be written asF(W) = f(W,U) where (w,u) 7→ f(w,u) is a measurable mapping

from Cw × Cu ⊂ R
mw × R

mu into R
nq , and where the joint probability distribution of random variables (W,U) is

PW,U(dw,du) whose support isCw × Cu.

B. Random Model Parameters and Random Quantities of Interest

For the ScramJet database, we havemw = 11 andnq = 10. The components of the random model parameters,

represented by random vectorW, are (see Table 1):

W1: Inlet stagnation pressure,p0.

W2: Inlet stagnation temperature,T0.

W3: Inlet Mach number,M0.

W4: Modified Smagorinsky constant,CR .

W5: Turbulent Prandtl number,Prt .

W6: Turbulent Schmidt number,Sct .

W7: Inlet turbulence intensity horizontal component,I i .

W8: Inlet turbulence length scale,Li .

W9: Inlet ratio of turbulence intensity vertical to horizontal components,Ri .

W10: Fuel inflow turbulence intensity magnitude,I f .

W11: Fuel inflow turbulence length scale,L f .

SubsetCw of R
mw is written as the cartesian productJ1 × . . . × Jnw

of closed intervalsJj = [aj ,bj ] ⊂ R. The

components of the random quantities of interest, represented by random vectorQ, are:

Q1: Burned equivalence ratio

Q2: Combustion efficiency

Q3: Pressure stagnation loss ratio

Q4: TKE at the inlet streamwise location

Q5: TKE at streamwise location just before the primary injectors

Q6: TKE at streamwise location after the primary injectors andbefore the cavity
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Q7: TKE at streamwise location inside the cavity

Q8: TKE at streamwise location just after secondary injectors

Q9: TKE at streamwise location inside the combustion chamber

Q10: TKE at streamwise location at end of the combustion chamber

in which TKE is the wall-normal averaged turbulence kineticenergy at various streamwise locations for which the

locations indicated in Figure 2).

For each considered dataset of the ScramJet database, the maximum number of data points that are available is denoted

by Nsup. The current dimension of such a dataset that will be considered for the probabilistic learning is denoted by

N ≤ Nsup. A convergence analysis of the probability distribution ofthe quantities of interest with respect to the value

of N when N will go to Nsup will be carried out. In the following, the terminology "convergence analysis of the

probabilistic learning" or simply "convergence of the learning" will refer to this definition. For a given dataset of the

ScramJet database, for fixedN such that 1≤ N ≤ Nsup, and forℓ = 1, . . . ,N, the realizationswℓ =W(θℓ ) ∈ R
mw and

the corresponding realizationsqℓ = Q(θℓ) ∈ R
nq of Q are such that

qℓ = F(wℓ ; θℓ ) ∈ R
nq , (7)

in which the meaning of the symbols used are detailed in Section IV.A.

Remark. As explain in Section II, the probability distribution of random vectorW has been chosen as a uniform

distribution onCw for focusing the analysis on the uncertainty propagation. This probabilistic model corresponds to

the use of the Maximum Entropy principle from Information Theory, for which the only available information is the

supportCw of the unknown pdf of random vectorW.

C. Defining the Datasets for the Probabilistic Learning Fromthe ScramJet Database

Three datasets are extracted from the ScramJet database. The first is defined as the d08 dataset and corresponds to the

results generated with the computational model that is constructed with a grid resolution where cell size is 1/8 while

the second one is defined as the d16 dataset and corresponds toa cell size of 1/16. The third one is the concatenated

d08-d16 dataset that corresponds to the concatenation of the d08 dataset with the d16 dataset, obtained by interlacing

the two datasets with respect to their data points. For each one of the three datadasets, the numberNsup of data points

are Nsup = 256 for the d08 and d16 datasets, whileNsup = 512 for the concatenated d08-d16 dataset. For given

N ≤ Nsup, a dataset is made up of theN data pointsx1, . . . ,xN in R
n with

n = mw + nq , (8)
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such that

xℓ = (wℓ ,qℓ) ∈ R
n = R

mw × R
nq , ℓ = 1, . . . ,N . (9)

For fixedN, the probabilistic learning on manifold will be carried outusing dataset{xℓ, ℓ = 1, . . . ,N}. This dataset

depends onN and as we have explained before, a convergence analysis of the probabilistic learning with respect toN

will be performed for 1≤ N ≤ Nsup. It should be noted that, for the concatenated d08-d16 dataset, if, for instance,

N = 200, then there are the first 100 data points from the d08 dataset and the first 100 data points from the d16 dataset.

