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SUMMARY

Recently, a novel, nonparametric, probabilistic method for modeling and quantifying model-form
uncertainties in nonlinear computational mechanics was proposed. Its potential was demonstrated through
several uncertainty quantification (UQ) applications in vibration analysis and nonlinear computational
structural dynamics. This method, which relies on projection-based model order reduction in order to
achieve computational feasibility, exhibits a vector-valued hyperparameter in the probability model of the
random reduced-order basis and associated stochastic, projection-based reduced-order model. It identifies
this hyperparameter by formulating a statistical inverse problem grounded in target quantities of interest
and solving the corresponding nonconvex optimization problem. For many practical applications however,
this identification approach is computationally intensive. For this reason, this paper presents a faster,
predictor-corrector approach for determining the appropriate value of the vector-valued hyperparameter that
is based on a probabilistic learning on manifolds. It also demonstrates the computational advantages of this
alternative identification approach through the UQ of two three-dimensional, nonlinear, structural dynamics
problems associated with two different configurations of a MEMS device.
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KEY WORDS: probabilistic learning, model-form uncertainties, nonparametric probabilistic method,
model reduction, uncertainty quantification, machine learning

Notation, nomenclature and acronyms

Throughout this paper:

A real, deterministic variable is denoted by a lower case letter such asy.
A real, deterministic vector is denoted by a boldface, lowercase letter such as iny = (y1, . . . , yN).
A real, random variable is denoted by an upper case letter such asY .
A real, random vector is denoted by a boldface, upper case letter such as inY = (Y1, . . . , YN ).
A real, deterministic matrix is denoted by an upper (or lower) case letter between brackets such as
[A] (or [a]).
A real, random matrix is denoted by a boldface, upper case letter between brackets such as[A].

‖y‖ denotes the Euclidean norm of vectory.
E denotes the mathematical expectation.
MN,n denotes the set ofN×n real matrices.
Mn denotes the set of squaren×n real matrices.
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2 C. SOIZE AND C. FARHAT

M+
N denotes the set of real, symmetric, positive-definiteN×N matrices.

M+0
N denotes the set of real, symmetric, positiveN×N matrices.

Mu
n denotes the set of real, upper triangularn×n matrices with positive or zero diagonal entries.

R denotes the set of all real numbers.
C denotes the set of all complex numbers.
RN denotes the Euclidean space of vectorsy = (y1, . . . , yN).
CN denotes the Hermitian space of vectorsŷ = (ŷ1, . . . , ŷN ).
Ajk denotes the entry[A]jk of matrix [A].
[A]T denotes the transpose of matrix[A].
[In] denotes the identity matrix inMn.
[0N,n] denotes the zero matrix inMN,n.
δjk denotes the Kronecker symbol:δjk = 0 if j 6= k andδjk = 1 if j = k.
t denotes timei denotes the pure imaginary complex number satisfyingi2 = −1.

3D stands for three-dimensional.
dof stands for degree of freedom.
FE stands for finite element.
HDM stands for high-dimensional computational model.
MEMS stands for microelectromechanical systems.
PDF stands for probability density function.
PLM stands for probabilistic learning on manifolds.
POD stands for proper orthogonal decomposition.
PROM stands for projection-based reduced-order model.
QA stands for quality assessment.
QoI stands for quantity of interest.
ROB stands for reduced-order basis.
SPROM stands for stochastic projection-based reduced-order model.
SROB stands for stochastic reduced-order basis.
SVD stands for singular value decomposition.
UQ stands for uncertainty quantification.

1. INTRODUCTION

In general, once a computational model must be considered for any purpose, model-form
uncertainties become unavoidable. They can result either from the lack of knowledge of the true
physics underlying the problem of interest, or the omissionor truncation of modeling details.
Their raisons d’être range from the lack of available information, to the inability to discern in
some circumstances between important and unimportant modeling details. Such uncertainties affect
the ability of even an HDM to deliver predictive results – that is, results that match reasonably
well their experimental counterparts (which themselves can also be tainted by other types of
uncertainties). Examples in computational structural dynamics include constitutive, multiscale,
friction, homogenization, and free-play modeling errors.A parametric PROM constructed for
accelerating parametric studies or stochastic computations meant to be carried out using an HDM
inherits all model-form uncertainties associated with this HDM, because it is obtained by projecting
this same HDM onto a carefully computed ROB. Such a reduced-order model is also tainted by
additional uncertainties due to, among other factors: the finite sampling used during the offline
training of this PROM where the ROB is computed (for example,see [1]); the truncation of the
subspace of approximation represented by this ROB using PODor SVD (for example, see [2]);
and the approximation errors induced by hyperreduction when this process is used to accelerate the
projections incurred by the construction of this PROM (for example, see [3]).

In [4], a nonparametric, probabilistic method was developed to model and quantify model-
form uncertainties in deterministic computational models. This method recognizes that data,
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PROBABILISTIC LEARNING FOR MODEL-FORM UNCERTAINTIES 3

whether experimental or numerical and high-dimensional, may contain fundamental information
or knowledge that is not captured by deterministic computational models. Therefore, it exploits
available data to adapt thesubspacein which the solution of the problem formulated using the
computational model is searched. The method is innovative as it is a significant departure from
the dominant parametric approach to UQ where model parameters are adapted instead, in order
to discover some form of the information or knowledge encapsulated in data. To this end, the
nonparametric, probabilistic method developed in [4] parameterizes the solution subspace by
randomizing its representative basis using a vector-valued hyperparameter. This transforms the
deterministic computational model into a hyperparametricstochastic one. In order to determine
the hyperparameter, the method constructs and solves an inverse statistical problem designed
to minimize the discrepancies between the mean values and statistical fluctuations of the QoIs
predicted using the hyperparametric stochastic model, andtarget values obtained from the available
data. If the computational model is a deterministic HDM, themethod implements all of the above
ideas into an SPROM in order to make them computationally feasible. It follows that the method
developed in [4] for modeling and quantifying model-form uncertainties essentially extracts the
information missing in a given deterministic computational model from data, and infuses this
information into a stochastic, lower-dimensional counterpart. For this reason, this method has also
been described in [5] as a data-driven, probabilistic, model adaptation method.

As mentioned above, a PROM constructed using a Galerkin [7] or Petrov-Galerkin [8] projection
of an HDM inherits all uncertainties present in this HDM. Forthis reason, and because it is
low-dimensional, such a reduced-order model can be used to effectively model and quantify the
uncertainties of the HDM of interest. More importantly however – and unlike most if not all other
UQ methods proposed in the literature that mention or rely onmodel reduction for accelerating
the stochastic computations they incur – the nonparametric, probabilistic method developed in [4]
accounts for the modeling errors introduced by model reduction to construct its underlying SPROM.
If experimental data are not available, it leads to the modeling and quantification of the modeling
errors due to model reduction only. Otherwise, it leads to the modeling and quantification of the
modeling errors of the given HDM, while accounting for thoseintroduced during the process by
model reduction.

The potential of this nonparametric, probabilistic methodfor the UQ of model-form uncertainties
in nonlinear structural dynamics problems was demonstrated in [4]. The method was extended
to model-form uncertainties arising in generalized eigenvalue computations in [5], where its
performance for such applications was demonstrated through the vibration analysis of two different
real-world aircaft for which experimental data is available [9]. In [10], the computational aspects
of this method were refined by hyperreducing the SPROM to accelerate its execution time. The
potential of the resulting enhanced approach for quantifying model-form uncertainties in eigenvalue
computations, while accounting for modeling errors due to hyperreduction, was demonstrated
through what-if vibration analysis scenarios. These were associated with shape changes of a
supersonic jet engine nozzle with inner walls, outer walls,stringers, and baffles [10].

Given an HDM of interest of dimensionN , the family of nonparametric, probabilistic methods
for UQ described in [4], [5], and [10] consists in substituting the ROB used for constructing a
nonlinear PROM of dimensionn ≪ N by an adapted SROB, which leads to the construction
of a nonlinear SPROM of dimensionn. The probability model of the SROB depends on the
aforementioned vector-valued hyperparameter,α, which belongs to an admissible setCα ⊂ Rmα ,
wheremα = 2 + n(n+ 1)/2. This family of UQ methods performs the identification ofα by
solving a nonconvex optimization problem formulated usingan objective (cost) function related
to a certain distance between some given targets for the QoIs, and the corresponding predictions
carried out using the nonlinear SPROM. Again, the target values for the QoIs can be extracted from
experimental data when these are available, or corresponding HDM predictions when experimental
data are not available. Ifn is greater than a few units,mα = n(n+ 1)/2 is sufficiently large to
challenge the fast solution of this optimization problem and therefore to compromise the execution
in near-real-time of this family of nonparametric, probabilistic UQ methods. To this end, this paper
presents an alternative, more economical approach for identifying the vector-valued hyperparameter
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4 C. SOIZE AND C. FARHAT

α for practical values of the low-dimensionn of the SPROM. First, this approach constructs a
low-dimensional predictorα0 for α of dimensionm0

α
≪ 2 + n(n+ 1)/2 whose computational

cost is relatively small. If it judges the predictor to be insufficiently accurate, it constructs next
a correctorαopt of the same dimension using a probabilistic learning on manifolds (PLM) based
on ideas that are similar to those recently described in [11,12] and demonstrated in [13]. By
avoiding to call a large number of times the nonlinear SPROM,this alternative approach achieves
a lower computational complexity than the random search optimizer originally proposed in [4] for
identifying the hyperparameterα.

The remainder of this paper is organized as follows. Section2 sets the context of this paper
to that of nonlinear computational structural dynamics problems in the time domain. It also
overviews the nonparametric probabilistic method proposed in [4] for modeling and quantifying
model-form uncertainties for two purposes: to keep this paper as self-contained as possible; and
more importantly, to highlight the presence, role, and significance of the hyperparameterα of
this method. Section 3 briefly recalls the nonconvex optimization problem formulated in [4] for
determining this vector-valued hyperparameter and outlines the potential difficulties associated
with the solution of this problem using a conventional approach. Section 4 introduces the main
contribution of this paper. It starts by describing the construction of a low-dimensional predictorα0

for α that is based on the Fourier transform of the stochastic solution of the nonlinear problem of
interest. This stochastic solution is computed in near-real-time using the SPROM. Next, Section 4
describes the construction of the proposed corrector basedon the aforementioned probabilistic
learning on manifolds. Section 5 discusses the performanceof the nonparametric probabilistic
method for UQ equipped with the proposed predictor-corrector approach for two 3D, nonlinear,
structural dynamics problems associated with two different configurations of a MEMS device.
Finally, Section 6 concludes this paper.

