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The computational burden of Large-eddy Simulation for readive flows is exacerbated in
the presence of uncertainty in flow conditions or kinetic varables. A comprehensive statistical
analysis, with a suficiently large number of samples, remains elusive. Statigtal learning is an
approach that allows for extracting more information using fewer samples. Such procedures,
if successful, would greatly enhance the predictability omodels in the sense of improving ex-
ploration and characterization of uncertainty due to modelerror and input dependencies, all
while being constrained by the size of the associated stdiisal samples. In this paper, we show
how a recently developed procedure for probabilistic learing on manifolds can serve to im-
prove the predictability in a probabilistic framework of a s cramjet simulation. The estimates
of the probability density functions of the quantities of interest are improved together with
estimates of the statistics of their maxima. We also demonstte how the improved statistical

model adds critical insight to the performance of the model.
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A lower case letter such asis a real deterministic variable.

A boldface lower case letter suchwg a real deterministic vector.

An upper case letter such ¥ds a real random variable.

A boldface upper case letter such¥ass a real random vector.

A lower case letter between brackets suchydss a real deterministic matrix.



A boldface upper case letter between brackets suckfds p real random matrix.

. Introduction

The performance of a scramjet engine is closely tied to tbligen of physical phenomena on scales ranging from
the size of the fuel injector to the geometry of the combustioamber. Capturing the interaction between these phe-
nomena requires the resolution of mathematical modelguary fine spatio-temporal discretizations that continue
to challenge the most advanced computational resourcegrating these simulations into a model-based design op-
timization or a parametric uncertainty propagation consgmnificantly exacerbates the computational burden as the
require multiple numerical simulations under varying dasind parameter conditions. The task of optimization under
uncertainty remains elusive, requiring simplifying asgtions on the physics of the problem that put into question
the optimality and even the feasibility of the computed sohu

In general, predictions from mathematical models are giledrin conservation laws and can thus be expected
to have an implicit structure that may be conducive to nucaésgimplifications. As indicated previously, given the
multiscale nature of relevant phenomena, reductions thatsamplify the physics may lose sight of quantities of
interest that are critical for design or safety. Alternatieduction formalisms, as pursued in the present paperbmay
cast in the form of probabilistic learning schemes, whetegrisic structure is progressively learned. The hope it tha
suficient learning be achieved from a relatively small numbesimiulations, in anyway far fewer than would typically
be required for optimization under uncertainty. Cleathg tearning and the simulations from which it is synthesized
are dependent on the Qol.

The objective of the present paper is to use the recent agipiavoted to probabilistic learning on manifolds
[1] to the challenges presented by large-eddy simulatibBSJ of reactive flows inside a scramjet combustor. While
investigations adopting probabilistic approaches foasget applications are growing in recent years [2—8], sarig|
challenges remain in characterizing and predicting cotidnugroperties for turbulent flows under extreme condgion
especially in conjunction with uncertainty quantificatiowe are particularly interested in employing and enabling
probabilistic methods with LES, since these simulationkilevcomputationally more demanding, can allow us to
access some turbulence details and features often noalaleathrough models involving additional simplifications,
such as with Reynolds-averaged Navier-Stokes (RANS) dddenabling uncertainty quantification with LES involves
pushing the limits of computational science and engingeramd is recognized as one of the grand challenges of
scramjets computations| [9]. More precisely, this paper fissh stage for enhancing the probabilistic predictability
of the computational model. The second stage could be ardegigmization under uncertainty using the approach
detailed in|[10], but which is not presented in this paper.

Available data refers here to numerically generated datf #s indicated above, will be limited in view of the

expense associated with its generation. These generdtectadeespond to realizations of a random vedtet (W, Q)



that is constituted of the vect@¥ of the uncertain parameters of the computational model iolwik added the vector

Q of all the random quantities of interest that are the outpfithe computational model. Consequently, there exists
an unknown mapping, characterizing the computational model such Qat f(W) and defining a manifold (that

is unknown). The unknown probability measureXofvill be estimated using the generated data that correspond t
realizations ofX. The support of this probability measure is this manifolcheprocedure permits to discover this
unknown support (the manifold) through a Markov processtroicted using only the generated data [11]. A sampling
procedure is then put in place for augmenting the initiahdat with additional samples generated with the probgbilit
measure whose support is the manifold. While the presergrfapuses on this statistical augmentation step, the
extension of the results to the design optimization probdeenself-evident. They do, however, require special care
that places them outside the scope of the present work. lidhe noted that the methodology for solving stochastic
nonconvex optimization problems using the probabilistgrhing on manifolds, which is used in this paper, has been
developed and validated on simple examples (see [10]). Miethodology is being developed for very complex
optimization problems.

It should be noted that the statistical and probabilistariéng methods have been extensively developed [12—
20]) and play an increasingly important role in computadicstience and engineering [21]), in particular for design
optimization under uncertainties using large scale coatrtal models and more generally, in artificial intelligen
for extracting information from big data. In recent yeatatistical learning methods have been developed in the form
of surrogate models from which approximations of modeleblEsnction evaluations can easily be computed|[22—25].
Gaussian process models are most commonly used in thisxc¢gree for instance [26, 27]), as well as the approaches
based on Bayesian methods including the Bayesian optilmizas proposed in [22, 23, |29]. For the evaluations
of expensive stochastic functions in presence of unceigaincomputational challenges remain currently significa
enough to require relevant probabilistic approximati@¥s [B0+-32]. There are many fields for which statistical and
probabilistic learning methods are used. In the field of aautical engineering learning procedures have been used
for over two decades with success for training neural neke/(83,. 34]. More recently, postprocessing of a given
set of Monte Carlo realizations has been proposed for inipgowmtegral computation [35] and a machine-learning
approach has been used|[36] for improving predictive modketsrrbulence synthesized from limited experimental
data. This last paper is certainly in the spirit of the workganted in this paper for which the objective is to enhance
the knowledge extracted from limited data, but in using a-G@ussian probabilistic learning process.

The probabilistic learning on manifold/[1], which is usedtiis paper for enhancing model predictability , in the
sense of improving exploration and characterization obutainty due to model error and input dependencies within a
probabilistic framework, proposes a new methodology foragating additional realizations of a random vector whose
non-Gaussian probability distribution is unknown and isgumed to be concentrated on an unknown manifold, for

which the available information is only constituted of aatat of independent realizations of this random vector. The



probabilistic learning method involves (1) discoveringlaaking into account the geometrical structure of the @dtas
by using a difusion maps technique in order to enrich the usual construaf the probability distribution based
on a multidimensional Gaussian kernel-density estimgti@mparametric statistics), (2) preserving the concéntra

of the additional realizations around the manifold, andd@)structing an associated Markov Chain Monte Carlo

(MCMC) generator for generating additional realizatidmatfollow the estimated probability distribution.