V. Statistical Estimation and Analysis Using Probabilistic Learning on Manifold

In all this section,N is fixed such that 1≤ N ≤ Nsup. The probabilistic learning that will allow for generat-

ing νsim ≫ N additional realizations ofX will then depend on this value ofN. For simplifying the notations, this

dependence onN is removed when it is not necessary for the understanding.

A. Probability Distributions of Random Variables X, W, and Q

Let X = (X1, . . . ,Xn ) be a second-order random variable defined on probability space (Θ,T ,P) with values inR
n ,

with n = mw + nq . Its probability distributionPX (dx) is unknown but theN given data pointsx1, . . . ,xN in R
n ,

defined by Eq. (9), are assumed to beN given statistically independent realizations ofX. This means that the solely

available information for estimatingPX is constituted of dataset{x1, . . . ,xN } of N points inRn. Taking into account

Eq. (9), random vectorX can also be written as

X = (W,Q) , (10)

in which W = (W1, . . . ,Wmw
) andQ = (Q1, . . . ,Qnq

) are the random vectors defined in Section IV. B for which the

N realizations arewℓ ∈ R
mw andqℓ ∈ R

nq . The probability distributionPX (dx) on R
n of X = (W,Q) can also be

rewritten as the joint probability distributionPW,Q(dw,dq) onR
mw × R

nq of W andQ. It should be noted that since

mappingf is deterministic, probability distributionPX (dx) cannot be represented by a pdfpX (x) with respect to the

Lebesgue measuredx onR
n (see Appendix).

As explained in Section III, for the considered fixed value ofN, the probabilistic learning will allow for generating

νsim additional realizations{x1
ar, . . . ,x

νsim
ar } of X, with νsim ≫ N, by using only dataset{x1, . . . ,xN }. For estimating the

statistics related toQ, we will need to extract the correspondingνsim additional realizations{q1
ar, . . . ,q

νsim
ar } for Q such

that,

(wℓ
ar,q

ℓ
ar) = xℓar , ℓ = 1, . . . , νsim . (11)
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Remark. As explained before, the probabilistic learning on manifolds only uses a data set ofN points that are con-

structed using the computational model and allows for constructingνsim ≫ N additional realizations without using the

computational model, in order to better estimate the probability distribution of the random QoI. A natural question can

then be asked. Are the additional realizations that are generated satisfy the computational model? The answer is yes

in the sense of probabilities. Since the proposed approach aims to improve the predictability of the model in a proba-

bilistic framework, the objective of the proposed method isachieved. Detailed explanations are given in Appendix on

this point.

B. Selecting the Random QoI for the Statistical Estimates

The random vectorQ is completely defined by its probability distributionPQ(dq) that is assumed to have a density

q 7→ pQ(q) on R
nq with respect to the Lebesgue measuredq, which can be estimated using nonparametric statistics

with a large number,νsim, of additional realizations ofQ. In addition, we are interested in analyzing the maximum

statistics of the random components ofQ. In order to limit the number of figures presented in the paper, we will not

consider all the possible marginal probability density functions of random vectorQ, but we will only consider the

probability density function of each random component Qk of Q for which k is in {1, . . . ,nq } (marginal probability

density function of order 1). In the following, in order to not complicate the notations, indexk is removed and notation

Q is used instead of Qk (except if confusion is possible).