REMARK 1.PROMs are usually designed to accelerate the repeated processing of parametric HDMs
known asµ-HDMs. In this context,µ denotes a vector-valued parameter representing, for example,
a parameteric shape, material property, boundary condition, or source term. Consequently, the
PROMs and SPROMs mentioned above have been referred to in [4,5, 10] asµ-PROMs andµ-
SPROMs, respectively. Here, it is noted however that the vector-valued parameterµ is unrelated
to the vector-valued hyperparameterα discussed above, and that the contribution of this paper
is independent from and agnostic about how the parametric aspect of aµ-PROM is treated. The
problem discussed in this paper and the proposed solution tothis problem are also independent of
the concept of hyperreduction and agnostic about how such anapproximation is performed. For
these reasons, and in order to avoid any unnecessary distractions, the contribution of this paper is
presented without any reference to, or discussion of, the parametric and hyperreduction aspects of a
PROM or SPROM. For a demonstration of how all these concepts perform well together, the reader
is referred to [4, 5, 10].

2. NONPARAMETRIC PROBABILISTIC METHOD FOR MODEL-FORM UNCERTAINTIES
IN NONLINEAR COMPUTATIONAL MECHANICS

In principle, the family of nonparametric, probabilistic methods for UQ described in [4], [5], and
[10] can be extended to any linear or nonlinear computational problem for which a PROM can
be constructed. However, the details associated with any extension can be problem dependent. For
this reason, and for the sake of clarity and simplicity, the focus of this entire paper is set here on
nonlinear transient dynamics problems.

2.1. Nonlinear high-dimensional computational model

After semi-discretization by the FE method, a large class ofnonlinear transient dynamics problems
can be written as

[M ] ÿ(t) + g(y(t), ẏ(t)) = f(t) , t ∈ ]t0, T ] , (2.1)
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PROBABILISTIC LEARNING FOR MODEL-FORM UNCERTAINTIES 5

wherey(t) = (y1(t), . . . , yN(t)) is theRN vector of theN displacement dofs before the application
of the boundary conditions,ẏ(t) = dy(t)/dt andÿ(t) = d2y(t)/dt2 are the corresponding velocity
and acceleration vectors,[M ] is the FE mass matrix belonging toM+

N and is assumed here to be
independent oft, g(y(t), ẏ(t)) is theRN vector of internal forces at timet and is assumed here to
depend ony(t) and ẏ(t), f(t) is theRN vector of external forces at timet, and finally,t0 andT
define the time interval of interest and satisfy−∞ < t0 < T < +∞.

The above equation defines an HDM whose initial conditions can be written as

y(t0) = y0 , ẏ(t0) = y1 , (2.2)

and whose boundary conditions and any other governing linear constraints can be written altogether
as

[B]T y(t) = 0NCD
, t ∈ [t0, T ] . (2.3)

Here,[B] is a time independent matrix inMN,NCD
satisfying[B]T [B] = [INCD

], NCD < N , andy0

andy1 are two given vectors inRN that satisfy the constraint (2.3).
The QoIs (also called observations) at timet associated with the above HDM are represented by

the vectoro(t) = (o1(t), . . . , omo(t)) with values inRmo. This vector is written here as

o(t) = htime(y(t)) , t ∈ [t0, T ] , (2.4)

wherehtime is a given mapping with values inRmo (for example,htime(y(t)) = [O] d2y(t)/dt2, where
[O] is a given constant matrix inMmo,N ).

2.2. Construction of a nonlinear projection-based reduced-order model

Let [V ] ∈ MN,n be a ROB of dimensionn ≪ N constructed for approximating the solution
{y(t), t ∈ [t0, T ]}, and satisfying the constraint equation

[B]T [V ] = [0NCD,n] . (2.5)

In [4], [V ] was furthermore constructed to satisfy the orthonormalitycondition[V ]T [M ] [V ] = [In].
In this work,[V ] is constructed to satisfy instead the orthonormality condition

[V ]T [V ] = [In] . (2.6)

The Galerkin projection of the HDM defined in Equations (2.1)to (2.4) onto the ROB[V ] yields the
following nonlinear PROM

y(n)(t) = [V ]q(t) , t ∈ [t0, T ] , (2.7)

[V ]T [M ] [V ] q̈(t) + [V ]Tg([V ]q(t), [V ] q̇(t)) = [V ]T f(t) , t ∈ ]t0, T ] , (2.8)

whose initial conditions are

q(t0) = [V ]T y0 , q̇(t0) = [V ]T y1 , (2.9)

where{y(n)(t), t ∈ [t0, T ]} is the n-order approximation of{y(t), t ∈ [t0, T ]}. Concerning the
QoIs, the corresponding approximationo(n) of o is given by

o(n)(t) = htime(y(n)(t)) , t ∈ [t0, T ] . (2.10)

For a givenn ≪ N , the approximation error associated with the prediction ofthe QoIs using the
nonlinear PROM instead of the nonlinear HDM can be estimateda priori as

ε(n) =

∫ T

t0

‖o(t)− o(n)(t)‖2 dt .
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6 C. SOIZE AND C. FARHAT

2.3. Construction of a nonlinear stochastic projection-based reduced-order model

The details of the construction of the SPROM associated withthe HDM defined in Equations (2.1)
to (2.4) can be found in [4]. Here, a short summary of this construction is adapted to the
othonormalization condition (2.6) of the underlying ROB.

The nonparametric probabilistic method for the modeling and quantification of model-form
uncertainties described here consists in substituting thedeterministic ROB[V ] by a stochastic
counterpart[W], referred to as the SROB. In view of the constraint Equation (2.5) and the
orthonormality condition (2.6), this SROB must verify the following properties:

• [W] : θ 7→ [W(θ)] is a random variable (random matrix), defined on a probability space
(Θ, T ,P), with values inMN,n.

• The support of its probability distribution,P[W], is in the subset ofMN,n defined by the
following constraints which are verified almost surely

[B]T [W] = [0NCD,n] , (2.11)

[W]T [W] = [In] . (2.12)

• The probability distributionP[W] of [W] depends on a vector-valued hyperparameterα =
(α1, . . . , αmα

) belonging to a subsetCα of Rmα .

The construction of such an SROB is summarized in Section 2.4. The nonlinear SPROM associated
with the nonlinear PROM described by Equations (2.7) to (2.10) is obtained by substituting[V ] with
the random matrix[W]. Consequently,y(n), q, ando(n) are transformed into the stochastic processes
Y(n), Q, andO(n), and the nonlinear SPROM is given by

Y(n)(t) = [W]Q(t) , t ∈ [t0, T ] , (2.13)

[W]T [M ] [W] Q̈(t) + [W]T g([W]Q(t), [W] Q̇(t)) = [W]T f(t) , t ∈ ]t0, T ] , (2.14)

and the initial conditions

Q(t0) = [W]T y0 , Q̇(t0) = [W]T y1 . (2.15)

The Rn-valued stochastic solution{Q(t;α), t ∈ [t0, T ]} of Equation (2.14) with the initial
conditions (2.15) depends onα ∈ Cα. The stochastic process{Y(n)(t;α), t ∈ [t0, T ]} is then-order
approximation of the stochastic process{Y(t), t ∈ [t0, T ]}. As for the QoIs, the corresponding
approximation{O(n)(t;α), t ∈ [t0, T ]} of {O(t), t ∈ [t0, T ]} is given, for all t ∈ [t0, T ] and
α ∈ Cα, by

O(n)(t;α) = htime(Y(n)(t;α)) . (2.16)

2.4. Construction of the stochastic reduced-order basis

As explained in Section 2.4, the model-form uncertainties of the computational model of interest
are taken into account by applying the nonparametric probabilistic method proposed in [4]. This
method consists in substituting the reduced-order basis[V ] by a stochastic reduced-order basis[W]
in the PROM. Due to Equation (2.11), theN×n random matrix[W] is constructed on a subset of
the compact Stiefel manifold associated with Equation (2.12). A description of the stochastic model
underlying[W] can be found in [4]. The random matrix[W], which verifies Equations (2.11) and
(2.12), is a second-order random variable defined on a probability space(Θ, T ,P). Specifically, it
is built as follows:

[W] = ([V ] + s [Z]) [Hs(Z)] , (2.17)

[Hs(Z)] = ([In] + s2 [Z]T [Z])−1/2 , (2.18)

[Z] = [A]− [V ] [D] , (2.19)

[D] = ([V ]T [A] + [A]T [V ])/2 , (2.20)

[A] = [U]− [B] {[B]T [U]} , (2.21)

[U] = [G(β)] [σ] , (2.22)
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PROBABILISTIC LEARNING FOR MODEL-FORM UNCERTAINTIES 7

where[G(β)] is a second-order, centered,MN,n-valued random matrix defined on(Θ, T ,P) and
[σ] is a given upper triangular matrix inMu

n (positive or zeros diagonal entries). The probability
distribution of[W] and a generator of this random matrix are described in Appendix D of [4]. The
mα = 2 + n(n+ 1)/2 hyperparameters of the stochastic model of[W] are as follows:

− A deterministic, real parameters satisfying0 ≤ sL ≤ s ≤ sU ≤ 1, where the lower boundsL
and upper boundsU are fixed; note that ifsL = s = 0, then[W] = [V ] is deterministic and
there are no statistical fluctuations.

− A deterministic, real parameterβ satisfying0 < βL ≤ β ≤ βU < +∞, where the lower bound
βL and upper boundβU are fixed.

− An upper triangular matrix[σ] in Mu
n (positive or zero diagonal entries) parameterized

by mσ = n(n+ 1)/2 and characterized by the following property: for all1 ≤ k ≤ k′ ≤ n,
[σL]kk′ ≤ [σ]kk′ ≤ [σU ]kk′ . The lower bounds are the entries of the upper triangular matrix
[σL]: they are fixed inMu

n. The upper bounds are the entries of the upper triangular matrix
[σU ]: they are fixed inMu

n.

Hence, the hyperparameter of the nonparametric probabilistic method reviewed here is the
vectorα = (s, β, {[σ]kk′ , 1 ≤ k ≤ k′ ≤ n}) of dimensionmα = 2 + n(n+ 1)/2. It can be simply
re-written asα = (s, β, [σ]). It belongs to the admissible setCα defined by the lower and upper
bounds of every one of its components. For any fixed value ofα in Cα, the generator of the random
matrix [G(β)] described in [4] enables the computation of any realization[G(β; θ)] of [G(β)] for
θ in Θ. It also enables the obtention of the corresponding realization [W(θ)] of the random matrix
[W], using Equations (2.17) to (2.22).

Note that even though the SROB[W] depends on the hyperparameterα (see Equations (2.17) to
(2.22)), this dependency is not highlighted in the remainder of this paper by writing[W(α)], for the
sake of simplicity.

REMARK 2.Regarding the interpretation of the individual hyperparameters constituting the vector-
valued hyperparameterα, the following is noteworthy:

− From Eqs. (2.17) to (2.22), it follows that the random matrix[W] depends on the
hyperparameterss and[σ], ands is a scaling parameter of the matrix-valued hyperparameter
[σ].

− From the construction of the random matrix[G(β)] described in details in [4], it follows that
the hyperparameterβ enables the control of the statistical correlations between the random
components of a same column of the random matrix[G(β)].