The paper is organized as follows. In Section I, we sumneattie physical and computational model that is
used for simulating the complex flow for a ScramJet by mearsslafge scale computational fluid dynamics model.
This section allows also for defining the uncertain paranseiéthe computational fluid dynamics model (which are
modeled as random variables), the random quantities afeisitethe specifications of the computational model, and
the simulations performed. Section Il presents a brief many of the probabilistic learning on manifold that is
used for analyzing ScramJet data. The reader can find alleteélsiof the algorithm in_[1]. Section IV is devoted
to the description of the ScramJet model representatiothealefinition of the random parameters and the random
guantities of interest that are retained for the ScramJatysis, and finally, to the definition of the dataset used for
the probabilistic learning. Section V presents the siaifestimation and analysis using the probabilistic leagn
on manifold that allows for generating additional reali@as used for estimating the probability density functiofis
guantities of interest and of their maximum statistics @hhare extreme value statistics). The numerical simulation
and the analysis of the ScramJet database is presentedtiarSet In particular, we analyze the robustness of the

probabilistic learning approach and we show how such anoggprallows for enhancing model predictability.

Il. Physical and Computational Model

We concentrate on a scramjet configuration studied undefllRRE (Hypersonic International Flight Research
and Experimentation) program [37,/38]. One of its flightde#ie HIFIRE Flight 2 (HF2) project [39—41], involved
a payload depicted in Figufe I{a) and was tested under flgditons of Mach 6—8. The configuration consists
of a cavity-based hydrocarbon-fueled dual-mode scramjefround test rig, designated the HIFIRE Direct Connect
Rig (HDCR) (Figurd 1(1)), was developed to duplicate thédaitm/combustor layout of the flight test hardware, and
to provide ground-based measurements for comparisondligith test data, verifying engine performance and oper-
ability, and designing fuel delivery schedulel[42, 43]. &itthe HDCR ground test data are publicly availablel[42, 44],
we aim to simulate and assess reactive flows inside the HD@Rtheé intention of leveraging existing experimental
datasets to drive future modeling developments.

The rig consists of a constant-area isolator (planar ditz}laed to a combustion chamber. It includes four primary
injectors mounted upstream of flame stabilization caviie®oth the top and bottom walls. Four secondary injectors

along both walls are positioned downstream of the cavitidaw travels from left to right in thex-direction (stream-



wise), and the geometry is symmetric about the centerlirtbary-direction. Numerical simulations take advantage
of this symmetry by considering a domain that covers onlybibigtcom half of this configuration. The consequence of
this approximation is to exclude any asymmetric modes ofltve dynamics from the present modeling framework.
To further reduce the computational cost, we consider ohefsgrimarysecondary injectors and impose periodic
conditions in thez-direction (spanwise). The overall computational domaihighlighted by the red lines in Figure 2.

JP-7 surrogate fuJL—[_LS], composed of 36% methane and 649keathby volume, enters through these injectors. A

Fuel System

Forebody/Inlet

(a) HIFIRE Flight 2 payload (b) HDCR

Fig. 1 HIFIRE Flight 2 payload [40] and HDCR cut views [42].

reduced, three-step mechanig Q 47] is initially addpdedescribe the combustion process:

CH4 + 2(02 + fNoNz) - C02 + 2H20 + 2fNoN2 (1)
CzH4 + 3(02 + fNoNz) d ZC()Z + 2H20 + 3fNoN2 (2)
2CO0+0; = 2CO,, 3)

wherefyo = 0.79/0.21 is the ratio between the mole fractions gf&hd Q in the oxidizer streams. Arrhenius kinetic
parameters are selected to retain rofstigble combustion in the current simulations.

LES calculations are then performed using the RAPTOR caatadwork developed by Oefelengl 49]. The
theoretical framework solves the fully coupled consepragquations of mass, momentum, total-energy, and species
for a chemically reacting flow while accounting for detaitbdrmodynamics and transport processes at the molecular
level. It is designed to handle high Reynolds number, hig¢sgure, real-gas afmd liquid conditions over a wide
Mach operating range. Noteworthy is that RAPTOR is desigpatifically for LES using non-dissipative, discretely
conservative, staggered, finite-voluméeliencing. This eliminates numerical contamination of thigfitter models
due to artificial dissipation and provides discrete corsdon of mass, momentum, energy, and species, which is

imperative for high quality LES. Representative resultd aase studies using RAPTOR can be found in studies by
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Fig. 2 The HDCR experimental setup and schematic of the fullemputational domain.

Oefeleinet al. [50-52].

In our numerical studies, we allow a total of 11 input parareto be variable and uncertain, shown in Table 1
along with their uncertainty distributions. The uncertparameters reflect uncertainty in inlet and fuel inflow bound
ary conditions as well as turbulence model parameters frilliming the Smagorinsky model. The nominal values
of the operating conditions for our combustor domain cqroesl to the Mach 5.84 flight condition, and these values
were calculated in past CFD analysis and employed for the RIBund tests [42]. With lower and upper bounds
suggested by domain experts, we invoke the maximum entrdpgiple [53,/54] and endow the parameters with
uninformative uniform “prior” distributions across thenges indicated in the table. Our simulation data are from
two-dimensional scramjet computations, employing grgbhations where cell sizes ar¢8l(referred as “d08” grids)
and 1/16 (referred as “d16” grids) of the injector diametkr= 3.175 mm. Calculations are performed on the two
grid levels from their respective warm-start solutiong thare engineered from a quasi-steady state nominal conditi
simulation. A run length of 10time steps is selected to balance between washing outersdrssart-up behavior and
operating under practical constraints of limited compatadl resources. The last halves of these runs time-héstori
are used for time-averaging. Timestep sizes are determitegatively based on guidance from the Courant-Friedrichs-
Lewy (CFL) condition. A total number of 256 simulations isfeemed for both the d08 and d16 grids in establishing
our database, and their average CPU times per run are roddBligours and 2160 hours, respectively.

We would also like to point out some limitations of our nungatiresults in the current paper stemming from ad-
ditional simplifications necessitated by practical coasitions. In particular, constraints on computationabueses
both encouraged and compelled a current investigatiorhimgysimulations in a two-dimensional geometry, where

we placed a single cell in thedirection at ax-y plane intersecting the injectors. We fully acknowledgedbereased



fidelity of these runs as a result of the reduced geometricrifgi®mn as well as the relatively simple chemical model
in Eq.(AE3). Indeed, certain physical features and phemomere eroded or otherwise not representable in a two-
dimensional setting. Nonetheless, given the scale of ctmtipns demanded by any form of statistical assessments,
enabling computational methods under a probabilistic éa&ork even with these emulatory settings has not been
achieved previously. At the same time, fully three-dimenal simulations are computationally possible but only for
relatively coarse grids and where only a very small numbeun$ can be completed under the present computational
budget; they are thus not ready to support a meaningful detradion of the centerpiece of this paper—the manifold
learning technique. While certainly desirable under icdtalations, seeking higher-fidelity scramjet LES datafets
the purpose of this study would be practically impossibladbieve at this time. Nonetheless, we emphasize the high
degree of information, and enhanced fidelity, availablenftbe present LES computations of this flow, in terms of
both flowflame structure and dynamics, as opposed to, say RANS siondatThe present results highlight what
is indeed currently achievable in the context of UQ for sgethES computations emplolying state of the art UQ
methods.

