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SUMMARY

Recently, a novel, nonparametric, probabilistic method fieodeling and quantifying model-form
uncertainties in nonlinear computational mechanics wapgsed. Its potential was demonstrated through
several uncertainty quantification (UQ) applications ibration analysis and nonlinear computational
structural dynamics. This method, which relies on profgetbased model order reduction in order to
achieve computational feasibility, exhibits a vectorna hyperparameter in the probability model of the
random reduced-order basis and associated stochasiiectwo-based reduced-order model. It identifies
this hyperparameter by formulating a statistical inversgbfgm grounded in target quantities of interest
and solving the corresponding nonconvex optimization lemb For many practical applications however,
this identification approach is computationally intensif@r this reason, this paper presents a faster,
predictor-corrector approach for determining the appatevalue of the vector-valued hyperparameter that
is based on a probabilistic learning on manifolds. It alsmaoestrates the computational advantages of this
alternative identification approach through the UQ of tweé#dimensional, nonlinear, structural dynamics
problems associated with two different configurations of NS device.

Received ...

KEY WORDS: probabilistic learning, model-form uncertés, nonparametric probabilistic method,
model reduction, uncertainty quantification, machinergsy

Notation, nomenclature and acronyms

Throughout this paper:

A real, deterministic variable is denoted by a lower cageletich ag.

A real, deterministic vector is denoted by a boldface, lowaese letter such as in= (y1,...,yn).

A real, random variable is denoted by an upper case lettér asic.

A real, random vector is denoted by a boldface, upper cam Rich as ity = (Y1,...,Yn).

A real, deterministic matrix is denoted by an upper (or lovemse letter between brackets such as
(4] (or [a]).

A real, random matrix is denoted by a boldface, upper cater leetween brackets such|ag.

|ly|| denotes the Euclidean norm of vecyor
E denotes the mathematical expectation.
My ., denotes the set af xn real matrices.
M, denotes the set of squatex n real matrices.
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2 C. SOIZE AND C. FARHAT

M}, denotes the set of real, symmetric, positive-definite N matrices.

M£? denotes the set of real, symmetric, positNex N matrices.

M denotes the set of real, upper triangularn matrices with positive or zero diagonal entries.
R denotes the set of all real numbers.

C denotes the set of all complex numbers.

R denotes the Euclidean space of vectors (i1, ..
C» denotes the Hermitian space of vectgrs (7, . .
A, denotes the entrjd];, of matrix [A].

[A]T denotes the transpose of matfik.

[I,] denotes the identity matrix iNL,, .

[On,,] denotes the zero matrix My .

d,r denotes the Kronecker symbél;, = 0if j # kandd;, = 1if j = k.

t denotes time denotes the pure imaginary complex number satisfying —1.

).
).

YN
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3D stands for three-dimensional.

dof stands for degree of freedom.

FE stands for finite element.

HDM stands for high-dimensional computational model.
MEMS stands for microelectromechanical systems.

PDF stands for probability density function.

PLM stands for probabilistic learning on manifolds.

POD stands for proper orthogonal decomposition.
PROM stands for projection-based reduced-order model.
QA stands for quality assessment.

Qol stands for quantity of interest.

ROB stands for reduced-order basis.

SPROM stands for stochastic projection-based reducest-arddel.
SROB stands for stochastic reduced-order basis.

SVD stands for singular value decomposition.

UQ stands for uncertainty quantification.

1. INTRODUCTION

In general, once a computational model must be consideredariy purpose, model-form
uncertainties become unavoidable. They can result eitber the lack of knowledge of the true
physics underlying the problem of interest, or the omissiortruncation of modeling details.
Their raisons d'étre range from the lack of available infation, to the inability to discern in
some circumstances between important and unimportantlingdietails. Such uncertainties affect
the ability of even an HDM to deliver predictive results —ttig results that match reasonably
well their experimental counterparts (which themselves also be tainted by other types of
uncertainties). Examples in computational structuralasyits include constitutive, multiscale,
friction, homogenization, and free-play modeling errofsparametric PROM constructed for
accelerating parametric studies or stochastic computatizeant to be carried out using an HDM
inherits all model-form uncertainties associated witls tHDM, because it is obtained by projecting
this same HDM onto a carefully computed ROB. Such a reducddranodel is also tainted by
additional uncertainties due to, among other factors: thitgefisampling used during the offline
training of this PROM where the ROB is computed (for exampkx [1]); the truncation of the
subspace of approximation represented by this ROB using BIO®VD (for example, see [2]);
and the approximation errors induced by hyperreductiormwhis process is used to accelerate the
projections incurred by the construction of this PROM (frample, see [3]).