C. Defining the Maximum Statistics for the Selected Random QoI and Computing their Realizations

In this paragraph, we define the maximum statistics for the selected random QoI, which allow us to explore the

probability distribution of a random variable Qmax whose realizations are in the tail of the probability distribution

of random variable Q. These statistics also make it possibleto well analyze the convergence of learning, that is,

the convergence with respect to N. For the ScramJet application, since the real-valued random variables that are

observed are positive almost surely, we are only interestedin constructing their maximum statistics, but their minimum

statistics could similarly be constructed although of low interest for this case. For a sufficiently large integerνs , the

maximum of the real-valued random variable Q can classically be defined as the real-valued random variable Qmax

such that Qmax = max{Q(1), . . . ,Q(νs ) }, in which Q(1), . . . ,Q(νs ) are νs independent copies of real-valued random

variable Q. Random variable Qmax depends onνs , but in order to simplify the notations, the dependence onνs is

removed. The realizations of Qmax are computed as follows. For fixedN such thatN ≤ Nmax, for a given valueνsim

of additional realizations{(wℓ
ar,q

ℓ
ar) ∈ R

mw × R, ℓ = 1, . . . , νsim} introduced in Section V. C and computed thanks to

the probabilistic learning, and forνs sufficiently large such thatνs ≪ νsim, we constructνα = νsim/νs independent

realizations{q1
max, . . . ,q

να
max} of Qmax such that, forα = 1, . . . , να , qα

max = maxℓ ∈ {νs (α−1)+1, ... , ανs } q
ℓ
ar. For the Scramjet

results presented in Section VI and for a fixed numberνsim of additional realizations (that is a finite number!), a
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convergence analysis of the estimated probability densityfunction of Qmax has been performed as a function ofνs .

We have found that, for the finite number of additional realizations that is considered, a reasonable convergence was

obtained forνs = 100, such a convergence being obviously only considered as sufficient in the framework for which

the pdf of Qmax is studied for the enhancing of the model prediction. Note that, sinceνsim can arbitrarily be increased

without significant computational cost,νs andνα could arbitrarily be increased in satisfying the equationνsim = να×νs

with νs < να .

D. Estimates of the Second-order Moments and the pdf of Random Variables Q and Qmax

For a fixed value ofN, νsim, andνs (and consequently, ofνα = νsim/νs), the standard deviationsσQ andσQmax of

the real-valued random variables Q and Qmax, and their probability density functionsq 7→ pQ(q) andq 7→ pQmax(q)

with respect todq onR, are estimated using the classical estimates (empirical estimates for the standard deviation and

Gaussian kernel density estimation for the pdf) based on theuse of the additional realizations{q1
ar, . . . ,q

νsim
ar } for Q and

of the realizations{q1
max, . . . ,q

να
max} for Qmax (for 10 components). The convergence analysis of these quantities has been

performed with respect toN (in order to analyze how the probabilistic learning approach learns from the dataset as a

function of its dimension) and with respect toνsim (in order to analyze the robustness of the estimates). Nevertheless,

for limiting the number of figures, in Section VI, only the convergence with respect toN of the probability density

functionsq 7→ pQ(q) andq 7→ pQmax(q) are shown.

VI. Numerical Simulations and Statistical Analysis for theDatasets
of the ScramJet Database

For the d08 and d16 datasets, and for the concatenated d08-d16 dataset, the probabilistic learning has been performed

with the all the components ofW (11 components) and with all the components ofQ (10 components). The compo-

nents, Qk , of random vectorQ for which the statistics are presented below are Q2, Q3, Q6, Q7, Q8, Q9, and Q10.

A. Methodology Used for the Statistical Analysis

The methodology adopted for the statistical analysis is as follows:

1) For the d08 and d16 datasets, for Q2 and Q3, and forνsim = 25,600 additional realizations, an analysis of

the robustness of the probabilistic learning is performed with respect to the numberN of data points with

N = {50,100,200,256}. Note thatνsim = N×nMC is maintained to 25,600 for each value ofN (Section VI. B.1).

2) For the d08 and d16 datasets, the model predictability of TKE is performed at various streamwise locations cor-

responding to{Qk ,k = 6, . . . ,10}, for N = 256 and forνsim = 25,600 additional realizations (Section VI. B.2).

3) For the concatenated d08-d16 dataset, the analysis of therobustness of the probabilistic learning is again per-

formed for Q2 and Q3 with respect to the numberN of data points withN = {50,100,200,450,512} and

νsim = N × nMC = 51,200 (Section VI. C.1).
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Fig. 3 Combustion efficiency Q2: probability density functions pQ(q) of random variable Q for N = 50(dashed
black line), N = 100(thin black line), N = 200(med red line), N = 256(thick black line) with νsim = 25,600.