− In [4], [σ] was introduced as the upper triangular matrix resulting from the Cholesky
factorization of an unknown but positive-definite square matrix [cn] that participates to the
construction of the correlation tensor of the random matrix[U] (specifically, see Eq. (D.25)
on page 875 of [4]). Hence, identifying[cn] = [σ]T [σ] can be performed by identifying
instead the upper triangular matrix[σ]. More generally, one can identify an upper triangular
matrix [σ] with positiveor zerodiagonal entries and define[cn] = [σ]T [σ]. In both cases, the
matrix-valued hyperparameter[σ] enables the control of the statistical correlations between
the columns of the random matrix[G(β)] using roughly half the number of individual
hyperparameters that would be otherwise needed to identify[cn] directly.

3. IDENTIFICATION OF THE HYPERPARAMETER

Let {otarget(t), t ∈ [t0, T ]} with values inRmo be the vector of observed targets associated with
{ytarget(t), t ∈ [t0, T ]} with values inRN . If the model-form uncertainties and/or modeling errors
tainting the SPROM defined by (2.13) and (2.14) are due only tomodel reduction, thenotarget= o.
On the other hand, if they are due to both of the model reduction process and the model-form
uncertainties and/or modeling errors existing in the HDM, thenotarget= oexp, whereoexp is based on
experimental data.
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8 C. SOIZE AND C. FARHAT

The identification of the hyperparameterα in Cα ⊂ Rmα can be performed using various
approaches for formulating a statistical inverse problem related tootarget, including the maximum
likelihood and nonlinear Least-Squares methods [14, 15, 16]. For example, in the context of
nonlinear transient dynamics problems, the vector-valuedhyperparameterα was determined in [4]
by:

• Defining a total cost function of the form

J(α) = wJ Jmean(α) + (1− wJ )Jstd (α) , (3.1)

where:

– Jmean(α) andJstd (α) are partial cost functions formulated using the deterministic,
time-dependent functions{otarget(t), t ∈ [t0, T ]} and {o(n)(t;α), t ∈ [t0, T ]}, and the
stochastic, time-dependent functions{O(n)(t;α), t ∈ [t0, T ]}. These functions are
designed to control the discrepancies between the mean values and standard deviations
of O(n)(t) andotarget(t), respectively.

– wJ is a real scalar statisfying0 ≤ wJ ≤ 1, so that the total cost functionJ is a convex
combination of the partial cost functionsJmean andJstd .

• Solving the associated minimization problem

α
opt = min

α∈Cα

J(α) . (3.2)

In [5] and [10], this approach was extended to the context of eigenvalue computations where the
observed targets are algebraic rather than time-dependentquantities, by tailoring the definitions of
Jmean(α) andJstd (α) to this context. In any case, the reader is referred to [4] forthe detailed
development of the expressions of these two partial cost functions in the case of applications in
nonlinear structural dynamics, and to [5] and [10] for that of applications in vibration analysis. These
expressions are not repeated here because an alternative approach to (3.1) and (3.2) is proposed in
this paper for identifying the hyperparameterα, for the main reason outlined below.

Indeed, the optimization problem defined by (3.1) and (3.2) can be solved using either a
deterministic method such as the interior point algorithm (with potential problems due to the non
convexity of the cost functionJ(α)), or a probabilistic technique such as a genetic algorithm.For
each candidate/iterate solutionα = (s, β, [σ]) proposed by the optimizer, the evaluation ofJ(α) is
performed in either case using a Monte Carlo simulation method equipped withνsim independent
realizations{[G(β; θℓ)], ℓ = 1, . . . , νsim} of the random matrix[G(β)] as the stochastic solver for
Equations (2.13) to (2.22), and the mean-square convergence with respect toνsim is controlled. If
the chosen optimizer incursνJ evaluations of the cost functionJ(α), it incurs νJ×νsim repeated
solutions of the governing forward problem using the nonlinear SPROM (2.13, 2.14). During
the application of the nonparametric probabilistic methodoutlined above to the UQ of nonlinear
transient dynamics problems [4] and generalized eigenvalue problems [5, 10], it was found that as
soon as the dimension of the SPROMn dictated by accuracy requirements becomes greater than a
few units,mα becomes sufficiently large to induce a very large number of optimization iterations
νJ . In this case, the numerical cost of the identification approach of the hyperparameterα defined by
(3.1) and (3.2) becomes significant, if not prohibitive, particularly in the context of model reduction.
For this reason, a faster alternative approach for identifyingα is presented next.

4. PREDICTOR-CORRECTOR METHOD FOR THE ESTIMATION OF THE
HYPERPARAMETER

The alternative approach presented here for identifying the vector-valued hyperparamterα of the
probability model of the SROB operates on Fourier transforms of target values of time-dependent
QoIs, and Fourier transforms of counterpart values predicted using the constructed nonlinear
SPROM. The choice of working in the frequency domain insteadof the time domain is made here
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PROBABILISTIC LEARNING FOR MODEL-FORM UNCERTAINTIES 9

because in general, the phase between a time-dependent target value of a QoI and its counterpart
value predicted using a PROM is generally unknown, and that between a time-dependent target
value of a QoI and its counterpart value predicted using an SPROM is random and therefore never
known. Hence, it is easier to formulate the discrepancy (error) in the frequency domain by focusing
on the modulus of the complex-valued Fourier transforms of measured and computed time domain
responses.

The method presented here for identifyingα is a predictor-corrector approach based on a
probabilistic learning on manifolds. Its predictor component can be written asα0 = (s0, β0, [σ0])
in Cα, where[σ0] is a predictor for the matrix-valued hyperparameter[σ] ∈ Mu

n that is algebraically
constructed through adapted approximations,β0 = (βL + βU )/2, where the subscriptsL andU
designate here and throughout the remainder of this paper lower and upper bounds of the quantity
they designate, ands0 is identified by constructing an optimization problem and solving it using a
fast grid search in algorithm.

If the predictor must be improved, the proposed corrector isbased on solving another optimization
problem where the cost function is constructed using the extreme values statistics of a positive-
valued random variableQ that quantifies the error between the frequency-dependent target values
of some QoIs and their frequency-dependent predicted values. The independent realizations of
the extreme values statistics are extracted from a large number of additional realizations that are
computed by a probabilistic learning on manifolds forQ without exercising the nonlinear SPROM.
In this case, the optimizer is the interior point algorithm.The PLM requires the knowledge of an
initial dataset of a relatively small number of points{αℓ′

d }ℓ′ localized in the neighborhood of the
predictorα0, and the corresponding realizations{qℓ′d }ℓ′ of {Q(αℓ′

d )}ℓ′ computed using the nonlinear
SPROM.

4.1. Observation in the frequency domain and stochastic error

Let Bo = [0 , ωo] denote a frequency band of observation that is sampled bymω points using a
constant frequency increment∆ω, which implies thatω0 = mω ∆ω. For any vector-valued time
function {z(t), t ∈ [t0, T ]}, the associated complex vector-valued frequency function{ẑ(ω), ω ∈

Bo} is defined aŝz(ω) =
∫ T

t0

e−iω tz(t) dt. This function can be viewed as the restriction toBo

of the Fourier transform of{z(t) t ∈ [t0 , T ]}, if z(t) = 0 for all t in R\[t0, T ] (which will be the
case, up to a small relative error, for the quantities to which this Fourier transform will be applied
to in the remainder of this paper).

Let alsoô(ω) = (ô1(ω), . . . , ômo(ω)) ∈ Cmo, with ô(ω) = hfreq(−ω2 ŷ(ω)), denote the complex
vector of frequency-dependent QoIs,{ô(ω), ω ∈ Bo}, associated with the time-dependent QoIs,
{o(t), t ∈ [t0, T ]}. The mappinghfreq from CN into Cmo is linear and represented by the matrix
[O] in Mmo,N . It extracts the observed dofs from the vector−ω2 ŷ(ω) ∈ CN . Such a definition of
frequency-dependent QoIs is applied here to{o(n)(t), t ∈ [t0, T ]} defined in Equation (2.10), the
stochastic observation{O(n)(t,α), t ∈ [t0, T ]} defined in Equation (2.16), and to the target data
{otarget(t), t ∈ [t0, T ]} defined in Section 3. It follows that for allω in Bo,

ô(n)
(ω)=−ω2[O]ŷ(n)

(ω)) , Ô
(n)

(ω;α)=−ω2[O]Ŷ
(n)
(ω;α)) , ô target

(ω)=−ω2[O]ŷtarget
(ω)) .

Now, let{dB(n)(ω;α) = (dB(n)
1 (ω;α), . . . , dB(n)

mo
(ω;α)) , ω ∈ Bo} denote the stochastic process

defined on(Θ, T ,P) and indexed byBo, with values inRmo such that, for allj = 1, . . . ,mo,

dB(n)
j (ω;α) = log10(|Ô

(n)
j (ω;α)|) .

The following functions ω 7→ dbtarget(ω) = (dbtarget
1 (ω), . . . ,dbtarget

mo
(ω)) and ω 7→ db(n)(ω) =

(db(n)1 (ω), . . . ,db(n)mo
(ω)) with values inRmo are similarly defined onBo – that is, such that for

all j = 1, . . . ,mo,

dbtarget
j (ω) = log10(|ô target

j (ω)|) , db(n)j (ω) = log10(|ô
(n)
j (ω)|) .
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10 C. SOIZE AND C. FARHAT

For a fixed value of the dimensionn of the SPROM, the stochastic discrepancy (error) between
the target values of the QoIs and their counterpart values predicted using the nonlinear SPROM
is denoted by the following positive-valued random variableQ(α) = {Q(α; θ), θ ∈ Θ} defined on
(Θ, T ,P) as follows

Q(α; θ) =

∫

Bo

‖dbtarget(ω)− dB(n)(ω;α; θ)‖2
µ
dω , (4.1)

where, for any functionω 7→ r(ω) = (r1(ω), . . . , rmo(ω)) defined onBo with values inRmo and for
all ω ∈ Bo, ‖r(ω)‖µ is defined as

‖r(ω)‖µ = {
mo∑

j=1

(rj(ω))
2 µj(ω)}1/2 , (4.2)

with

µj(ω) =
ej(ω)

maxω∈Bo
{ej(ω)}

and ej(ω) = 10db
target
j

(ω) |dbtarget
j (ω)− db(n)j (ω)| . (4.3)

For a fixed hyperparameterα, the realizationdB(n)(ω;α; θ) of positive-valued random variable
dB(n)(ω;α) (for whichω given is fixed inBo ) is computed by solving the realizationθ ∈ Θ of the
nonlinear SPROM.

Next, two real numbersqtarget andqerror associated with the random variableQ(α) are defined as
follows

qtarget=

∫

Bo

‖dbtarget(ω)‖2
µ
dω , qerror =

∫

Bo

‖dbtarget(ω)− db(n)(ω)‖2
µ
dω . (4.4)

These two positive numbers are used in the remainder of this paper to normalize the cost function
of an optimization problem devoted to the identification of the hyperparameterα.

REMARK 3. For the purpose of the work presented in this paper, the function µ(ω) =
(µ1(ω), . . . , µmo(ω)) defined above was designed by numerical experiments to privilege those
frequencies in the bandBo for which the error is the greatest and make it possible to increase
the sensitivity of the random variableQ(α) to variations in the hyperparameterα.