In [4], a nonparametric, probabilistic method was devetbpe model and quantify model-
form uncertainties in deterministic computational moddibis method recognizes that data,
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PROBABILISTIC LEARNING FOR MODEL-FORM UNCERTAINTIES 3

whether experimental or numerical and high-dimensionaly montain fundamental information
or knowledge that is not captured by deterministic compartal models. Therefore, it exploits
available data to adapt theubspacdn which the solution of the problem formulated using the
computational model is searched. The method is innovasvié B a significant departure from
the dominant parametric approach to UQ where model parasnate adapted instead, in order
to discover some form of the information or knowledge enoégisd in data. To this end, the
nonparametric, probabilistic method developed in [4] peterizes the solution subspace by
randomizing its representative basis using a vector-dalugerparameter. This transforms the
deterministic computational model into a hyperparamedtachastic one. In order to determine
the hyperparameter, the method constructs and solves ans@nstatistical problem designed
to minimize the discrepancies between the mean values afidtisal fluctuations of the Qols
predicted using the hyperparametric stochastic model{amgét values obtained from the available
data. If the computational model is a deterministic HDM, thethod implements all of the above
ideas into an SPROM in order to make them computationallgiliéa It follows that the method
developed in [4] for modeling and quantifying model-formcertainties essentially extracts the
information missing in a given deterministic computatiomeodel from data, and infuses this
information into a stochastic, lower-dimensional coupéet. For this reason, this method has also
been described in [5] as a data-driven, probabilistic, rhadaptation method.

As mentioned above, a PROM constructed using a Galerkinr[Petrov-Galerkin [8] projection
of an HDM inherits all uncertainties present in this HDM. Rbis reason, and because it is
low-dimensional, such a reduced-order model can be usefiectieely model and quantify the
uncertainties of the HDM of interest. More importantly hawwe— and unlike most if not all other
UQ methods proposed in the literature that mention or relynmael reduction for accelerating
the stochastic computations they incur — the nonparametababilistic method developed in [4]
accounts for the modeling errors introduced by model rédn¢d construct its underlying SPROM.
If experimental data are not available, it leads to the mindednd quantification of the modeling
errors due to model reduction only. Otherwise, it leads tortfodeling and quantification of the
modeling errors of the given HDM, while accounting for thasgoduced during the process by
model reduction.

The potential of this nonparametric, probabilistic metfardhe UQ of model-form uncertainties
in nonlinear structural dynamics problems was demonstratg4]. The method was extended
to model-form uncertainties arising in generalized eigémy computations in [5], where its
performance for such applications was demonstrated thrthegvibration analysis of two different
real-world aircaft for which experimental data is avai@ad]. In [10], the computational aspects
of this method were refined by hyperreducing the SPROM tolade its execution time. The
potential of the resulting enhanced approach for quantjfynodel-form uncertainties in eigenvalue
computations, while accounting for modeling errors due ypenreduction, was demonstrated
through what-if vibration analysis scenarios. These wessoeiated with shape changes of a
supersonic jet engine nozzle with inner walls, outer walishgers, and baffles [10].

Given an HDM of interest of dimensiolV, the family of nonparametric, probabilistic methods
for UQ described in [4], [5], and [10] consists in substitgtithe ROB used for constructing a
nonlinear PROM of dimension << N by an adapted SROB, which leads to the construction
of a nonlinear SPROM of dimension. The probability model of the SROB depends on the
aforementioned vector-valued hyperparametevhich belongs to an admissible €&t ¢ R™e,
wheremeq = 2+ n(n + 1)/2. This family of UQ methods performs the identification af by
solving a nonconvex optimization problem formulated usémgobjective (cost) function related
to a certain distance between some given targets for the, @otsthe corresponding predictions
carried out using the nonlinear SPROM. Again, the targatesfor the Qols can be extracted from
experimental data when these are available, or correspgmtidbM predictions when experimental
data are not available. I§ is greater than a few unitsp, = n(n + 1)/2 is sufficiently large to
challenge the fast solution of this optimization problend #merefore to compromise the execution
in near-real-time of this family of nonparametric, probitic UQ methods. To this end, this paper
presents an alternative, more economical approach fotifdieig the vector-valued hyperparameter
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4 C. SOIZE AND C. FARHAT

« for practical values of the low-dimension of the SPROM. First, this approach constructs a
low-dimensional predicton for o of dimensionm?, < 2 + n(n + 1)/2 whose computational
cost is relatively small. If it judges the predictor to bedffciently accurate, it constructs next
a correctora® of the same dimension using a probabilistic learning on folts (PLM) based
on ideas that are similar to those recently described in IP]1,and demonstrated in [13]. By
avoiding to call a large number of times the nonlinear SPR®Ii4, alternative approach achieves
a lower computational complexity than the random searchmiper originally proposed in [4] for
identifying the hyperparametex.