4) Finally, for the concatenated d08-d16 dataset, the modelpredictability of TKE is again performed at the same

streamwise locations corresponding to{Qk ,k = 6, . . . ,10}, for N = 512 andνsim = 51,200 additional realiza-

tions (Section VI. C.2).

B. Probabilistic Learning Approach for Analyzing the d08 and d16 Datasets

1. Robustness Analysis of the Probabilistic Learning Approach for the Combustion Efficiency and the Pressure Stag-
nation Loss Ratio

For each one of the d08 and d16 datasets, and forνsim = 25,600, an analysis has been carried out by studying, for

Q2 (combustion efficiency, Figures 3 and 4) and for Q3 (pressure stagnation loss ratio, Figures 5 and 6), the evolution

with respect toN of the probability density functionspQ(q) of random variable Q (Figures 3 and 5) andpQmax(q) of

random variable Qmax (Figures 4 and 6).

2. Model Predictability of the Wall-Normal averaged Turbulence Kinetic Energy Performed at Various Streamwise
Locations Using the Probabilistic Learning Approach

From the convergence analyses presented in Section VI. B.1,it can be concluded thatN = 256 andνsim = 25,600

are good values for studying TKE at the various streamwise locations associated with Q6, Q7, Q8, Q9, and Q10. For

the d08 and d16 datasets, the analysis of the evolution of probability density functionspQ(q) of random variable Q

is shown in Figures 7 and 8 as a function of the location of the observations along the flow while the evolution of

pQmax(q) of random variable Qmax is shown in Figure 9 and 10.
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Fig. 4 Combustion efficiency Q2: probability density functions pQmax(q) of random variable Qmax for N = 50
(dashed black line),N = 100 (thin black line), N = 200 (med red line), N = 256 (thick black line) with νsim =

25,600.
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Fig. 5 Pressure stagnation loss ratio Q3: probability density functions pQ(q) of random variable Q for N = 50
(dashed black line),N = 100 (thin black line), N = 200 (med red line), N = 256 (thick black line) with νsim =

25,600.
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Fig. 6 Pressure stagnation loss ratio Q3: probability density functions pQmax(q) of random variable Qmax for
N = 50 (dashed black line),N = 100(thin black line), N = 200 (med red line), N = 256 (thick black line) with
νsim = 25,600.
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Fig. 7 For the d08 dataset, forN = 256and νsim = 25,600: probability density function pQ(q) of TKE Q. (a):
Q6 (mid black line) and Q7 (thin black line). (b): Q 8 (thick black line), Q9 (mid red line), and Q10 (thin black
line).
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Fig. 8 For the d16 dataset, forN = 256and νsim = 25,600: probability density function pQ(q) of TKE Q. (a):
Q6 (mid black line) and Q7 location (thin black line). (b): Q8 (thick black line), Q9 (mid red line), and Q10 (thin
black line).
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Fig. 9 For the d08 dataset, forN = 256and νsim = 25,600: probability density function pQmax(q) of TKE Q max.
(a): Q6 (mid black line) and Q7 (thin black line). (b): Q 8 (thick black line), Q9 (mid red line), and Q10 (thin
black line).
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Fig. 10 For the d16 dataset, forN = 256and νsim = 25,600: probability density function pQmax(q) of TKE Q max.
(a): Q6 (mid black line) and Q7 (thin black line). (b): Q 8 (thick black line), Q9 (mid red line), and Q10 (thin
black line).

C. Probabilistic Learning Approach for Analyzing the Concatenated d08-d16 Dataset

1. Robustness Analysis of the Probabilistic Learning Approach for the Combustion Efficiency and the Pressure Stag-
nation Loss Ratio

A similar analysis that the one presented in Section VI. B.1,has been performed for the concatenated d08-d16

dataset that is constructed in interlacing the data points of the d08 dataset with the d16 dataset. Therefore, there are

Nsup = 512 data points in the concatenated d08-d16 dataset. Similarly to Section VI. B.2, for the concatenated d08-d16

dataset and forνsim = 51,200, an analysis has been carried out by studying the evolution with respect toN ≤ Nsup

of the probability density functionpQ(q) of random variable Q for Q= Q2 (combustion efficiency, Figure 11(a)) and

for Q = Q3 (pressure stagnation loss ratio, Figure 11(b)), while Figures 12(a) and (b) display the evolution of the

probability density functionpQmax(q) of random variable Qmax.