We focus on three quantities of interest (Qols): (1) combugficiency {;.) that is related to the burned equiva-
lence ratio §), (2) stagnation pressure loss rati®j{), and (3) wall-normal averaged turbulence kinetic enefdg¢E)
at various streamwise locations. The first two Qols refleetaberall scramjet performance, while the third contains
more localized descriptions that caffiey insights for turbulence modeling. All Qols are time-aged variables.

e Combustion dficiency (;.) is the combustionféiciency based on static enthalpy quantities [43, 55]:

Ne = H (Tref,Ye) -H (Tref,Yref)
‘ H (Tref, Ye,ideab -H (Tref» Yref) .

4

HereH is the total static enthalpy, the “ref” subscript indicateseference condition derived from the inputs,
the “e” subscript is for the exit, and the “ideal” subscriptfor the ideal condition where all fuel is burnt to
completion. The reference condition corresponds to thatlofpothetical non-reacting mixture of all inlet air
and fuel at thermal equilibrium. The numerata(Tes, Yo) — H (Trer, Yeef), thus reflects the global heat released
during the combustion, while the denominator represemrtsdtal heat release available in the fuel-air mixture.

e Stagnation pressure loss ratioRp) is defined as

(5)

whereP; . and P, ; are the wall-normal-averaged stagnation pressure gignét the exit and inlet planes,
respectively.

e Turbulence kinetic energy (TKE) is characterized by the root-mean-square (RMS) velocigtdlations at a



given location:

TKE =

NI =

(u2 +v2 +Wr2ms)’ (6)

rms rms

where the RMS quantity i8,,s = \/@ — T2, with T indicating time-averaged quantity. In the numerical itives

gations of this paper, we will look at TKE from multiple stre@vise locations (i.e., flierentx locations).

Parameter Range Description
Inlet boundary conditions:
Po [1.4061.554]x 10° Pa  Stagnation pressure
To [14725,16275] K Stagnation temperature
Mo [2.2592.759] Mach number
L; [0,8]x 103 m Inlet turbulence length scale
l; [0,0.05] Turbulence intensity horizontal component
R [0.8,1.2] Ratio of turbulence intensity vertical to horizontal cooments

Fuel inflow boundary conditions:
I [0,0.05] Turbulence intensity magnitude
Ls [0,1] x 103 m Turbulence length scale

Turbulence model parameters:

Cr [0.01,0.06] Modified Smagorinsky constant
Pr, [0.5,1.7] Turbulent Prandtl number
S¢ [0.5,1.7] Turbulent Schmidt number

Table 1 Uncertain input parameters. The probability distributions are assumed uniform across the ranges
defined.

l1l. Probabilistic Learning on Manifold for Analyzing Scra mJet Data
In this section, we summarize the probabilistic learninghradology [1] that will be used throughout the paper
for predicting the statistics and for performing model exption and uncertainty quantification to enhance model

predictability of LES simulations of a ScramJet.

This probabilistic learning on manifold uses only a datagéd data pointgxt,...,x"} in R”, which are assumed to
be N independent realizations of a random vecfowith values inR”. The probability distribution oK is unknown
and is assumed to be concentrated in a neighborhood of atsafli®® (a manifold) that is also unknown and that
has to be discovered. For the ScramJet database, véatdlt be constituted of the 11 uncertain parameters of the

computational model (modeled by random variables as exgdbin Section 1) to which are added all the random



guantities of interest (Qols) that are outputs of the stettb@omputational model. The objective of the probaldist
learning on manifold is to construct a probabilistic modiedamdom vectoiX using only dataseix?, . . .,x"}, which
allows for generatings;, > N additional independent realizationslr,. ., Xe8my in R™ of random vectoiX. The
proposed method preserves the concentration of the adlaittealizations around the manifold. For the ScramJet
analysis, we can then generate a very large numigr;> N, of additional realizations that allow for estimating
the probability density functions of various Qols, inclagithe statistics of their maxima. The main steps of this
methodology can be roughly summarized as follows.

1) A principal component analysis of is carried out in order to normalize the dataset, which weddnew
normalized dataset & data pointgy?,...,y"}in R”. This means that the random vectwith values inR”
for which {y%,...,yV} areN independent realizations, has a zero empirical mean anthpimieal covariance
matrix that is the unity matrix.

2) Datasefy?,...,yN} is rewritten as a) x N) rectangular matrixy,] that is construed as one realization of a
(v x N) rectangular random matrix] = [Y1...YN]inwhich Y%,...,Y"N areN independent random vectors.
A modification [56] of the classical multidimensional Gaiasskernel-density estimation methad[57] 58] is
then used to construct and estimate the probability dehsitgtion (pdf)ppy;([¥]) of random matrix ] with
respect to the volume elemetifty] on the set of all the¥ x N) real matrices.

3) A (v x N) matrix-valued Itd stochastic fiierential equation (ISDE), associated with the random m¥{,
is constructed and corresponds to a stochastic nonlingsipdiive Hamiltonian dynamical system, for which
prvi([y]) dly] is the unique invariant measure. This construction isgrened using the approach proposed in
[56,/59] belonging to the class of Hamiltonian Monte Carlatioels [59+-61], which is an MCMC algorithm
[62].

4) The ditusion-map approach [11] is then used to discover and cleizetthe local geometry structure of
the normalized datasepf]. The subset of the @usion-maps basis, represented byNax( m) matrix [g] =
[gt...g"], are thus constructed witlhh < N. They are associated with the firateigenvalues of the transition
matrix of a Markov chain relative to the local geometric stuse of the given normalized datasgy].

5) As proposed in [1], a reduced-order representafiinf [Z][g]” is constructed in whichZ] is a (v x m)

~

random matrix for whiclm <« N. A reduced-ISDE, associated with random mat#}, [is obtained by pro-
jecting the ISDE introduced in Step 3 onto the subspace guhoynthe reduced-order vector basis represented
by matrix [g]”. It should be noted that such a projection corresponds tduct®n of the dataset dimension
and not to a reduction of the physical components of randartov¥ that already results from a PCA applied
to X. Such a projection preserves the concentration of the getkerealizations around the manifold. The
constructed reduced ISDE is then used for generating additrealizationsZz],. . . ,[z¥c] of random matrix

[Z], and therefore, for deducing the additional realizatipyl, . . .,[y?c] of random matrix ¥]. Reshap-

10



ing thesen,. matrices yields thes, = N x n,. independent realizationg?,. . .,y”sm} of random vectoiy .
Using the PCA constructed in Step 1 allows for generatingvthe> N additional independent realizations

{x2

ar *

., X8 ™y in R™ of random vectok.