4.2. Construction of the predictor

The construction of the predictor is performed in two stagesas described below.
Stage 1. The first stage consists in constructing a predictor[σ0] for [σ]. Examining the algebraic

structure of Equation (2.13) and Equations (2.17) to (2.22), the idea here is to estimate[σ0]
by using an approximation of the error between the generalized response obtained using the
nonlinear SPROM and the projection of the target on the SROB.Let a(n)(ω) = −ω2q̂(ω) ∈ Cn

be the frequency-dependent generalized acceleration associated with the generalized coordinateq
computed using the nonlinear SPROM (see Section 2.2) and letatarget(ω) be its counterpart target.
From Equation (2.6) and the least-squares inversion of Equation (2.7), it follows that

a(n)(ω) = [V ]T (−ω2ŷ(n)
(ω)) , atarget(ω) = [V ]T (−ω2ŷtarget

(ω)) . (4.5)

In order to focus the construction of the error on the QoIs, the computation ofa(n)(ω) =

(a
(n)
1 (ω), . . . , a

(n)
n (ω)) and atarget(ω) = (atarget

1 (ω), . . . , atarget
n (ω) can be performed only for the

QoIs rather than all dofs of the HDM. This is well adapted to the case where the target
consists of experimental data for the QoIs. In any case, thiserror can be written asaerror(ω) =
(aerror

1 (ω), . . . , aerror
n (ω)) where, for allω in Bo,

aerror
k (ω) = | (|atarget

k (ω)| − |a(n)k (ω)|) | , k = 1, . . . , n .
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Define

[g] =

∫

Bo

aerror(ω)aerror(ω)T dω .

This positive matrix is assumed to be definite ([g] ∈ M+
n ) and is scaled as follows to obtain the

matrix [gs] ∈ M+
n

[gs] =
1

gmax
[g] , gmax = max

k,k′

{ [g]kk′} .

Let [σ̃0
f ]/

√
mω be the upper triangular(n×n) real matrix resulting from the Cholesky factorization

of the matrix[gs], where the normalization constant,mω, is the number of sampling points of the
frequency bandBo (see Section 4.1). For constructing[σ0], the matrix[σ̃0

f ] is first transformed into a
sparse upper matrix belonging toMu

n in order to keep only its entries that have a major influence on
controlling the error between the target and the generalized response computed using the nonlinear
SPROM. This construction allows the reduction of the numberof hyperparameters,mα, whose
maximum value isn(n+ 1)/2. It is carried out in two steps as follows. Letτrel be a relative tolerance
(for instanceτrel = 0.15), andτ = τrel maxk[σ̃

0
f ]kk be the corresponding absolute tolerance. Define

the upper triangular matrix[σ0
f ] in Mu

n as follows

[σ0
f ]kk′ = 0 if [σ̃0

f ]kk′ ≤ τ and [σ0
f ]kk′ = [σ̃0

f ]kk′ if [σ̃0
f ]kk′ > τ .

Then, a predictor[σ0] for [σ] is obtained by keeping in each columnk′ of the matrix [σ0
f ]

only the entry corresponding to the maximum overk of |[σ0
f ]kk′ |. For k′ fixed in {1, . . . , n}, let

k0(k
′) = argmaxk{|[σ0

f ]kk′ |}. Thus, for1 ≤ k ≤ k′ ≤ n, the upper triangular matrix[σ0] is defined
as

[σ0]kk′ = 0 if k 6= k0(k
′) and [σ0]kk′ = [σ0

f ]kk′ if k = k0(k
′) . (4.6)

Now, letm0
σ denote the number of non-zero entries in the matrix[σ0]. Given that1 ≤ m0

σ ≤ n,
it follows thatm0

α
= 2 +m0

σ ≤ 2 + n, which highlights the substantial reduction of the number of
hyperparameters in the matrix[σ] achieved by the above construction of a predictor for this matrix.

Stage 2. The second stage consists in constructing a predictors0 for s. Let β0 = (βL + βU )/2
denote a fixed value of the hyperparameterβ, and recall the predictor[σ0] for [σ] defined in
Equation (4.6). The predictors0 for the hyperparameters ∈ [sL, sU ] ⊂ R+ is proposed here as the
solution of the following optimization problem

s0 = arg min
s∈[sL,sU ]

Jfreq(s) , (4.7)

where

Jfreq(s) =
wJ

qtarget
meanQ(s) +

1− wJ

γJ qtarget
|stdQ(s)− γJ qerror| , (4.8)

meanQ(s) = E{Q(s, β0, [σ0])} , (4.9)

stdQ(s) = {E{Q(s, β0, [σ0])2} − meanQ(s)
2}1/2 , (4.10)

α = (s, β0, [σ0]) , (4.11)

wJ is fixed in[0, 1] (for example,wJ = 0.5), qtargetandqerror are defined in Equation (4.4), andγJ is a
constant fixed in[0, 1]. The value ofγJ is application-dependent and must be estimated as explained
in Section 5. The nonconvex optimization problem defined in (4.7) is solved using a grid search
algorithm associated with a gridsL = s1 < s2 < . . . < sms

= sU constituted ofms sampling points
of the interval[sL, sU ]. For a givensj , the mean value and standard deviation of the random variable
Q(sj, β

0, [σ0]) are estimated using the classical statistical estimators andνs independent realizations
of the random variableQ(sj, β

0, [σ0]) computed by solvingνs realizations of the nonlinear SPROM.
Therefore, the computational cost of the proposed construction of the predictors0 is dominated by
that ofms×νs realizations of the nonlinear SPROM.
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12 C. SOIZE AND C. FARHAT

This completes the description of the construction of the predictorα0 for the hyperparameterα,
which can be written as

α
0 = (s0, β0, [σ0]) ∈ Rm0

α with m0
α
= 2 +m0

σ . (4.12)

REMARK 4. In Stage 2 of the construction of the predictorα0, the value ofβ is fixed to
β0 = (βL + βU )/2 and the hyperparameters is determined by solving the optimization problem
(4.7), whereβ0 and [σ0] are given. Alternatively,[σ] could have been fixed to some value[σ0]
and a different optimization problem could have been formulated to determines andβ. However,
numerical experiments carried out for assessing the performance of the predictorα0 have revealed
that the random matrix[W] is not sensitive with respect to different values ofβ. For this reason, the
first aforementioned approach consisting in fixingβ to the midpoint value of the admissible interval
[βL, βU ], where appropriate values ofβL andβU are determined experimentally, was chosen in
formulatingStage 2of the construction ofα0 (note however that in the construction of the corrector
α

opt described in Section 4.4,β is not fixed to some valuea priori).

4.3. Quality assessment of the predictor

The quality of the predictorα0 = (s0, β0, [σ0]) of dimensionm0
α

can be assesseda posteriori, using
the following empirical indicator that is adapted to the logarithmic scale,

I = I+ +
1

I−
, I± =

mo∑

j=1

I±
j , (4.13)

where

I±
j =

∫
Bo

|dbtarget
j (ω)− db±j (ω)| dω∫

Bo

|dbtarget
j (ω) + db±j (ω)| dω

, (4.14)

and{db+j (ω), ω ∈ Bo} and{db−j (ω), ω ∈ Bo} are the upper and lower envelopes of the confidence

region of the family of random variables{dB(n)
j (ω,α0), ω ∈ Bo} for a probability levelpc (for

instance,pc = 0.98). This means that, for allω in Bo,

Proba{dB(n)
j (ω,α0) ≤ db+j (ω)} ≥ pc , Proba{dB(n)

j (ω,α0) ≥ db−j (ω)} ≥ 1− pc . (4.15)

The dimensionless indicatorI defined in Equation (4.13) is a measure of a membership of the
target{dbtarget

j (ω,α0), ω ∈ Bo} to the confidence region{[db−j (ω),db+j (ω)], ω ∈ Bo}. The smaller
theI, the better the prediction of the probabilistic model of model-form uncertainties to represent
the target.

4.4. Construction of the corrector

The computation of the correctorαopt associated with the predictorα0 for the hyperparameterα is
based on:

• The following hypotheses:

− The hyperparameterα = (s, β, [σ]) estimated by the corrector is an update of the
predictor valueα0 = (s0, β0, [σ0]) defined in Equation (4.12); therefore, the dimension
of α remainsm0

α
= 2 +m0

σ.
− Them0

σ non-zero entries of the upper triangular matrix[σ0] are represented by the vector
σ

0 = (σ0
1 , . . . , σ

0
m0

σ

).
− The corrector[σ] for [σ0] has the same sparsity pattern as[σ0] and thereforem0

σ non-zero
entries; these are similarly represented by the vectorσ = (σ1, . . . , σm0

σ
).

− The bounds of the hyperparameterss, β, andσ, which have to be specified for the
corrector algorithm, are defined in terms of the known valuess0, β0, andσ

0 of the
predictor. These bounds enable the definition of the admissible setC0

α
of values for the

hyperparameterα, where the superscript0 emphasizes the dependence ofC0
α

onα
0.
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• The PLM for solving nonconvex optimization problems described in [11], and whose
advantages relative to alternatives are discussed in [12] and [13].

REMARK 5. The probabilistic model of[W] being an informative prior probabilistic model, some
of its parameters can be chosen arbitrarily. Here, the sparsity pattern of[σ] is chosen aa priori to
be the same as that of[σ0] – which was designed in Section 4.2 for the sole purpose of decreasing
the number of individual hyperparameters to identify. Thisdesign is relevant to the capacity of
this probabilistic model to generate, for given observations, the most narrow confidence regions
containing the targets.

4.4.1. Lower bounds for the corrector algorithm.As already stated, the lower and upper bounds
of the hyperparameterss, β, andσ, which depend onα0, define the admissible setC0

α
⊂ Rm0

α

for candidate values ofα. The values of the constants appearing in the bounds presented below
result from recent and previously performed numerical experiments [4, 5, 10]. These bounds are
constructed as follows.

− The hyperparameters belongs to[sL, sU ], wheresL = s0(1− 0.5) and sU = s0(1 + 0.5).
This interval is centered at the predictors0 and has been identified by numerical experiments.
Since the predictor is assumed to be sufficiently good,s should not deviate significantly from
s0.

− The hyperparameterβ belongs to[βL, βU ], whereβL = 0.01 andβU = 0.03. These proposed
values for the bounds are consistent with the optimal valuesobtained in all previous
applications. However, they are not critical and can be slightly modified.

− The lower boundσL = (σL
1 , . . . , σ

L
m0

σ

) and the upper boundσU = (σU
1 , . . . , σ

U
m0

σ

) of the

hyperparameterσ = (σ1, . . . , σm0
σ
) are such that, for allk = 1, . . . ,m0

σ, σk ∈ [σL
k , σ

U
k ]:

– If σk corresponds to a diagonal entry of[σ], the lower bound isσL
k = max{cdm×σ0

k, τ}
and the upper bound isσU

k = cdM×σ0
k, wherecdM = 4 andcdm = 1/cdM .