2. Model Predictability of the Wall-Normal Averaged Turbulence Kinetic Energy Performed at Several Streamwise
Locations Using the Probabilistic Learning Approach With the Concatenated d08-d16 Dataset

From the convergence analyses presented in Section VI. C.1,it can be concluded thatN = 512 andνsim = 51,200

are good values for studying TKE at various streamwise locations associated with Q6, Q7, Q8, Q9, and Q10. For the

concatenated d08-d16 dataset, Figure 13 displays the probability density functionpQ(q) of TKE associated with Q6

to Q10, while Figure 14 displays the probability density functionpQmax(q).

D. Analysis of the Results Obtained With the Probabilistic Learning

A few general observations can be made from inspecting Figures 3 to 14. Figures 3 and 5 show that combustion

efficiency (Q2) and pressure stagnation loss ratio (Q3) are learned with minimal effort usingN = 50 data points, while

the maximum of these quantities requires about 200 data points (see Figures 4 and 6) of the learning process. It is
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Fig. 11 d08-d16 dataset: probability density functionspQ(q) of random variable Q (a) for combustion effi-
ciency Q2 and (b) for pressure stagnation loss ratio Q3, for N = 50 (dashed black line),N = 100 (thin black
line), N = 200(med red line), N = 450(med black line), N = 512(thick black line) with νsim = 51,200.
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Fig. 12 d08-d16 dataset: probability density functionspQmax(q) of random variable Qmax (a) for combustion
efficiency Q2 and (b) for pressure stagnation loss ratio Q3 (right figure), for N = 50 (dashed black line),N = 100
(thin black line), N = 200(med red line),N = 450(med black line),N = 512(thick black line) with νsim = 51,200.
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Fig. 13 For the d08-d16 dataset and forN = 512and νsim = 51,200: probability density function pQ(q) of TKE
Q. (a): Q6 (mid black line) and Q7 (thin black line). (b): Q 8 (thick black line), Q9 (mid red line), and Q10 (thin
black line).
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Fig. 14 For the d08-d16 dataset and forN = 512and νsim = 51,200: probability density function pQmax(q) of
TKE Q max. (a): Q6 (mid black line) and Q7 (thin black line). (b): Q 8 (thick black line), Q9 (mid red line), and
Q10 (thin black line).
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also observed that with the d16 dataset, the learning process is significantly faster than for the d08 dataset indicatinga

stronger signature of the physics in the dataset. Furthermore, it is noted that learned d08 pdf for Q3 exhibits a slightly

bimodal behavior that may be is associated with a lack of combustion in a few data points of the d08 dataset.

The turbulent kinetic energy (TKE), on the other hand required all 256 data points for the convergence of the learn-

ing process, both for the d08 and d16 datasets, with distinctly behavior at different streamwise locations. For instance,

as observed by inspecting Figures 7 and 8, for Q6 (TKE after the primary injector and before cavity), the d08 dataset

exhibits a much narrower variation than the corresponding the d16 dataset. On the other hand, the bimodal behavior

observed for Q7 (TKE inside the cavity) is present both in the d08 and d16 datasets, which could be explained by the

mixing of two turbulence regimes. This bimodality persistsin the pdf of the maximum statistics (see Figures 9 and 10)

suggesting that each of these turbulent regimes could contribute to extreme behavior. We also note that the TKE just

after the secondary injectors, Q8, inside the combustion chamber, Q9, and at the end of the combustion chamber, Q10,

exhibit distinct behaviors between the d08 and d16 datasetswith Q8 demonstrating bimodal behavior in both datasets.

This bimodality is visible also in the extreme statistics ofd08 (see Figures 9 and 10). The bimodality of Q8, given ex-

position right after the secondary injectors, could again be attributed to the mixing of two turbulence regimes. At this

point, we should note that the learning process for the extreme statistics of TKE Q6, Q8, and Q9 are not converged for

the d08 dataset. This suggests that this dataset does not capture sufficient features of the underlying physical processes

that may be responsible for extreme behavior. Indeed, the learning process for these same statistics is converged for

the d16 dataset and with only 200 data points.