Remark 1 For the general case of the probabilistic learning on noéatsf the pdf ofpyx of X is unknown. As ex-
plained in Sectiofll IX is written asX = (W, Q) in which W is the random vector of the uncertain parameters of the
computational model an@ is the random vector of the quantities of interest that agedtltputs of the computational
model. Consequently, the pgfy (w) of W is not supposed to be known. However, for certain applioatfor which
the probabilistic learning on manifolds is usesjy (w) is known and is used for generating the realizationgvoin
order to generate the datagef = (w’,q%),¢ = 1,...,N} in which g¢ is the realization oQ computed with the
computational model foww = w¢ (this point will be detailed in Sectidn 1V for the ScramJepligation). One could
then wonder if the knowledge @ky could be useful in the probabilistic learning on manifoldsddition to its use to
generate th&\ points of the dataset. In fact, it is not so for the followiegsons. Starting from the dataset\bpoints
constituted of realizations of random veckr= (W,Q), we want to generate, > N additional realization$x’,},

(by the probabilistic learning) in order to improve the egtte of the probability distribution o whose support is
the manifold defined by the mapping that m&@sn Q. For such a characterization, the joint probability digition
pw,o(w,q) dwdq is required, which means that we need the probability distion px (x) dx of X. The pdfpw (w) of

W is only used for generate the initial dataset constituted pbints. The use gby (w) in the learning process would
require to introduce the conditional pgw (glw) of Q givenW = w such thatpw,o(w,q) = pow (QIw) pw (w).
Formulated in terms of such a conditional pdf, the probstidlilearning process would be strictly equivalent to the
probabilistic learning formulated in terms pfv o (w,q) dwdq = px(x) dx, because the number of additional real-
izations ofQ|w givenW = w must be the same that the number of additional realizatibk'g o order to correctly
represents the manifold. In addition, each realizatio@ahould then be associated with the corresponding realiza-
tion of W. It would be a nontrivial time-consuming problem becauseduld require an additional smoothing step.

Consequently, there would be a loss fif@ency without improving the learning procedure that isqoeed.

Remark 2 The transition kernel of the homogeneous Markov chain efMarkov Chain Monte Carlo (MCMC)
method can be constructed using the Metropolis-Hastingsrishm (that requires the definition of a good proposal
distribution), the Gibbs sampling (that requires the kremigle of the conditional distribution) or the slice sampling
(that can exhibit dficulties related to the general shape of the probabilityribigion, in particular for multimodal
distributions). In general, these algorithms afiecent, but can also be noffieient if there exist attraction regions
which do not correspond to the invariant measure under deredion and tricky even in high dimension. These cases
cannot easily be detected and are time consuming. The MCMBade@sed for constructing the probabilistic learning

on manifoldsl[1], which is based on a nonlinear 1td stoclatifferential equation (ISDE) formulated for a dissipative

11



Hamiltonian dynamical system (first introduced|in/[59])sheeen used for the following reasons:

(i) This Hamiltonian MCMC method is very robust. It looks sian to the Gibbs approach but corresponds to
a more direct construction of a random generator of reatiratfor random matrix Y] that can be in very high
dimension and for which its probability distributiqupy;([y]) d[y] can have a support that is not a connected set and
that is multimodal. The dierence between the Gibbs algorithm and the proposed dlgoid that the convergence
properties in the proposed method can be studied with alhththematical results concerning the existence and
unigueness of 1td stochastididirential equation. In addition, a parameter is introduadch allows the transient part
of the response to be killed in order to get more rapidly th&aary solution corresponding to the invariant measure.
The construction of the transition kernel by using the dethibalance equation is replaced by the construction of an
[t6 Stochastic Dfferential Equation (ISDE), which admifsy]) d[y] as a unique invariant measure.

(i) The second fundamental reason is the possibility te iato account the local geometry structure of the dataset
by projecting the nonlinear ISDE on the subspace spanndugagifusion-maps basis. This aspect is the main innova-
tion introduced in the construction of the probabilistiarieing on manifolds [1], thanks to this choice of the MCMC

generator.

Remark 3 The methodology of the probabilistic learning on manigo{seel[1]) introduces two hyperparameters. The
construction of the diusion-maps basis involves an isotropi¢kaision kernel with a first hyperparameterThe sec-
ond hyperparameter in the dimensiom< N, of the difusion-maps basis for projecting the ISDE. In a recent work,
an entropy-based closure has been developed for idergibptimal values of andm using only theN points of the
dataset. This entropy argument ensures that out of alllplessiodels, this is the one that is the most uncertain beyond
any specified constraints, which is selected. The presentaf this complement of the methodology is outside the

scope of the present paper.

IV. ScramJet Model Representation, Parameters, Qol, and Diaset
for the Probabilistic Learning

A. ScramJet Model Representation
The ScramJet database is generated with the physical anputational model presented in Section Il. The uncer-
tain parameter of the computational model is a veuwtoe (w1,...,wn, ) that belongs to a subseéy, of R" in
which m,, = 11. This uncertain parameter is modeled by a second-ordBf*w-valued random variablgV =
(Wy,. ... W, ) defined on a probability spac®(7,#) for which the support of its known probability distributio
Px (dx) is the selC,, that is defined in Tablg 1.

The vector-valued Qol thatis deduced from the outputs oftimeputational model is denoted fy= (.. . ., Gn,,)
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€ R" in whichn, = 10. There is an unknown measurable mapping> f(w) from Cy ¢ R™» into R"s such that
g = f(w). Consequently, the random Qol is tR&< -valued random variable defined o®,(",#), which is such that
Q = f(W). The probability distributiorPg(dq) of Q is the image oPw (dw) under mapping. It is assumed tha®
is a second-order random variable. The realization&/aindQ will be denotedv’ = W(8,) andq’ = Q(6,) with

0, € ©. The probability distribution of) is unknown.

Remark The probabilistic learning on manifolds can be used for aengeneral case for whiadQ = F(W) in which
F is a random mapping that can be writtenFg®V) = f(W,U) where v,u) — f(w,u) is a measurable mapping
from Cy x Cy € R™» x R™« into R"«, and where the joint probability distribution of random iadtes WV, U) is

Pw,u(dw, du) whose support i€y x Cy.