– If σk corresponds to an upper extradiagonal entry of[σ], there are two cases to consider
depending on the sign ofσ0

k:
∗ If σ0

k > 0, the lower bound isσL
k = cem×σ0

k and the upper bound isσU
k = ceM×σ0

k,
whereceM = 20 andcem = 1/ceM .

∗ If σ0
k < 0, the lower bound isσL

k = ceM×σ0
k and the upper bound isσU

k = cem×σ0
k.

Note that the proposed values forcdM andceM are sufficiently large, given the normalization of the
matrix [σ] (for further details, see [4]).

Hence, the admissible set forα is defined as

C0
α
= {α = (s, β,σ) , s ∈ [sL, sU ] , η ∈ [βL, βU ] , σ ∈

m0
σ∏

k=1

[σL
k , σ

U
k ] } . (4.16)

4.4.2. Optimization problem.Similarly to the construction of the predictors0 for s (seeStage 2
in Section 4.2), the construction of the corrector for the hyperparameterα consists in solving an
optimization problem of the form

α
opt = arg min

α∈C0
α

J(α) , (4.17)

whereC0
α

is defined in Equation (4.16). A candidate choice for the costfunctionJ could be the
same as that in Equation (4.8) – that is,

J(α) =
wJ

qtarget
meanQ(α) +

1− wJ

γJ qtarget
|stdQ(α)− γJ qerror| , (4.18)

wheremeanQ(α) andstdQ(α) are the mean value and the standard deviation of the random variable
Q(α) defined in Equation (4.1). However, this cost function is notthe most appropriate here for the
reasons given below.
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14 C. SOIZE AND C. FARHAT

The random variableQ(α) is positive almost surely. If its standard deviation were totend to zero,
its mean value would also have to tend to zero by virtue of the Tchebychev inequality. Since in
principle the target does not coincide with the response of the nonlinear SPROM, the confidence
region of the prediction computed using the nonlinear SPROMdoes not have a zero width. This
means that the standard deviation ofQ(α) must not tend to zero and therefore its mean value
cannota priori be zero for the optimal valueαopt. In other words, in order to reduce the mean value
of Q(α), it is necessary to generate statistical fluctuations in thenonlinear SPROM. This is the
reason why, thanks to the presence of its second term, the cost function (4.8) (or (4.18)) allows the
minimization of the mean value while maintaining a significant standard deviation. Nevertheless,
sinceQ(α) is a positive-valued random variable, solving the optimization (4.17) problem using
the cost function defined in (4.18) consists in searching forthe minimum of a positive-valued cost
function. From a statistical viewpoint, the efficiency of the minimization process can be increased
by using the minimum statistics ofQ(α) instead of all its possible values. For this reason, the cost
functionJ(α) defined in (4.18) is replaced here by

J(α) =
wJ

qtarget
meanQmin(α) +

1− wJ

γJ qtarget
|stdQmin(α)− γJ qerror| , (4.19)

wheremeanQmin(α) andstdQmin(α) are the mean value and standard deviation of the random variable
Qmin = min{Q}, which depends onα and is defined as the minimum statistics for the random
variableQ(α). The mean value and the standard deviation ofQmin(α) can be written as

meanQmin(α) = E{Qmin(α)} , stdQmin(α) = {E{Qmin(α)2} − meanQmin(α)2}1/2 . (4.20)

4.4.3. Probabilistic learning on manifolds for estimatingthe cost function.Recall from the
technical arguments presented at the end of Section 3 that whichever algorithm is used to solve the
optimization problem (4.17) equipped with a cost function such as that defined in Equations (4.19)
and (4.20), this algorithm is bound to experience technicaldifficulties that can be summarized as
follows. For each value ofα proposed by the optimizer, the mean value and the standard deviation of
Qmin(α) defined in Equation (4.20) should be estimated using a large number,νsim, of independent
realizations of the random variableQ(α). These are typically obtained using the Monte Carlo
technique applied to the nonlinear SPROM. Hence, if the chosen optimization algorithm requires
να evaluations of the cost functionJ(α), the nonlinear SPROM must be exercisedνα×νsim times.
If n is not sufficiently small,να can be expected to be large and the total solution time to be cost
prohibitive.

On the other hand, the PLM described in this section will incur only νd calls to the nonlinear
SPROM, whereνd ≪ να×νsim. Therefore, it will drastically reduce the number of times this
computational model is exercised and thereby drastically reduce the total computational cost
associated with the identification ofα. This method has two key components, namely:

• A PLM that enables the generation ofνar additional realizations concentrated on a manifold
identified using an initial set ofνd data points (withνd ≪ νar). These additional realizations
are determined without performing any additional exploitation of the nonlinear SPROM.

• A smoothing technique for estimatingJ(αg) at any trial pointαg in C0
α

generated for the
optimization algorithm, using only theνar additional realizations computed from the initial
dataset.

The method consists of4 steps:

Step 1. The first step consists in constructing an initial dataset byexercisingνd times the nonlinear
SPROM. To this end, consider a fixed numberνd of values of the hyperparameterα,
α

1
d, . . . ,α

νd
d in C0

α
, obtained using a uniform random sampling ofνd points in the compact

set C0
α

defined in Equation (4.16). For eachℓ′ fixed in {1, . . . , νd}, a realizationθℓ
′

of
the nonlinear SPROM is constructed withα = α

ℓ′ and excercised to obtain the realization
q
ℓ′

d = Q(αℓ′ ; θℓ
′

) of the stochastic error. Then,νd data pointsx1
d, . . . , x

νd
d in Rm0

α
+1 are
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introduced such that, forℓ′ = 1, . . . , νd,

xℓ′

d = (αℓ′

d , q
ℓ′

d ) ∈ C0
α
×R+ ⊂ Rm0

α
+1 .

Step 2. The second step consists in constructing a diffusion maps basis and in generating additional
independent realizations. For this purpose, the followingrandom variable is introduced

X = (A,Q) ,

defined on(Θ, T ,P), with values inC0
α
×R+ ⊂ Rm0

α
+1 such that{xℓ′

d , ℓ
′ = 1, . . . , νd} areνd

independent realizations ofX. The diffusion maps basis is constructed using only the initial
dataset{xℓ′

d , ℓ
′ = 1, . . . , νd}. Then, νar ≫ νd additional independent realizations,{xℓar, ℓ =

1, . . . , νar}, of the random vectorX are generated using the PLM without using the nonlinear
SPROM (for further details, the reader is referred to [11] asthe details of this part of the
method are similar to those described in this reference). Once these additional realizations
have been computed, theνar additional independent realizations{αℓ

ar, ℓ = 1, . . . , νar} of the
random variableA and νar additional independent realizations{qℓar, ℓ = 1, . . . , νar} of the
random variableQ are obtained by performing the following extraction

(αℓ
ar, q

ℓ
ar) = xℓ

ar , ℓ = 1, . . . , νar .

If νd is sufficiently large, the learning can be expected to be successful and the realizations
{αℓ

ar}ℓ and{qℓar}ℓ will belong toC0
α

andR+, respectively.

Step 3. The third step pertains to the computation of independent realizations of the minimum
statistics, represented by the positive-valued random variable Qmin on (Θ, T ,P), for the
random variableQ. Let νr and νe be two integers such thatνar = νe×νr. Consequently,
νr = νar/νe. It is assumed here thatνe andνr are sufficiently large – say,νe = 100, νr =
10 000, and thenνar = 1 000 000. Consider theνar realizations{αℓ

ar}ℓ ∈ C0
α

of A and theνar

realizations{qℓar}ℓ ∈ R+ of Q, all of which have been computed in Step 2. For a sufficiently
large value ofνe, the minimum statistics of the positive-valued random variableQ is typically
defined as the positive-valued random variableQmin such thatQmin = min{Q(1), . . . ,Q(νe)},
whereQ(1), . . . ,Q(νe) areνe independent copies of the positive-valued random variableQ.
The random variableQmin depends onνe. However, the dependence onνe is not highlighted
here in order to keep the notation simple. Theνr realizations{q1min, . . . , q

νr
min} of Qmin, which

are assumed to be independent, are then computed as

q
r
min = min

ℓ∈{νe(r−1)+1, ... , rνe}
q
ℓ
ar , r = 1, . . . , νr , (4.21)

where the minimumq
r
min = q

ℓr
ar is reached forℓ = ℓr ∈ {νe(r − 1) + 1, . . . , rνe}. Now, let

α
r
min designateαℓr

ar – that is,αr
min = α

ℓr
ar – and letAmin denote the random vector associated

with Qmin and for which{αr
min, r = 1, . . . , νr} are νr independent realizations. Note that,

here,Amin is simply a notation: in particular, it does not represent the minimum statistics of
A. It is a random variable for which the realizations correspond to those ofQmin.

Step 4. The last step consists in evaluating the cost functionJ(αg) at any pointαg in C0
α

using only
the additional independent realizations{(αr

min, q
r
min), r = 1, . . . , νr} of the random variable

(Amin,Qmin). Taking into account Equations (4.19) and (4.20), the objective is to compute
E{Qmin(α

g)} andE{Qmin(α
g)2}, where forαg given inC0

α
, the random variableQmin(α

g)
is the minimum statistics for the random variableQ(αg) (the stochastic error). Forκ = 1, 2,

E{(Qmin(α
g))κ} = E{(Qmin)

κ |A = α
g} , (4.22)
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16 C. SOIZE AND C. FARHAT

where the conditional mathematical expectation appearingin the right-hand side of
Equation (4.22) is carried out using the kernel density estimation method and the additional
realizations{(αr

min, q
r
min), r = 1, . . . , νr} computed in Step 3 (the details of the computation

of the conditional expectation can be found in [13]).

REMARK 6.There is no theoretical limit for the value of the dimensionm0
α

of the hyperparameter
α in the proposed PLM. However, the largerm0

α
the larger the overall computational cost, which is

true for any optimization algorithm adapted to the solutionof a nonconvex problem. In any case, for
the PLM to be effective, the number of data pointsνd in the initial dataset for which each pointxℓ′

d is
computed using the nonlinear SPROM must be adapted to the dimensionm0

α
of the hyperparameter

α, so that this method can actually achieve learning. In general, if m0
α

is increased, the number of
data pointsνd should also be increased.

4.4.4. Optimization algorithms. A priori, a grid search algorithm [17] is a candidate choice for the
solution of the nonconvex optimization problem defined in Equations (4.17), (4.19), and (4.20);
however, this choice would be strongly limited to the case wherem0

α
is of the order of a few

units and therefore is not necessarily appropriate here. Other candidate choices are any Bayesian
optimization algorithm [18], or any random search [17] or genetic algorithm [19]. In general, such
algorithms tend to generate a very large number of evaluations of the cost function and therefore
are relatively computationally intensive. However, thanks to the PLM introduced for evaluating the
cost function, this shortcoming is avoided here. Therefore, such algorithms are appropriate in this
context.