Figures 11 to 14 show the pdf of the QoIs for the concatenated d08-d16 dataset. It is observed that, while the

learning process is improved by the presence of the d16 data,the width of the pdf is adversely affected by the presence

of the d08 data. The bimodality of the extreme values of Q8 (see Figure 14) is weakly affected by the d08 data. On the

other hand, the bimodality of Q6 to Q10 (see Figure 13) is an artifact of concatenating the d08 and d16 data and should

not be interpreted as reflecting physical behavior.

VII. Conclusion

In this paper, we have delineated an implicit diffusion manifold and demonstrated its use for enhancing the pre-

dictability in a probabilistic framework of complex flows within a scramjet. Leveraging this implicit structure, fewer

statistical samples are required to accurately characterize the statistics of LES predictions induced by parametric vari-

ations. The analysis is based on a novel probabilistic "learning on manifolds" procedure that generates realizations

of a random vector whose non-Gaussian probability distribution is unknown and is presumed to be concentrated on

an unknown manifold to be characterized through a probabilistic learning process. Applied to the ScramJet database,
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the probability density functions of the quantities of interest and their associated maximum statistics are estimated

even though the number of simulations available from the LESruns is not sufficient to obtain sufficiently converged

estimates of these quantities. We have shown how the probabilistic learning method learns as a function of the size of

the datasets. This type of analysis also serves to determineif the dimension of the initial dataset is sufficiently large for

providing an assessment of the quality of the probabilisticlearning. The analysis of these probability density functions

allows for proposing reasonable interpretations of the physical behavior of the complex turbulent flow in relationship

to the mesh size of the fluid domain and the time averaging thatis used for constructing the quantities of interest, such

as the turbulent kinetic energy at different streamwise locations of the flow.

Appendix

The objective of this Appendix is to explain in which sense the additional realizations generated by the probabilistic

learning on manifold satisfy the computational model.

(i) In order to simplify the explanations, we will assume that Q = f(W) in which f is a measurable mapping from

Cw ⊂ R
mw into R

nq (thereforef is a deterministic mapping). LetPW (dw) be the probability measure (probability

distribution) ofRmw -valued random variableW, defined onRmw for which its support isCw. This measure is assumed

to be given (known). LetQ be theR
nq -valued random variable such thatQ = f(W). Let PQ(dq) be the probability

measure onRnq of random variableQ. ThenPQ(dq) is the image of measurePW (dw) under mappingf.

Let PW,Q(dw,dq) be the joint probability measure onRmw × R
nq of random variablesW andQ. Therefore, the

supportS of PW,Q(dw,dq) is the manifold inRmw ×R
nq defined byS = {(w,q) ∈ Cw×R

nq ,q = f(w)}. It can be seen

thatPW,Q(dw,dq) does not admits a density with respect to the Lebesgue measure onR
mw × R

nq . It is equivalent to

give probability measurePW,Q(dw,dq) or to give mappingf with probability measurePW (dw) whose support isCw.

Consequently, ifPW,Q(dw,dq) was known, thenf would be known. This means that if we assumed thatPW,Q(dw,dq)

was known and if{(wℓ ,qℓ ) , ℓ = 1, . . . ,N} wereN independent realizations inRmw × R
nq of random variable (W,Q)

taken fromPW,Q(dw,dq), then the realizations would be such thatqℓ = f(wℓ) because the support ofPW,Q(dw,dq)

is manifoldS.

(ii) Let us now assume thatPW,Q(dw,dq) is unknown. Let{(wℓ ,qℓ) , ℓ = 1, . . . ,N} be N points such that{wℓ , ℓ =

1, . . . ,N} are N independent realizations ofW taken from the known probability measurePW (dw) and such that

{qℓ = f(wℓ) , ℓ = 1, . . . ,N} are theN points computed using the computational model. Consequently, the values

of f are known for theseN pointswℓ but are unknown for any pointw in Cw different from thatN points. Let

P(N )
W,Q(dw,dq) be a nonparametric statistical estimate ofPW,Q(dw,dq) using dataset{(wℓ,qℓ ) , ℓ = 1, . . . ,N} and

the multidimensional Gaussian kernel-density estimationmethod. Consequently,P(N )
W,Q(dw,dq) is represented by a
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probability density function (w,q) 7→ p(N )
W,Q(w,q) on R

mw × R
nq with respect to the Lebesgue measuredw dq. For

N → +∞, the sequence of probability measuresP(N )
W,Q(dw,dq) = p(N )

W,Q(w,q) dw dq tends to probability measure

PW,Q(dw,dq). For N finite, the supportS(N ) of densityp(N )
W,Q is not the manifoldS, which means that, in general,

mappingf can only be identified forN → +∞.