B. Random Model Parameters and Random Quantities of Interes
For the ScramJet database, we haye = 11 andn, = 10. The components of the random model parameters,
represented by random vecttt, are (see Tablg 1):
Wi Inlet stagnation pressurgs.
W,: Inlet stagnation temperaturg,.
Ws: Inlet Mach numberMo.
W;: Modified Smagorinsky constar@g.
Ws: Turbulent Prandtl numbeRr;.
Ws: Turbulent Schmidt numbegg.
W5: Inlet turbulence intensity horizontal componeiit,
Ws: Inlet turbulence length scalg,.
Wo: Inlet ratio of turbulence intensity vertical to horizohtamponentsR;.
Wio: Fuel inflow turbulence intensity magnitude,
Wi1: Fuel inflow turbulence length scalkey.
SubsetCy of R"™ is written as the cartesian produ@t x ... x J,,, of closed intervals?; = [a;,b;] ¢ R. The
components of the random quantities of interest, repreddnt random vecta®, are:
Qq: Burned equivalence ratio
Q,: Combustion &iciency
Q3: Pressure stagnation loss ratio
Q,: TKE at the inlet streamwise location
Qs: TKE at streamwise location just before the primary injesto

Qe: TKE at streamwise location after the primary injectors hetbre the cavity
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Q: TKE at streamwise location inside the cavity

Qg: TKE at streamwise location just after secondary injectors

Qq: TKE at streamwise location inside the combustion chamber

Q1o TKE at streamwise location at end of the combustion chamber
in which TKE is the wall-normal averaged turbulence kineieergy at various streamwise locations for which the
locations indicated in Figuig 2).
For each considered dataset of the ScramJet database xtmeurmmanumber of data points that are available is denoted
by Ng,. The current dimension of such a dataset that will be consitifor the probabilistic learning is denoted by
N < Ng, A convergence analysis of the probability distributiortioé quantities of interest with respect to the value
of N when N will go to N, will be carried out. In the following, the terminology "coengence analysis of the
probabilistic learning” or simply "convergence of the tdag" will refer to this definition. For a given dataset of the
ScramJet database, for fixédsuch that 1< N < Ny, andforé = 1,...,N, the realizationsv’ = W(6,) € R™ and

the corresponding realizatiog$ = Q(6,) € R"« of Q are such that

q‘ = F(w’;0,) € R", ()

in which the meaning of the symbols used are detailed in Qe Al

Remark As explain in Sectiofll, the probability distribution cimdom vectoW has been chosen as a uniform
distribution onC,y for focusing the analysis on the uncertainty propagatidms probabilistic model corresponds to
the use of the Maximum Entropy principle from Informationebiy, for which the only available information is the

supportCy of the unknown pdf of random vecty.

C. Defining the Datasets for the Probabilistic Learning Fromthe ScramJet Database

Three datasets are extracted from the ScramJet databas#tstlis defined as the dO8 dataset and corresponds to the
results generated with the computational model that istcacted with a grid resolution where cell size ig8lwhile

the second one is defined as the d16 dataset and correspandslit@ize of 116. The third one is the concatenated
d08-d16 dataset that corresponds to the concatenatioe o0 dataset with the d16 dataset, obtained by interlacing
the two datasets with respect to their data points. For enelobthe three datadasets, the numilgy of data points

are Ny, = 256 for the dO8 and d16 datasets, whilg,, = 512 for the concatenated d08-d16 dataset. For given

N < Ng,, a dataset is made up of thedata pointsct,.. ., xN in R with

n=m,+n,, (8)
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such that

xX‘X=wlq) e R" =R™ xR% , ¢=1,...,N. (9)

For fixed N, the probabilistic learning on manifold will be carried ausing datasefx’,¢ = 1,...,N}. This dataset
depends o\ and as we have explained before, a convergence analysie pfdbabilistic learning with respect td

will be performed for 1< N < Ng,,. It should be noted that, for the concatenated d08-d16 efatfisfor instance,

N = 200, then there are the first 100 data points from the dO8etedas the first 100 data points from the d16 dataset.

V. Statistical Estimation and Analysis Using Probabilistc Learning on Manifold
In all this section,N is fixed such that 1< N < Ny, The probabilistic learning that will allow for generat-
ing vsim > N additional realizations oK will then depend on this value dfi. For simplifying the notations, this

dependence oN is removed when it is not necessary for the understanding.

A. Probability Distributions of Random Variables X, W, and Q

Let X = (Xy,...,X,) be a second-order random variable defined on probabilage, 7 ,#) with values inR”",
with n = m,, + n,. Its probability distributionPx (dx) is unknown but theN given data point?, ..., xN in R",
defined by Eq.[{9), are assumed toMegiven statistically independent realizationsXaf This means that the solely
available information for estimatinBy is constituted of datas¢x’,...,x"'} of N points irR”. Taking into account

Eq. (9), random vectoX can also be written as

X=(W.Q), (10)

in whichW = (Wy,...,W,,, ) andQ = (Q,... ,an) are the random vectors defined in Section IV. B for which the
N realizations arev’ € R™v andq’ € R". The probability distributiorPy (dx) on R” of X = (W, Q) can also be
rewritten as the joint probability distributio®y o (dw, dg) on R™ x R« of W andQ. It should be noted that since
mappingf is deterministic, probability distributioRx (dx) cannot be represented by a gaf(x) with respect to the

Lebesgue measuox onR" (see Appendix).

As explained in Section I, for the considered fixed valud&othe probabilistic learning will allow for generating

1

vsim additional realizationgxl, . . ., xz™m} of X, with vy > N, by using only datasdk,...,x"N}. For estimating the
statistics related t@, we will need to extract the corresponding, additional realizationgq?, . . ., g™} for Q such
that,

wigl)y=xt . f=1...,vem. (11)
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Remark As explained before, the probabilistic learning on madgamnly uses a data set dF points that are con-
structed using the computational model and allows for canshgvg, > N additional realizations without using the
computational model, in order to better estimate the priibadistribution of the random Qol. A natural question can
then be asked. Are the additional realizations that arergéeek satisfy the computational model? The answer is yes
in the sense of probabilities. Since the proposed appraathta improve the predictability of the model in a proba-
bilistic framework, the objective of the proposed methoddhkieved. Detailed explanations are given in Appendix on

this point.

B. Selecting the Random Qol for the Statistical Estimates

The random vecto® is completely defined by its probability distributidty (dq) that is assumed to have a density
g — po(g) onR™e with respect to the Lebesgue measdeg which can be estimated using nonparametric statistics
with a large numberys,, of additional realizations of. In addition, we are interested in analyzing the maximum
statistics of the random componentsQ@f In order to limit the number of figures presented in the paperwill not
consider all the possible marginal probability densitydiimns of random vecto®, but we will only consider the
probability density function of each random componeptd® Q for whichk is in {1,...,n,} (marginal probability
density function of order 1). In the following, in order totremmplicate the notations, indéxis removed and notation

Q is used instead of Qexcept if confusion is possible).