In principle, gradient-based algorithms [20] are not suitable for the solution of nonconvex
optimization problems. However, they may be considered here for two reasons:

• A good estimation of the solutionαopt is provided by the predictorα0 and can be used
as an advantageous initial condition. In this case,α

opt can be searched inC0
α

defined in
Equation (4.16), which is localized in a neighborhood ofα

0.
• Thanks to the PLM, a very large numberνar of independent realizations of the stochastic error

is available for constructing a good estimate of the minimumstatistics (see Step 3 of the PLM
described in Section 4.4.3).

These two specificities justify the use of a deterministic algorithm such as the interior-
point algorithm (for example, see [21]) for solving the optimization problem defined in
Equations (4.17), (4.19), and (4.20). Furthermore, it is noted that in several numerical experiments
associated with applications such as those discussed in Section 5, the deterministic interior-point
algorithm outperformed various genetic algorithms at solving the nonconvex optimization problem
underlying the construction of the corrector forα

0.

4.4.5. Initialization of the interior-point algorithm.Because it was computed using the cost
function defined by Equation (4.19), the predictorα

0 cannot be applied “as is” to initialize
the solution of the minimization problem (4.17) formulatedusing the cost function defined by
Equation (4.19). Instead, the initial condition of the latter problem,αinit , should be chosen in
C0
α

(4.16) which, as explained in Section 4.4, accounts forα
0. Furthermore, since the cost

function (4.19, 4.20) is formulated in terms of the minimum statistics,Qmin, of the random variable
Q,αinit can be selected by considering the correspondingQmin. Recalling that the minimum statistics
are constructed from theνar independent realizations{qℓar, ℓ = 1, . . . , νar} of Q associated with the
νar realizations{αℓ

ar, ℓ = 1, . . . , νar} of A, it follows that a candidate choice forαinit could be
α

init = α
ℓinit

ar , whereℓinit = arg minℓ∈{1,...,νar} q
ℓ
ar. Unfortunately, this minimum value is selected

almost surely and is too sensitive to the statistical fluctuations. For this reason, a more appropriate
choice forαinit is to first computeqinit such that

q
init = arg max

q∈R+
pQmin(q) ,
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where q 7→ pQmin(q) on R+ is the PDF ofQmin, then chooseαinit = α
ℓinit

ar , where ℓinit is such
that ℓinit = arg minℓ∈{1,...,νar} |qinit − q

ℓ
ar|. The PDFpQmin(q) can be estimated using the Gaussian

kernel-density estimation method (for example, see [22, 23]) and theνr independent realizations
{q1min, . . . , q

νr
min} computed in Step 3 of the PLM described in Section 4.4.3.

4.4.6. Quality assessment of the corrector.Once the correctorαopt has been determined by solving
problem (4.17), its quality can be assessed as explained in Section 4.3 but after substitutingα0 by
α

opt.

5. APPLICATIONS

The performance of the predictor-corrector approach outlined in Section 4 for identifying the vector-
valued hyperparameterα of the nonparametric probabilistic approach for modeling and quantifying
model form uncertainties outlined in Section 2 is illustrated here for two 3D, nonlinear, structural
dynamics problems associated with two different configurations of the same MEMS device. This
device is made of two parts: a mobile part, and a suspended part attached to the mobile part. It is
excited by a transient acceleration prescribed at the base of the mobile part. The two considered
configurations of this device differ only by the type of nonlinearity that characterizes them. In
the first considered configuration (Config-1), the structural nonlinearity is induced by nonlinear
stiffnesses between the suspended and mobile parts of the device. In the second one (Config-2),
the structural nonlinearity is induced by the presence of barriers that induce shocks between the
mobile and suspended parts. For Config-1, the level of model-form uncertainties is relatively low;
for Config-2, it is high. Hence, these two different configurations are also chosen for the additional
purpose of demonstrating the performance of the nonparametric probabilistic approach for modeling
and quantifying model-form uncertainties for two very different levels of uncertainty.

For both problems considered here, the solution of the underlying nonlinear PROM (2.8) is time-
integrated using the midpoint rule equipped with adaptive time-stepping. This, in order to guarantee
the convergence at each time-step of the fixed point method applied to the solution of the nonlinear
discrete equations of motion with a relative precision of10−8.

5.1. Three-dimensional MEMS device

A schematic of the 3D MEMS device considered here is shown in Figure 1(a). The mobile part
of this device is constituted of a square frame with a vertical beam attached to it. Its suspended
part is constituted of a parallelepipedic solid with two attached vertical beams. The suspended part
is attached to the mobile part by a 3D suspension made of20 springs. Its geometry is described
in a Cartesian coordinate systemOx1x2x3 that is attached to its mobile part and adopted as a
reference frame. The originO of this frame is located at the bottom left corner of the device.
The axisOx1 is horizontal and oriented positively from left to right. The axisOx2 is vertical and
oriented positively from bottom to top. The axisOx3 is perpendicular to the planeOx1x2; it is
also oriented positively from bottom to top. The MEMS itselfis a cylinder of noncircular cross
section whose major axis isOx3; the dimensions of its plane section are given in Figure 1(a). The
external width of the square frame is30×10−6m, its external height is31×10−6m, and its depth
is 4×10−6m. The vertical surface at the bottom of the MEMS is described by (x1 ∈ [0 , 30×10−6],
x2 ∈ [0 , 31×10−6], x3 = −4×10−6). The suspended and mobile parts are made of a homogeneous,
orthotropic, linear elastic material whose mechanical properties in the aforementioned reference
frame are those of a standard(100) silicon wafer [24]. Specifically, the Young moduli of this
material areE11 = E22 = 169×109 N/m2 and E33 = 130×109 N/m2; its Poisson ratios are
ν23 = 0.36, ν31 = 0.28, andν12 = 0.064; its shear moduli areG23 = G31 = 79.6×109 N/m2 and
G12 = 50.9×109 N/m2. The mass density of the silicon material is2 330 Kg/m3. The stiffnesses
of the springs and suspension depend on the axis along which they act:ks1 = 4 N/m (alongOx1),
ks2 = 6 N/m (alongOx2), andks3 = 1.5 N/m (alongOx3). Structural damping is represented
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(a) 2D view of the MEMS device (lengths
are shown in microns)
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(b) 3D view of the FE mesh underlying the HDM

Figure 1. Schematic and FE-based HDM of a 3D MEMS device with amobile part (yellow) and a suspended
part (blue) attached to the mobile part via a suspension system.

using the global damping model described in Appendix A, which enables the control of the modal
damping rate of the structural model in the frequency band ofanalysis.

As stated above, two different configurations of this deviceare considered here. They differ only
by the type of nonlinearity introduced between the two vertical beams of the suspended part and the
vertical beam of the mobile part:

Config-1. In this configuration, a nonlinear elastic material is inserted between the aforementioned
beams. Its constitutive equation corresponds to a cubic, elastic, restoring force whose elastic
constant iskb = 2×1012 N/m.

Config-2. In this alternative configuration, two continuous elasticbarriers are introduced at the left
and right sides of the vertical beam attached to the mobile part. The constitutive equation
of each elastic barrier is linear and characterized by the elastic constantkb = 2×1012 N/m.
The horizontal gap between the left (right) beam of the suspended part and the beam of the
mobile part is denoted byεL (εR). Initially, εL = εR = 0.5×10−6m.

For both configurations, zerox1-, x2-, andx3-displacement boundary conditions with respect
to the reference frameOx1x2x3 are prescribed at the base of the mobile part of the device –
specifically, at the points{x1 ∈ [0 , 30×10−6] , x2 = 0 , x3 ∈ [0 , −4×10−6]}. The following time-
dependent, square integrable, and real-valuedx1-acceleration is also prescribed at these same points

Γ(t) =
Γ0

π t
{sin(t(ωc +∆ωc/2))− sin(t(ωc −∆ωc/2)} , t ∈ [t0, T ] ,

whereΓ0 = 120 m/s2, ωc = 2 π×13×106 rad/s is the central angular frequency, and∆ωc =
2 π×10×106 rad/s is the angular frequency bandwidth. This acceleration is graphically depicted
in Figure 2(a). The graph ofω 7→ |Γ̂(ω)| defined on2 π×[0 , 70×106] rad/s, where Γ̂(ω) =∫ T

t0

e−iωtΓ(t) dt, is plotted in Figure 2(b). The energy of the excitation signal is mainly concentrated

in the frequency band[−ωe,−ωmin] ∪ [ωmin, ωe], whereωmin = ωc −∆ωc/2 = 2π×8×106 rad/s
andωe = ωc +∆ωc/2 = 2π×18×106 rad/s.

At time t0, the device is at rest (its displacement and velocity fields are zero). In all analyses,
t0 < 0 is written ast0 = −m0 π/ωe = −2.7778×10−5 s, wherem0 = 1 000, and the time-interval
of analysis is set to[t0, 1.8559×10−4 s]. The latter setting is chosen because atT = 1.8559×10−4 s,
the device is returned to its zero equilibrium with a small relative error. The frequency band of
observation is chosen asBo = [0, ωo], whereωo = 2 π×70×106 rad/s.
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(a) Time-dependent accelerationt 7→ Γ(t)
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Figure 2. Prescribed acceleration at the base of the mobile part of the MEMS device. (a): graph of
Γ(t) defined in[−2.78×10−5 , 1.86×10−4] s and represented in[−5×10−6 , 5×10−6] s. (b): graph of
|Γ̂(2πν)| (in the log10-scale) defined in[−72×106 , 72×106] Hz and represented in the frequency band of

observation[0 , 70×106] Hz.

For both configurations described above, thex1-acceleration of the response of the system is
observed at744 spatial points distributed across various locations of theMEMS device, in particular
on the boundaries of the vertical beams of the suspended and mobile parts. Hence, the dimension
of each of the observation vectoro(t) and its frequency domain representationô(ω) is mo = 744.
All of these observations are used to identify the hyperparameterα using the predictor-corrector
approach presented in Section 4. However, in order to keep the number of figures within a reasonable
limit, two observations are selected among all744 possible ones and denoted by Obs1

1 and Obs16 for
Config-1, and Obs21 and Obs24 for Config-2.

If the dynamical system associated with either considered configuration was linear, the energy
of the response signal would be concentrated in the same frequency band[ωmin, ωe] as that of the
energy of the excitation signal (see Figure 2(b)). Due to thenonlinearity however, part of the energy
of the excitation signal is transferred outside its frequency band and consequently, the frequency
band of the response is not[ωmin, ωe] but [0, ωmax], whereωmax > ωe is to be determined. To this
end: the sampling time-step is chosen as∆t = π/ωmax = 6.9444×10−9 s, whereωmax = 4ωe =
2π×72×106 rad/s; and the frequency band of analysis is set to[−ωmax, ωmax], whereωe < ωmax.
This yieldsntime = 30 725 time points in the time-interval[t0, T ]. The sampling frequency step is
set to∆ω = 2π×4686.7 rad/s, yielding alsonfreq = 30 725 frequency points in the frequency band
of analysis[−ωmax, ωmax].