(iii) Let {(wℓ
ar,q

ℓ
ar) , ℓ = 1, . . . , νsim} beνsim independent realizations taken from the probability measure P̂(N )

W,Q(dw,dq)

that is constructed with the probabilistic learning on manifolds. This probability measure is deduced from measure

P(N )
W,Q(dw,dq) but is a better estimated thanP(N )

W,Q(dw,dq) because the information is enriched using diffusion maps as

demonstrated in [1]. Since the supportŜ(N ) of P̂(N )
W,Q(dw,dq) is notS, qℓ

ar is not equal tof(wℓ
ar) for all ℓ = 1, . . . , νsim,

which means that the points{(wℓ
ar,q

ℓ
ar) , ℓ = 1, . . . , νsim} do not belongs, in general, toS almost surely. Nevertheless, if

N is sufficiently large, the points{(wℓ
ar,q

ℓ
ar) , ℓ = 1, . . . , νsim} generated by the probabilistic learning on manifolds are

concentrated in a subset ofR
mw ×R

nq , localized in the neighborhood of manifoldS. In addition, ifN goes to infinity,

Ŝ(N ) goes toS (due to the convergence of̂P(N )
W,Q(dw,dq) towardsPW,Q(dw,dq)).

(iv) The probabilistic learning on manifolds is used for enhancing the model predictability in a probabilistic frame-

work. This means that we are not interested in characterizing deterministic mappingf by generatingνsim points

{(wℓ
ar,q

ℓ
ar) , ℓ = 1, . . . , νsim} such thatqℓ

ar = f(wℓ
ar) for all ℓ = 1, . . . , νsim (that is not possible for a finite value ofN). We

are interested in characterizing the unknown approximation f(N ) of f by a known probability measurêP(N )
W,Q(dw,dq)

that correctly approximatePW,Q(dw,dq), and for which the convergence is assured forN → +∞. For givenN, the

probability density functionq 7→ p(N,νsim)
Q (q) of random QoIQ is estimated using the multivariate Gaussian kernel-

density estimation method with theνsim≫ N additional realizations{qℓ
ar, ℓ = 1, . . . , νsim}. This estimate can be obtained

with any accuracy becauseνsim can be chosen arbitrarily large without using the computational model and therefore,

the convergence with respect toνsim can be controlled without any problem.

(v) A question is related to the convergence of the sequence of probability measuresP(N,νsim)
Q (dq) = p(N,νsim)

Q (q) dq

towards the unknown measurePQ(dq) introduced in point (i) before. The construction proposedis such that the

convergence is guaranteed, which means thatPQ(dq) = limN→+∞,νsim→+∞ P(N,νsim)
Q (dq) in the space of probability

measures onRnq . BecausePQ(dq) is unknown the convergence can be analyzed, for instance, by studying the conver-

gence of the sequences of probability density functions{p(N,νsim)
Q }N,νsim. Let us assumed that for each fixed value of

N, the value ofνsim(N) is identified in order to obtain a given accuracy of the convergence of the sequence of functions

{p(N,νsim)
Q }νsim in the space of integrable functions. The analysis of the convergence of the sequence of probability mea-

sures{P(N,νsim(N ))
Q (dq)}N with P(N,νsim(N ))

Q (dq) = p(N,νsim(N ))
Q (q) dq towardsPq(dq) can be done and corresponds

to the convergence of the learning. In practice, if the maximum available value ofN is Nmax, the convergence of the
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family of functionsp(N,νsim(N ))
Q for N ∈ [1,Nmax] is analyzed. If convergence of the learning is not obtainedfor a

value ofN smallest than or equal toNmax, this means thatNmax is not sufficiently large and that additional calculations

have to be performed with the computational model.
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