C. Defining the Maximum Statistics for the Selected Random Qicand Computing their Realizations

In this paragraph, we define the maximum statistics for thecssd random Qol, which allow us to explore the
probability distribution of a random variable,Q whose realizations are in the tail of the probability dimition

of random variable Q. These statistics also make it possibleell analyze the convergence of learning, that is,
the convergence with respect to N. For the ScramJet applicatince the real-valued random variables that are
observed are positive almost surely, we are only intera@steanstructing their maximum statistics, but their minimu
statistics could similarly be constructed although of Imerest for this case. For affgiently large integery, the
maximum of the real-valued random variable Q can classidal defined as the real-valued random variablg Q
such that Q, = maxQW,...,Q%)}, in which Qb,..., Q") arev, independent copies of real-valued random
variable Q. Random variable,Q depends onv, but in order to simplify the notations, the dependence pis
removed. The realizations of,Q are computed as follows. For fixed such thatN < N™ for a given valuevg,

of additional realization$(w’,q’) € R™ x R,£ = 1,...,vgn} introduced in Section V. C and computed thanks to
the probabilistic learning, and for, suficiently large such that, < vgmn, We construct, = vsm/vs independent
realizations{qr}qax,. ., 0Ore ) of Quacsuch that, forr = 1,.. . ,ve, 0%y = Ma% € (v, (@-1) +1, ..., avs ) /. For the Scramjet

results presented in Section VI and for a fixed humiagr of additional realizations (that is a finite number!), a
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convergence analysis of the estimated probability derfsitgtion of Q,,, has been performed as a functiomgf

We have found that, for the finite number of additional restlans that is considered, a reasonable convergence was
obtained forvy = 100, such a convergence being obviously only consideredfhsisnt in the framework for which

the pdf of Q,, is studied for the enhancing of the model prediction. Nog&g,thincevg,, can arbitrarily be increased
without significant computational cost, andv,, could arbitrarily be increased in satisfying the equatign= v, x v,

with vy < v,.

D. Estimates of the Second-order Moments and the pdf of Rando Variables Q and Q,,.,

For a fixed value oiN, v4m, andv (and consequently, of, = vsm/v), the standard deviationsg andog,,,, of
the real-valued random variables Q ang,Qand their probability density functiorts— pg(q) andq — pg,,..(Q)
with respect talg on R, are estimated using the classical estimates (empiritiel@gs for the standard deviation and
Gaussian kernel density estimation for the pdf) based onghef the additional realizationgt, . . . ,gx*™} for Q and

of the realizationsq?_,. . ., @2 } for Q... (for 10 components). The convergence analysis of thesetitjigamas been
performed with respect thl (in order to analyze how the probabilistic learning appho@arns from the dataset as a
function of its dimension) and with respectig, (in order to analyze the robustness of the estimates). Neless,

for limiting the number of figures, in Section VI, only the a@mgence with respect th of the probability density

functionsq — po(g) andq — pg,.,(d) are shown.

VI. Numerical Simulations and Statistical Analysis for the Datasets
of the ScramJet Database

For the dO8 and d16 datasets, and for the concatenated d@@&atHset, the probabilistic learning has been performed
with the all the components 8 (11 components) and with all the component£of10 components). The compo-

nents, Q, of random vecto for which the statistics are presented below age@, Qg, Q;, Qg, Qg, and Qo.

A. Methodology Used for the Statistical Analysis

The methodology adopted for the statistical analysis i®bais:

1) For the dO8 and d16 datasets, fof &hd @, and forvg, = 25,600 additional realizations, an analysis of
the robustness of the probabilistic learning is performétth wespect to the numbeX of data points with
N = {50,100 200, 256}. Note thatv;,, = N x ny is maintained to 2500 for each value dfl (Section VI. B.1).

2) Forthe dO8 and d16 datasets, the model predictabilityd i6 performed at various streamwise locations cor-
responding tdQ,.k = 6,...,10}, for N = 256 and fon,, = 25,600 additional realizations (Section VI. B.2).

3) For the concatenated d08-d16 dataset, the analysis obllustness of the probabilistic learning is again per-
formed for @ and @ with respect to the numbeX of data points withN = {50,100 200,450,512 and
vsim = N X nye = 51,200 (Section VI. C.1).

17



35 T T T T T T 30
-~-N=50
——N=100| 4
——N=200
——N=256 |

25

pdf of Q

(a) dO8 dataset (b) d16 dataset

Fig.3 Combustion dficiency Q,: probability density functions pg(q) of random variable Q for N = 50(dashed
black line), N = 100(thin black line), N = 200(med red line), N = 256 (thick black line) with v, = 25,600.

4) Finally, for the concatenated d08-d16 dataset, the mueelictability of TKE is again performed at the same
streamwise locations corresponding @,k = 6,...,10}, for N = 512 andvy,, = 51,200 additional realiza-

tions (Section VI. C.2).

B. Probabilistic Learning Approach for Analyzing the d08 and d16 Datasets

1. Robustness Analysis of the Probabilistic Learning Applofor the CombustionfEciency and the Pressure Stag-
nation Loss Ratio

For each one of the dO8 and d16 datasets, andfpe 25,600, an analysis has been carried out by studying, for
Q. (combustion #iciency, FigureE]3 arld 4) and for@ressure stagnation loss ratio, Figures 5[@nd 6), the gwolu
with respect taN of the probability density functionsg(q) of random variable Q (Figurés 3 and 5) amgl, , (q) of
random variable Q,, (Figures4 andl6).

2. Model Predictability of the Wall-Normal averaged Turbote Kinetic Energy Performed at Various Streamwise
Locations Using the Probabilistic Learning Approach

From the convergence analyses presented in Section VIitBdn be concluded thad = 256 andvg;,, = 25,600
are good values for studying TKE at the various streamwisations associated withgQQy, Qg, Qqg, and Q. For
the dO8 and d16 datasets, the analysis of the evolution dfgiitity density functiongg(qg) of random variable Q
is shown in FigureEl7 arld 8 as a function of the location of theeovations along the flow while the evolution of

PQua () Of random variable Q,, is shown in Figurél9 arid10.
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Fig. 4 Combustion dficiency Q,: probability density functions pq,,(0) of random variable Q. for N = 50
(dashed black line),N = 100 (thin black line), N = 200(med red line), N = 256 (thick black line) with vg, =