5.2. Finite element based nonlinear high-dimensional models

First, a linear, FE-based HDM is constructed for the neutralconfiguration of the 3D MEMS device
defined here as the configuration where no material or barriers are inserted between the two vertical
beams of the suspended part of this device, and the vertical beam of its mobile part. This HDM has
7 328 8-noded solid elements,10 675 nodes, andN = 32 025 dofs (see Figure 1(b)). There are205
of these nodes, which belong to the base of the mobile part of the device: at each of these nodes,
all displacement dofs are constrained to zero in the moving reference frameOx1x2x3, due to the
boundary conditions described in Section 5.2. Hence,NCD = 615. Next, two nonlinear variants of
this HDM are generated to account for the nonlinear specificities of Config-1 and Config-2. Both
variants have the same dimension. Furthermore, this dimension is the same as that of the linear
HDM as both nonlinear variants can be constructed without generating additional dofs. For this
reason, for the sake of simplicity, and unless otherwise specified, HDM is used to refer to the linear
HDM associated with the linear, neutral configuration of thedevice, or to the nonlinear HDM of
the same dimension associated with Config-1 or Config-2. In all cases, the displacement vectory(t)
associated with the HDM is measured in the aforementioned reference frame: therefore, it represents
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a relative displacement vector. The HDM is used to analyze the dynamic response of the neutral
configuration, configuration Config-1, or configuration Config-2 of the device to the prescribed
excitationΓ(t). In all cases, the associated governing equations for the relative displacement vector,
y(t), are those given in Equations (2.1) to (2.3), where:

− The vector of external forcesf(t) is a function of the mass matrix[M ], thex1-dofs where zero
relative displacement boundary conditions are applied, and the relative accelerationΓ(t).

− The vector of internal forcesg(y(t), ẏ(t)) can be written as

g(y(t), ẏ(t)) = [D] ẏ(t) + [K] y(t) + fNL(y(t)) , (5.1)

where:

– As stated in Section5.1, the damping matrix[D] is constructed using the global damping
model described in Appendix A, which enables the control of the modal damping rate
of the modeled device in the frequency band of analysis.

– The stiffness matrix[K] belongs toM+0
N and has a null space of dimension6 before

applying the zero boundary conditions.
– The nonlinear vector functionfNL(y(t)) is constructed to account for the structural

nonlinearity introduced in Config-1 or Config-2, as applies.

− The initial conditions arey(t0) = ẏ(t0) = 0.
− The matrix[B] ∈ MN,NCD

represents theNCD zero boundary conditions and is constructed such
that[B]T [B] = [INCD

].

5.3. Projection-based reduced-order models

First, a deterministic ROB[V ] ∈ MN,n of dimensionn ≪ N is constructed using the classical
method of snapshot collection and compression. For each of Config-1 and Config-2, the nonlinear
HDM is exercised to compute the time-sampled response{y(j∆t), j = 1, . . . , ntime}. The solution
snapshots{yk

snp, k = 1, . . . , nsnp}, whereyk
snp= y(k µsnp∆t), µsnp denotes the snapshot-step, and

nsnp= ntime/µsnp, are extracted from this response. Next, the thin singular value decomposition
of the matrix [y1

snp. . . y
nsnp
snp ] is computed, and the singular valuess1 ≥ . . . ≥ snsnp are ordered in

descending order. Then,[V ] is defined as the matrix whose columns are then left orthonormal
vectors associated with the firstn ordered singular valuess1 ≥ . . . ≥ sn, wheren is determined

from the convergence rate of the compression measured by
n∑

k=1

s
2
k/

nsnp∑

k=1

s
2
k.

For ntime = 30 725 andµsnp= 10 (nsnp= 3 072), the aforementioned convergence rate analysis
yieldsn = 8 for Config-1 andn = 20 for Config-2 (note that in both cases, a ROB based on the
natural modes of the linear, neutral configuration of the device requiresnmode= 40 modes for
convergence and therefore is less efficient).

Next, each constructed ROB[V ] ∈ MN,n is randomized following the procedure given by
Equations (2.17–2.22) to obtain the counterpart SROB[W]. Then, the corresponding nonlinear
PROM and SPROM are constructed by Galerkin projection of thenonlinear HDM as in
Equations (2.7–2.9) and (2.13–2.15), respectively.

5.4. Model-form uncertainty quantification

For each nonlinear PROM constructed in Section 5.3, a modified version is designed to generate
targets for both selected observations in lieu of experimental data. Specifically, each modified
nonlinear PROM constructed for Config-1 or Config-2 is designed to generate model-form
uncertainties.

Figure 3 (Config-1) and Figure 4 (Config-2) display the graphsof the functionν 7→ dbtarget(2πν) of
the observed targets, the graphs of the functionν 7→ db(n)(2πν) of the counterpart values predicted
using the nonlinear PROM, and the graphs of the functionν 7→ db(n)lin (2πν) of the counterpart values
using the deterministic PROM. The reader can observe that for both configurations:
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Figure 3. Config-1: graphs of the functionν 7→ dbtarget(2πν) of the observed targets (red thick lines), graphs
of the functionν 7→ db(n)(2πν) of the counterpart results predicted using the nonlinear PROM (blue mid
solid lines), and graphs of the functionν 7→ db(n)lin (2πν) of the counterpart results obtained using the linear

HDM associated with the linear, neutral configuration of thedevice (black thin line).
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(a) Observation Obs21
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(b) Observation Obs24

Figure 4. Config-2: graphs of the functionν 7→ dbtarget(2πν) of the observed targets (red thick lines), graphs
of the functionν 7→ db(n)(2πν) of the counterpart results predicted using the nonlinear PROM (blue mid

solid lines), and graphs of the functionν 7→ db(n)lin (2πν) of the counterpart results obtained using the linear
HDM associated with the linear, neutral configuration of thedevice (black thin line).

• The effect of the structural nonlinearity is very importantoutside the frequency band[ωmin, ωe]
of the excitation, as there are large differences between the numerical predictions obtained
using the nonlinear PROM and those obtained using the linearHDM associated with the
neutral, linear configuration of the device.

• The model-form uncertainties – which can be analyzed by estimating the difference between
the target and numerically predicted values – are not homogeneous neither as a function of
the frequency, nor as a function of the selected observation.

• The effects of the model-form uncertainties are small in thefrequency band[ωmin, ωe] of the
excitation, but can be very large outside this band.

• For observations Obs11 and Obs12, the effects of the model-form uncertainties are smaller than
for the observations Obs1

6 and Obs24.

5.4.1. Identification of the hyperparameter via the predictor. For each of Config-1 and Config-2,
the predictorα0 for the hyperparameterα is computed using the method presented in Section 4.2.
For Config-1,n = 8 and therefore the number of hyperparameters associated with the matrix[σ] is
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Figure 5. Graph of the functions 7→ Jfreq(s) for the grid used by the grid search algorithm.

mσ = 36. For Config-2,n = 20 and thereforemσ = 210. Specifically,Stage 1is used to compute
the predictor[σ0]: it leads tom0

σ = 4 for Config-1 and tom0
σ = 13 for Config-2. Hence, it achieves

a significant reduction in the number of hyperparameters associated with the matrix[σ0]. In Stage
2, the optimization problem defined in Equations (4.7) and (4.8) is solved using the grid search
algorithm and the grid{1.0, 1.3, 1.5, 1.8, 2.0, 2.2, 2.5}× 10−5 with ms = 7 points for Config-1,
and the grid{1.0, 2.0, 3.0, 4.0, 5.0, 6.0}× 10−6 with ms = 6 points for Config-2. For each value
of α = (s, β0, [σ0]), the nonlinear SPROM is solved forνs = 100 independent realizations.

Figure 5(a) and Figure 5(b) show the graph of the functions 7→ Jfreq(s) for Config-1 and Config-2,
respectively. The predictors0 for s is equal to2.0×10−5 for Config-1 and to4.0×10−6 for Config-2.

The quality of the computed predictorα0 is assessed by plotting each target and the corresponding
confidence region constructed using the nonlinear SPROM forα = α

0 and computed using
Equation (4.15) withpc = 0.98. For each selected observation, Figure 6 (Config-1) and Figure 7
(Config-2) display the graph of the functionν 7→ dbtarget(2πν) of the observed target, the graph of
the functionν 7→ db(n)(2πν) of the observation predicted using the nonlinear PROM, and the graph
of the confidence region of the random functionν 7→ dB(n)(2πν) of the observation computed using
the nonlinear SPROM. A quality criterion is that the target belongs to the confidence region with a
probability of0.98. The reader can observer that for this criterion, the predictor delivers a reasonable
performance. Nevertheless, Figure 6 shows that the peak of the target at48.76×106 Hz does not
belong to the confidence region and Figure 7 shows that the upper envelope of the confidence region
is somehow high. For these reasons, the corrector forα

0 is considered next.

5.4.2. Identification of the hyperparameter via the corrector. For both Config-1 and Config-2,
the parameterswJ andγJ of the cost functionJ(α) defined by Equation (4.19) are set here to
wJ = 0.5 and γJ = 1.0. A convergence analysis of the PLM is performed with respectto the
dimensionνd of the initial dataset computed in its Step 1, using the following values ofνd: 100,
300, 500, 1 000, 1 500, and2 000. For each of these, the convergence of the quality indicatorI is
analyzed with respect to the number of additional realizationsνar using the following set of values
for this variable:{200 000, 1 000 000, 2 100 000}. For each value ofνd in this set, the value ofI
usingνar = 1 000 000 is found to be close to its counterpart computed usingνar = 2 100 000, which
suggests that convergence is reached forνar = 1 000 000. Still, the convergence analysis with respect
to νd and the QA of the corrector are performed using the larger value ofνar = 2 100 000. To this
end, the parameters introduced in Equation (4.21) are chosen such thatνe = 100 andνr = 21 000.
The results of the convergence analysis of the PLM with respect to νd are reported in Table I. They
show that for Config-1, the corrector improves the value of the quality indicator obtained for the
predictor as soon asνd ≥ 1 000; the best value is reached forνd = 2 000. For Config-2, the corrector
improves the value of the quality indicator obtained for thepredictor as soon asνd ≥ 1 500, and the
best value ofI is obtained forνd = 1 500.
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(a) Observation Obs11 (b) Observation Obs16

Figure 6. QA of the predictor for Config-1: graphs of the function ν 7→ dbtarget(2πν) of the observed target
(red thick line), graphs of the functionν 7→ db(n)(2πν) of the observation computed using the nonlinear
PROM (blue mid solid line), and graphs of the confidence region of the random functionν 7→ dB(n)(2πν)
of the observation predicted using the nonlinear SPROM (yellow region with green lines for the upper and

lower envelopes).

(a) Observation Obs21 (b) Observation Obs24

Figure 7. QA of the predictor for Config-2: graphs of the function ν 7→ dbtarget(2πν) of the observed target
(red thick line), graphs of the functionν 7→ db(n)(2πν) of the observation computed using the nonlinear
PROM (blue mid solid line), and graphs of the confidence region of the random functionν 7→ dB(n)(2πν)
of the observation predicted using the nonlinear SPROM (yellow region with green lines for the upper and

lower envelopes).

Table I. Convergence analysis of the PLM with respect toνd.