The remainder of this paper is organized as follows. Se@i@ets the context of this paper
to that of nonlinear computational structural dynamicsbjgms in the time domain. It also
overviews the nonparametric probabilistic method progase[4] for modeling and quantifying
model-form uncertainties for two purposes: to keep thisepas self-contained as possible; and
more importantly, to highlight the presence, role, and ificance of the hyperparametex of
this method. Section 3 briefly recalls the nonconvex optatan problem formulated in [4] for
determining this vector-valued hyperparameter and ceslithe potential difficulties associated
with the solution of this problem using a conventional aggio Section 4 introduces the main
contribution of this paper. It starts by describing the ¢angion of a low-dimensional predicte:
for o that is based on the Fourier transform of the stochastidisalof the nonlinear problem of
interest. This stochastic solution is computed in neariee using the SPROM. Next, Section 4
describes the construction of the proposed corrector bagseithe aforementioned probabilistic
learning on manifolds. Section 5 discusses the performafidbe nonparametric probabilistic
method for UQ equipped with the proposed predictor-cooreapproach for two 3D, nonlinear,
structural dynamics problems associated with two differmmnfigurations of a MEMS device.
Finally, Section 6 concludes this paper.

REMARK 1PROMs are usually designed to accelerate the repeatedspmgef parametric HDMs
known asu-HDMSs. In this contextu denotes a vector-valued parameter representing, for deamp
a parameteric shape, material property, boundary comdito source term. Consequently, the
PROMs and SPROMs mentioned above have been referred to # 4] asu-PROMs andu-
SPROMSs, respectively. Here, it is noted however that théova@lued parametet is unrelated

to the vector-valued hyperparameterdiscussed above, and that the contribution of this paper
is independent from and agnostic about how the parametpeca®f ap-PROM is treated. The
problem discussed in this paper and the proposed solutitiis@roblem are also independent of
the concept of hyperreduction and agnostic about how sudcipproximation is performed. For
these reasons, and in order to avoid any unnecessary timtiahe contribution of this paper is
presented without any reference to, or discussion of, thempetric and hyperreduction aspects of a
PROM or SPROM. For a demonstration of how all these conceptein well together, the reader
is referred to [4, 5, 10].

2. NONPARAMETRIC PROBABILISTIC METHOD FOR MODEL-FORM UNCETAINTIES
IN NONLINEAR COMPUTATIONAL MECHANICS

In principle, the family of nonparametric, probabilisticethods for UQ described in [4], [5], and
[10] can be extended to any linear or nonlinear computatipreblem for which a PROM can
be constructed. However, the details associated with atgnsion can be problem dependent. For
this reason, and for the sake of clarity and simplicity, theuk of this entire paper is set here on
nonlinear transient dynamics problems.

2.1. Nonlinear high-dimensional computational model

After semi-discretization by the FE method, a large classomilinear transient dynamics problems
can be written as

(M]Y(8) +9(y(®),y(t)) =f(t) , ¢ €lto, T, (2.1)

0
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PROBABILISTIC LEARNING FOR MODEL-FORM UNCERTAINTIES 5

wherey(t) = (y1(t),...,y~n(t)) is theRY vector of theN displacement dofs before the application
of the boundary conditiongj(t) = dy(t)/dt andy(t) = d?y(t)/dt* are the corresponding velocity
and acceleration vectorgl/] is the FE mass matrix belonging b}, and is assumed here to be
independent of, g(y(t),y(t)) is theR" vector of internal forces at timeand is assumed here to
depend ory(¢) andy(t), f(¢) is theR" vector of external forces at timg and finally,t, and T’
define the time interval of interest and satisfyo < tg < T' < +oc.