25,600,
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Fig.5 Pressure stagnation loss ratio @ probability density functions pg(q) of random variable Q for N = 50
(dashed black line),N = 100 (thin black line), N = 200(med red line), N = 256 (thick black line) with vg, =
25,600
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Fig. 6 Pressure stagnation loss ratio @ probability density functions pq,.,.(d) of random variable Q,,,, for
N = 50 (dashed black line),N = 100 (thin black line), N = 200(med red line), N = 256 (thick black line) with
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Fig. 7 For the d08 dataset, forN = 256and vsm = 25,600; probability density function pg(q) of TKE Q. (a):
Qs (mid black line) and Q- (thin black line). (b): Qg (thick black line), Qg (mid red line), and Q (thin black

line).
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Fig. 8 For the d16 dataset, forN = 256and vsm = 25,600 probability density function pg(q) of TKE Q. (a):
Qg (mid black line) and Q- location (thin black line). (b): Qg (thick black line), Qg (mid red line), and Q4 (thin
black line).
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Fig. 9 Forthe d08 dataset, forN = 256and v, = 25,600 probability density function pg,..(q) of TKE Q .,
(a): Qg (mid black line) and Q- (thin black line). (b): Qg (thick black line), Qg (mid red line), and Q44 (thin
black line).
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Fig. 10 Forthe d16 dataset, folN = 256and vsm, = 25,600 probability density function pg,,,(9) of TKE Q
(a): Qg (mid black line) and Q- (thin black line). (b): Qg (thick black line), Qg (mid red line), and Q44 (thin
black line).

C. Probabilistic Learning Approach for Analyzing the Concatenated d08-d16 Dataset

1. Robustness Analysis of the Probabilistic Learning Applofor the CombustionfEciency and the Pressure Stag-
nation Loss Ratio

A similar analysis that the one presented in Section VI. Bds been performed for the concatenated d08-d16
dataset that is constructed in interlacing the data poiftiseod08 dataset with the d16 dataset. Therefore, there are
N = 512 data points in the concatenated d08-d16 dataset. 8indeSection VI. B.2, for the concatenated d08-d16
dataset and fovs, = 51,200, an analysis has been carried out by studying the ewalutith respect taN < N,
of the probability density functiopg(q) of random variable Q for @ Q, (combustion #iciency, Figuré_I1(a)) and
for Q = Qg (pressure stagnation loss ratio, Figlré 11(b)), while fégil2(a) and (b) display the evolution of the

probability density functiomqg,, (0) of random variable Q.

2. Model Predictability of the Wall-Normal Averaged Turbnte Kinetic Energy Performed at Several Streamwise
Locations Using the Probabilistic Learning Approach Witle {Concatenated d08-d16 Dataset

From the convergence analyses presented in Section VIit€dh be concluded thad = 512 andvg,, = 51,200
are good values for studying TKE at various streamwise lonatassociated with £ Q;, Qg, Qg, and Q. For the
concatenated d08-d16 dataset, Figure 13 displays the lpfitypdensity functionpg(q) of TKE associated with
to Q,0, While Figure 14 displays the probability density functias), . ().

D. Analysis of the Results Obtained With the Probabilistic Learning
A few general observations can be made from inspecting Egfintd I#. Figurds 3 amd 5 show that combustion
efficiency Q2) and pressure stagnation loss rat@z) are learned with minimalfort usingN = 50 data points, while

the maximum of these quantities requires about 200 datagp(@re Figuresl4 and 6) of the learning process. It is
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Fig. 11 d08-d16 dataset: probability density functionspg(q) of random variable Q (a) for combustion effi-
ciency Q, and (b) for pressure stagnation loss ratio Q, for N = 50 (dashed black line),N = 100 (thin black
line), N = 200(med red line), N = 450(med black line), N = 512 (thick black line) with v, = 51,200.
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Fig. 12 d08-d16 dataset: probability density functionspg,,.,(d) of random variable Q,,,, (a) for combustion
efficiency Q and (b) for pressure stagnation loss ratio Q (right figure), for N = 50 (dashed black line),N = 100
(thin black line), N = 200(med red line),N = 450(med black line),N = 512(thick black line) with v, = 51,200,
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Fig. 13 Forthe d08-d16 dataset and foN = 512and v, = 51,200 probability density function pg(q) of TKE
Q. (a): Qg (mid black line) and Q- (thin black line). (b): Qg (thick black line), Qg (mid red line), and Q4 (thin
black line).
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Fig. 14 For the d08-d16 dataset and folN = 512and v, = 51,200 probability density function pq,,.,(q) of
TKE Q s (8): Qg (mid black line) and Q7 (thin black line). (b): Qg (thick black line), Qg (mid red line), and
Q1o (thin black line).
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also observed that with the d16 dataset, the learning psasagynificantly faster than for the d08 dataset indicasing
stronger signature of the physics in the dataset. Furthernitas noted that learned d08 pdf fog @xhibits a slightly

bimodal behavior that may be is associated with a lack of amtitn in a few data points of the d08 dataset.

The turbulent kinetic energy (TKE), on the other hand rezpiall 256 data points for the convergence of the learn-
ing process, both for the dO8 and d16 datasets, with distihehavior at diferent streamwise locations. For instance,
as observed by inspecting Figutés 7 Bhd 8, fp(TXE after the primary injector and before cavity), the d@aset
exhibits a much narrower variation than the correspondiegitl6 dataset. On the other hand, the bimodal behavior
observed for @ (TKE inside the cavity) is present both in the d08 and d16s#ta which could be explained by the
mixing of two turbulence regimes. This bimodality persistthe pdf of the maximum statistics (see Figures 9and 10)
suggesting that each of these turbulent regimes couldibatgrto extreme behavior. We also note that the TKE just
after the secondary injectorsgQnside the combustion chamberg,@nd at the end of the combustion chambgp, Q
exhibit distinct behaviors between the d08 and d16 datasiti€)s demonstrating bimodal behavior in both datasets.
This bimodality is visible also in the extreme statisticdloB (see Figurdd 9 and]|10). The bimodality @f @ven ex-
position right after the secondary injectors, could agamtiributed to the mixing of two turbulence regimes. At this
point, we should note that the learning process for the mérgtatistics of TKE @ Qg, and Q are not converged for
the d08 dataset. This suggests that this dataset does noteagficient features of the underlying physical processes
that may be responsible for extreme behavior. Indeed, traileg process for these same statistics is converged for

the d16 dataset and with only 200 data points.

Figured 1l t¢_ T4 show the pdf of the Qols for the concatenad@ddd6 dataset. It is observed that, while the
learning process is improved by the presence of the d16thatayidth of the pdf is adverselytacted by the presence
of the d08 data. The bimodality of the extreme values g{sge Figur€14) is weaklyf@cted by the d08 data. On the
other hand, the bimodality of §30 Q;, (see Figuré13) is an artifact of concatenating the d08 afdidia and should

not be interpreted as reflecting physical behavior.