Predictor Corrector

νd − 100 300 500 1 000 1 500 2 000

Config-1:I 3.18 − − 3.96 3.02 3.07 2.89
Config-2:I 2.01 4.30 4.60 2.80 4.21 1.90 1.83

The quality of the corrector forα is further assessed by plotting each target and the corresponding
confidence region constructed using the nonlinear SPROM forα = α

opt and computed using
Equation (4.15) withpc = 0.98. Attention is focused on the results obtained when the PLM is
converged with respect toνd – that is, forνd = 2 000 for Config-1 andνd = 1 500 for Config-2
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(a) Observation Obs11 (b) : Observation Obs16

Figure 8. QA of the corrector for Config-1: graphs of the function ν 7→ dbtarget(2πν) of the observed target
(red thick line), graphs of the functionν 7→ db(n)(2πν) of the observation computed using the nonlinear
PROM (blue mid solid line), and graphs of the confidence region of the random functionν 7→ dB(n)(2πν)
of the observation predicted using the nonlinear SPROM (yellow region with green lines for the upper and

lower envelopes).

– and with respect to the number of additional realizations –that is, forνar = 2 100 000 for both
configurations. The optimal values of the hyperparameterss andβ of αopt are found to besopt =
1.01×10−5 andβopt = 0.026 for Config-1, andsopt = 3.56×10−6 andβopt = 0.016 for Config-2.
Figure 8 (Config-1) and Figure 9 (Config-2) display for each selected observation the graph of
the functionν 7→ dbtarget(2πν) of the observed target, the graph of the functionν 7→ db(n)(2πν) of
the observation computed using the nonlinear PROM, and the graph of the confidence region of
the random functionν 7→ dB(n)(2πν) of the observation predicted using the nonlinear SPROM.
Again, a quality criterion is that the target belongs to the confidence region with a probability of
0.98. Comparing these figures with Figures 6 and 7 shows that the corrector forα improves the
confidence region obtained using the predictor for this vector-valued hyperparameter. In particular,
Figure 8 shows that the peak of the target at48.76×106 Hz is now inside the computed confidence
region and Figure 9 shows that the upper envelope of the computed confidence region is now lower.
Figure 8 also shows that for some frequencies, the response of the nonlinear PROM is outside the
computed confidence region, but the target is always well within the computed confidence region.
These results highlight the ability of the overall nonparametric probabilistic method for modeling
and quantifying model-form uncertainties to reach a given target.

5.4.3. Wall-clock time performance analysis.All computations described above were performed
on a Linux cluster in double precision arithmetic. The main steps of the model-form UQ analysis
were performed in parallel execution mode on 70 cores of thiscluster as described below:

− Predictor (Stage 2): this stage was performed withms = 6 for Config-1 andms = 7
for Config-2; for both configurations, the nonlinear SPROM was exercised forνs = 100
independent realizations.

− Predictor (QA): for this purpose, the nonlinear SPROM was exercised forνsim = 1 000
independent realizations.

− Corrector (Step 1 PLM): Step 1 of the PLM for constructing theinitial dataset was performed
with νd = 2 000 for Config-1 andνd = 1 500 for Config-2.

− Corrector (Step 2 PLM): Step 1 of the PLM for computing additional realizations was
performed withνar = 1 050×νd for Config-1 andνar = 1 400×νd for Config-2.

− Corrector (Step 3 & Step 4 PLM): the interior point algorithmconverged in19 iterations
during which it performed141 evaluations of the cost function (4.19) in the case of Config-1;
it converged in58 iterations during which it performed950 evaluations of the cost function in
the case of Config-2.
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(a) Observation Obs21 (b) Observation Obs24

Figure 9. QA of the corrector for Config-2: graphs of the function ν 7→ dbtarget(2πν) of the observed target
(red thick line), graphs of the functionν 7→ db(n)(2πν) of the observation computed using the nonlinear
PROM (blue mid solid line), and graphs of the confidence region of the random functionν 7→ dB(n)(2πν)
of the observation predicted using the nonlinear SPROM (yellow region with green lines for the upper and

lower envelopes).

− Corrector (QA): for this purpose, the nonlinear SPROM was exercised forνsim = 1 000
independent realizations.

The wall-clock time elapsed in the execution of each of thesemain steps and the total wall-clock
time are reported in Table II for each of Config-1 and Config-2.Two observations are noteworthy:

• In each case, the total wall-clock time of the predictor-corrector approach is dominated by the
computational cost of the corrector component: specifically, 94% of the total wall-clock time
in the case of Config-1 and 80% in the case of Config-2 is due to the corrector component.

• The model-form UQ analysis of Config-2 is more computationally intensive than that of
Config-1, due to the presence of shocks in the second configuration. However, most of the
difference between the computational costs of both UQ analyses is due to the predictor
component for which the wall-clock time for Config-2 is roughly 4.6 times higher than for
Config-1.

Table II. Wall-clock time in seconds (and in hours between parentheses) on 70 cores of a Linux cluster for
the main steps of the model-form UQ analysis.

Main step Config-1 Config-2
Predictor (Stage 2) 934 3 991
Predictor (QA) 185 1 134

Corrector (Step 1 PLM) 1 850 1 833
Corrector (Step 2 PLM) 16 018 17 243
Corrector (Step 3 & Step 4 PLM) 11 13
Corrector (QA) 178 1 448

Total (Predictor + Corrector) 19 176 25 662
(5.33 hrs) (7.13 hrs)

As shown above, the solution of the optimization problem (4.17) – that is, the computation of the
correctorαopt – dominates the total cost of the identification of the vector-valued hyperparameter
α. The total cost of this identification itself dominates the overall computational cost of the
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nonparameteric probabilistic method for model-form UQ analysis at the heart of this paper. The
computer implementation of the standard solution of problem (4.17) can be described as an overall
algorithm with three main loops: an outer-loop where each instance is associated with one iteration
of the optimizer and incurs a few evaluations of the cost function to be minimized; an inner-
loop for performing theνsim independent realizations (hereνsim = 1 000); and an innermost-loop
for performing the SPROM-based simulation in the time domain. On the other hand, once training
has been performed, the computer implementation of the solution of problem (4.17) using the PLM
described in this paper is organized around two main loops only: the same aforementioned outer-
loop, and the same aforementioned innermost-loop. Hence, the gain in computational speed enabled
by the proposed predictor-corrector approach for identifying α can be easily estimated using the
information given above and in Table II. To this end, it is first noted thatνsim = 1 000 executions of
the nonlinear SPROM in the time domain using 70 cores and the algorithmic parameters described in
the introduction of Section 5 and in Section 5.1 require on average 181 seconds wall-clock time for
Config-1, and 1 448 seconds for Config-2. It follows that a goodestimate of the wall-clock time on
70 cores for the standard approach for determiningα

opt is 141× 181 = 25 521 seconds for Config-
1, and950× 1 448 = 1 375 600 seconds for Config-2. Therefore, the speedup factors enabled by
the PLM proposed in this paper are equal to1.33 in the case of Config-1, and53.61 in the case of
Config-2 where the effect of the nonlinearity on the solutionof the optimization problem (4.17) is
much stronger. In any case, it is emphasized here that these speedup factors are only estimates as
the analysis given here assumes that the number of outer-loop instances associated with the interior
point algorithm is the same in the presence and absence of thePLM.

6. SUMMARY AND CONCLUSIONS

A novel, predictor-corrector approach for identifying thevector-valued hyperparameter of a
nonparametric probabilistic method for modeling and quantifying model-form uncertainties is
presented in this paper. Its key component is a probabilistic learning on manifolds for constructing
a low-cost, surrogate model for the Monte Carlo simulationsof interest. Specifically, this model
enables the economical generation, within the solution of an inverse statistical problem, of stochastic
realizations that are concentrated on a manifold identifiedusing an initial set of data points. The
computational advantages of this proposed approach are demonstrated in this paper for the model-
form uncertainty quantification analysis, using the aforementioned nonparametric probabilistic
method, of two three-dimensional, nonlinear, structural dynamics problems associated with two
different configurations of a MEMS device. For this application, a speedup factor – with respect to
a standard approach for solving an inverse statistical problem – as high as 56 is achieved.
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APPENDIX A: CONSTRUCTION OF THE DAMPING MATRICES[D]

The structural damping model chosen for constructing the matrix [D] of the FE-based HDMs of the
3D MEMS device described in Section 5 is based on the neutral configuration of this device defined
in Section 5.2 – that is, the configuration where no material or barriers are inserted between the
two vertical beams of the suspended part of this device and the vertical beam of its mobile part.
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Hence, this model leads to the same matrix[D] for both Config-1 and Config-2. It corresponds to
the following adaptation of the structural damping representation presented in [25] (Chapter VI,
Equation (45)).

Let [Φ] = [ϕ1 . . .ϕnmode] denote the matrix of the firstnmode natural vibration modes associated
with the firstnmode lowest eigenvalues0 < λ1 ≤ . . . ≤ λnmode of the undamped neutral configuration
of the 3D MEMS device. In the time domain, the dynamics of thisundamped configuration are
governed by the linear equations of motion[M ] ÿ(t) + [K] y(t) = 0. Then, the deterministic matrix
[D] ∈ M+

N is constructed here as follows:

[D] =

nmode∑

k=1

2 ξd (
√

λk −
√

λnmode) [M ]ϕk ([M ]ϕk)T + 2 ξd
√

λnmode [M ] . (A.1)

The reader can verify that the above definition of[D] satisfies

[Φ]T [D] [Φ] = [D] ,

where the generalized damping matrix[D] ∈ M+
nmode

is diagonal and its diagonal entries are[D]kk =

2 ξd
√
λk. For{k > nmode, k

′ > nmode}, this matrix also satisfies(ϕk′

)T [D]ϕk = 2 ξd
√

λnmodeδkk′ .
For {k ≤ nmode, k

′ > nmode} and for {k > nmode, k
′ ≤ nmode}, it satisfies(ϕk′

)T [D]ϕk = 0. It
follows that:

• The structural damping model defined by Equation (A.1) yields a constant damping
rate ξd for the first nmode natural modes of the system, and yields the damping rates
{ξd

√
λnmode/

√
λnmode+1, . . . , ξd

√
λnmode/

√
λN} for the N − nmode higher natural modes

{ϕnmode+1, . . . ,ϕN}.
• This model is a global damping model that enables the controlof the modal damping rate in

the frequency band of analysis.

By construction,nmode is chosen such thatnmode≥ n. Then, the deterministic and stochastic
reduced-order damping matrices

[D(n)] = [V ]T [D] [V ] and [D(n)] = [W]T [D] [W]

are nonsingular. They can also be written as

[D(n)] =

nmode∑

k=1

2 ξd (
√

λk −
√

λnmode)χ
k(χk)T + 2 ξd

√
λnmode [V ]T [M ] [V ] ,

whereχk = [V ]T [M ]ϕk is a deterministic vector with values inRn, and

[D(n)] =

nmode∑

k=1

2 ξd (
√

λk −
√

λnmode)Ψ
k(Ψk)T + 2 ξd

√
λnmode [W]T [M ] [W] ,

whereΨk = [W]T [M ]ϕk is a random vector with values inRn.
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