The above equation defines an HDM whose initial conditiomstEawritten as

y(to) =Yo » Y(to) =Y, (2.2)

and whose boundary conditions and any other governingrlz@sstraints can be written altogether
as
[BI'Y(t) =Ongy , t € [to,T]. (2.3)

Here,[B] is a time independent matrix iy x., satisfying[B]*[B] = [In.,], Nep < N, andy,
andy, are two given vectors iiR" that satisfy the constraint (2.3).

The Qols (also called observations) at timassociated with the above HDM are represented by
the vectoro(t) = (01(t), ..., om,(t)) with values inR™°. This vector is written here as

0(t) = hime(Y(t)) , t € [to,T], (2.4)

wherehime is a given mapping with values & (for examplehime(y(t)) = [O] d?y(t)/dt?, where
[O] is a given constant matrix iN,,,, ~).

2.2. Construction of a nonlinear projection-based reduoceder model

Let [V] € My, be a ROB of dimensiom « N constructed for approximating the solution
{y(t),t € [to, T]}, and satisfying the constraint equation

[B]"[V] = [Oneon] - (2.5)

In [4], [V] was furthermore constructed to satisfy the orthonormabitydition[V |7 [M] [V] = [L..].
In this work, [V] is constructed to satisfy instead the orthonormality ctouli

VITIV] = L] (2.6)

The Galerkin projection of the HDM defined in Equations (2dlj2.4) onto the ROBV'] yields the
following nonlinear PROM

y"W(e) =[viq) , t e [to, T], (2.7)
VITIMT[VIG() + [VITa([VIa(), [V1g() = VI'f(t) , ¢ €lto, T], (2.8)

whose initial conditions are
alto) = V1", » Qlto) = [V]"y,, (2.9)

where {y(™(t),t € [to,T]} is the n-order approximation ofy(t),t € [to,T]}. Concerning the
Qols, the corresponding approximatiof) of o is given by

0™ () = hime(y ™ (t)) , t € [to,T]. (2.10)

For a givenn <« N, the approximation error associated with the predictiothefQols using the
nonlinear PROM instead of the nonlinear HDM can be estimatedori as

T
e(n) = / lot) — o™ (t)]? dt.

0

Prepared usingimeauth.cls



6 C. SOIZE AND C. FARHAT

2.3. Construction of a nonlinear stochastic projectiorsed reduced-order model

The details of the construction of the SPROM associated thigtHDM defined in Equations (2.1)
to (2.4) can be found in [4]. Here, a short summary of this troiction is adapted to the
othonormalization condition (2.6) of the underlying ROB.

The nonparametric probabilistic method for the modeling gouantification of model-form
uncertainties described here consists in substitutingdéterministic ROB[V] by a stochastic
counterpart[W], referred to as the SROB. In view of the constraint Equatidm)(and the
orthonormality condition (2.6), this SROB must verify ttadléwing properties:

o [W]:0— [W(0)] is a random variable (random matrix), defined on a probgbdjiace
(©,T,P), with values inM  ,..

e The support of its probability distribution?y;, is in the subset oMy ,, defined by the
following constraints which are verified almost surely

[B]"[W] = [0nz,n] (2.11)

e The probability distribution,; of [W] depends on a vector-valued hyperparametes
(a1,...,am,, ) belonging to a subsét, of R™e,
The construction of such an SROB is summarized in Sectianhd nonlinear SPROM associated
with the nonlinear PROM described by Equations (2.7) toQRid obtained by substitutind’] with
the random matrifW]. Consequently(™), g, ando(™ are transformed into the stochastic processes
Y™, Q, and0™, and the nonlinear SPROM is given by

YW () = WIQ(t) , ¢ € [to, T], (2.13)
(W [M] W] Q(#) + W] g((W] Q(t), W] Q(t) = WITf(t) , t €lto,T], (2.14)

and the initial conditions
Q(to) = W]y, , Q(to) = W]y, . (2.15)

The R™-valued stochastic solutiodQ(¢; «),t € [to, 7]} of Equation (2.14) with the initial
conditions (2.15) depends enec C,. The stochastic proce$§’(”)(t;a),t € [to,T]} is then-order
approximation of the stochastic proceSé(t),t € [to,T]}. As for the Qols, the corresponding
approximation{O"™ (t; @), t € [to, T]} of {O(t),t € [to,T]} is given, for allt € [ty,T] and
a € Cq, by

0™ (t; ) = hyme(Y ™ (t; @) . (2.16)