VII. Conclusion
In this paper, we have delineated an impliciffdsion manifold and demonstrated its use for enhancing the pr
dictability in a probabilistic framework of complex flows thin a scramjet. Leveraging this implicit structure, fewer
statistical samples are required to accurately charaeténe statistics of LES predictions induced by parame#ic v
ations. The analysis is based on a novel probabilistic Hiegron manifolds" procedure that generates realizations
of a random vector whose non-Gaussian probability disfisbus unknown and is presumed to be concentrated on

an unknown manifold to be characterized through a protstigiliearning process. Applied to the ScramJet database,
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the probability density functions of the quantities of et and their associated maximum statistics are estimated
even though the number of simulations available from the bl is not sfficient to obtain sfliciently converged
estimates of these quantities. We have shown how the prigtetiearning method learns as a function of the size of
the datasets. This type of analysis also serves to deteiftireedimension of the initial dataset isfgiently large for
providing an assessment of the quality of the probabilisacning. The analysis of these probability density fumtsi
allows for proposing reasonable interpretations of thespdal behavior of the complex turbulent flow in relationship
to the mesh size of the fluid domain and the time averagingsheted for constructing the quantities of interest, such

as the turbulent kinetic energy afiirent streamwise locations of the flow.

Appendix
The objective of this Appendix is to explain in which sense #dditional realizations generated by the probabilistic

learning on manifold satisfy the computational model.

(i) In order to simplify the explanations, we will assumettia= f(W) in which f is a measurable mapping from
Cw € R™v into R"e (thereforef is a deterministic mapping). L&}y (dw) be the probability measure (probability
distribution) ofR™w -valued random variabM/, defined orR”» for which its support i€,. This measure is assumed
to be given (known). LeQ be theR"«-valued random variable such th@t= f(W). Let Po(dq) be the probability
measure ork”s of random variabl®. ThenPq(dq) is the image of measuiy (dw) under mapping.

Let Pw,o(dw,dq) be the joint probability measure dtf" x R« of random variable®V andQ. Therefore, the
supportS of Py, g (dw, dq) is the manifold ifR"™ xR"« defined byS = {(w,q) € CwxR"s ,q = f(w)}. It can be seen
that Pw, o (dw, dq) does not admits a density with respect to the Lebesgue meeaslk™ x R"«. It is equivalent to
give probability measurBy,q(dw,dq) or to give mapping with probability measur®y (dw) whose support i€y.
Consequently, iPw,q (dw, dg) was known, thefiwould be known. This means that if we assumed Byab (dw, dq)
was known and if(w’,q%),¢ = 1,...,N} wereN independent realizations Ri™ x R« of random variable\{/, Q)
taken fromPy, o (dw, dq), then the realizations would be such thét= f(w’) because the support 8y, o (dw, dq)

is manifoldsS.

(i) Let us now assume th&@w,q(dw, dq) is unknown. Let{(w’,q‘),¢ = 1,...,N} be N points such thatw’,¢ =
1,...,N} are N independent realizations &/ taken from the known probability measuRg, (dw) and such that
{qf = f(w),¢ = 1,...,N} are theN points computed using the computational model. Consety¢he values
of f are known for thesé\ pointsw’ but are unknown for any poinw in C,, different from thatN points. Let
P\(,C”)Q(dw,dq) be a nonparametric statistical estimateRyf o (dw, dqg) using dataset(w’,q‘),¢ = 1,...,N} and

the multidimensional Gaussian kernel-density estimati@ihod. Consequentl}?\(,{,\’()g(dw,dq) is represented by a
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probability density functionw,q) — p\(AA,’)Q(w,q) on R™w x R™ with respect to the Lebesgue measdredq. For
N — +oo, the sequence of probability measufé(%’)Q(dw,dq) = p\(AA,’)Q(w,q) dw dq tends to probability measure
Pw,o(dw,dq). For N finite, the supporS™) of densityp\(,f,\’()g is not the manifoldS, which means that, in general,

mappingf can only be identified foN — +co.

(iii) Let {(W4,0%),€ = 1,...,vsm) Devsn independent realizations taken from the probability maaé“%(dw,dq)

that is constructed with the probabilistic learning on nigids. This probability measure is deduced from measure
P\(A’,\f)Q(dw, dq) but is a better estimated thﬁﬁ%(dw, dq) because the information is enriched usinjudiion maps as
demonstrated in [1]. Since the supp@i‘f\’) of ﬁﬁé(dw,dq) is notS, g is not equal td(w’) forall £ = 1,. .., vem,
which means that the pointéw’,q’).¢ = 1,...,vsm} do not belongs, in general, ® almost surely. Nevertheless, if

N is sufficiently large, the point§(w’.q%).¢ = 1,...,vsm} generated by the probabilistic learning on manifolds are
concentrated in a subset®f x R", localized in the neighborhood of manifafd In addition, ifN goes to infinity,

S™) goes taS (due to the convergence W&(dw,dq) towardsPw, g (dw, dq)).

(iv) The probabilistic learning on manifolds is used for anbhing the model predictability in a probabilistic frame-
work. This means that we are not interested in characterideterministic mapping by generatingvs,, points
{we,ql).€=1,...,vem} such thag?, = f(wl) forall ¢ = 1,...,vgy (that is not possible for a finite value df). We

are interested in characterizing the unknown approximdff®y of f by a known probability measunﬁ(,\’,\%(dw,dq)

that correctly approximatBw,q (dw, dq), and for which the convergence is assuredNor +co. For givenN, the
probability density functiom +— péN"’Sim) (g) of random QolQ is estimated using the multivariate Gaussian kernel-
density estimation method with theg,, > N additional realizationmgr,f =1,...,vsm}. This estimate can be obtained
with any accuracy becausg,, can be chosen arbitrarily large without using the compaoati model and therefore,

the convergence with respectig, can be controlled without any problem.

(v) A question is related to the convergence of the sequehpmbability measure@éN’VS‘m) (dg) = pg\’"”sim) (9)dq

towards the unknown measuRg (dq) introduced in point (i) before. The construction proposeduch that the

convergence is guaranteed, which means Bagtdd) = liM x4 covgm—+oo P(QN’VS‘m)(dq) in the space of probability

measures oR"«. Becausd’q(dq) is unknown the convergence can be analyzed, for instagcetudying the conver-

gence of the sequences of probability density funct'{qug”s‘m)}N Let us assumed that for each fixed value of

>Vsim*

N, the value ofi5,(N) is identified in order to obtain a given accuracy of the cogeace of the sequence of functions

{p(QN’VS‘m) bvam IN the space of integrable functions. The analysis of theeaence of the sequence of probability mea-

sures{ P(QN’VS‘m(N))(dq)}N with PéN"’Sim(N)) (dq) = p(QN"’S"“(N)) (q) dq towardsPq(dq) can be done and corresponds

to the convergence of the learning. In practice, if the maximavailable value oN is Nnax the convergence of the
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(N,vsim
Q

value ofN smallest than or equal fdnay, this means thallyax is not sdficiently large and that additional calculations

family of functionsp M) for N e [1,Nmay is analyzed. If convergence of the learning is not obtaifoeda

have to be performed with the computational model.
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