2.4. Construction of the stochastic reduced-order basis

As explained in Section 2.4, the model-form uncertaintiethe computational model of interest
are taken into account by applying the nonparametric priib® method proposed in [4]. This
method consists in substituting the reduced-order B&3iby a stochastic reduced-order ba$ig

in the PROM. Due to Equation (2.11), tidéxn random matri{W] is constructed on a subset of
the compact Stiefel manifold associated with EquationaR.A description of the stochastic model
underlying[W] can be found in [4]. The random matri¥/], which verifies Equations (2.11) and
(2.12), is a second-order random variable defined on a pilithpadpace(©, 7, P). Specifically, it
is built as follows:

W] = (V] + s [2]) [Hs(2)], (2.17)
[H(2)] = (1] + s* [Z]"[2]) 72, (2.18)
(2] = [A] = [V][D], (2.19)
D] = ([VI"[A] + [AT"[V])/2, (2.20)
[A] = [U] - [BI{[B]" U]}, (2.21)
U] = [G(B)] o], (2.22)

0
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PROBABILISTIC LEARNING FOR MODEL-FORM UNCERTAINTIES 7

where[G(p)] is a second-order, centerdd,y ,,-valued random matrix defined a®, 7, P) and

[0] is a given upper triangular matrix M} (positive or zeros diagonal entries). The probability
distribution of[W] and a generator of this random matrix are described in Apgdhaf [4]. The
ma = 2+ n(n + 1)/2 hyperparameters of the stochastic modgMgf are as follows:

— A deterministic, real parametersatisfyingd < sy < s < sy < 1, where the lower boung,
and upper boundy are fixed; note that i, = s = 0, then[W] = [V] is deterministic and
there are no statistical fluctuations.

— Adeterministic, real parametgrsatisfyingd < 8, < 8 < By < +oo, where the lower bound
B, and upper boundy are fixed.

— An upper triangular matrio| in MY (positive or zero diagonal entries) parameterized
by m, =n(n+ 1)/2 and characterized by the following property: for &K k£ < k' <n,
[oLlkr < [o]krr < [ou]kir- The lower bounds are the entries of the upper triangularixnat
[cL]: they are fixed inM. The upper bounds are the entries of the upper triangulatixmat
[ov]: they are fixed ifVIY.

Hence, the hyperparameter of the nonparametric probibilisethod reviewed here is the
vectora = (s, 8, {[o]kr, 1 < k < k' < n}) of dimensionm, =2+ n(n+ 1)/2. It can be simply
re-written asa = (s, 8, [0]). It belongs to the admissible séf, defined by the lower and upper
bounds of every one of its components. For any fixed value iofC,,, the generator of the random
matrix [G(3)] described in [4] enables the computation of any realizai@(s; )] of [G(5)] for
6 in ©. It also enables the obtention of the corresponding reaizéWV (¢)] of the random matrix
[W], using Equations (2.17) to (2.22).

Note that even though the SRQ®/| depends on the hyperparametefsee Equations (2.17) to
(2.22)), this dependency is not highlighted in the remaimd¢his paper by writingW («)], for the
sake of simplicity.

REMARK 2Regarding the interpretation of the individual hyperpagtars constituting the vector-
valued hyperparameter; the following is noteworthy:

— From Egs. (2.17) to (2.22), it follows that the random matji¥] depends on the
hyperparametersand|o], ands is a scaling parameter of the matrix-valued hyperparameter
[o].

— From the construction of the random mati®(3)] described in details in [4], it follows that
the hyperparametet enables the control of the statistical correlations betwibe random
components of a same column of the random ma@&iy3)].

— In [4], [0] was introduced as the upper triangular matrix resultingnfrthe Cholesky
factorization of an unknown but positive-definite squarerirdc,, | that participates to the
construction of the correlation tensor of the random mdtiix(specifically, see Eq. (D.25)
on page 875 of [4]). Hence, identifying.,] = [0]"[0] can be performed by identifying
instead the upper triangular mattix|. More generally, one can identify an upper triangular
matrix [o] with positiveor zerodiagonal entries and defirie,] = [0]” [¢]. In both cases, the
matrix-valued hyperparametér] enables the control of the statistical correlations betwee
the columns of the random matrif(5)] using roughly half the number of individual
hyperparameters that would be otherwise needed to iddngifglirectly.

3. IDENTIFICATION OF THE HYPERPARAMETER

Let {0®9¢(t),t € [to, T]} with values inR™ be the vector of observed targets associated with
{y®@ee(t), t € [to, T]} with values inRY. If the model-form uncertainties and/or modeling errors
tainting the SPROM defined by (2.13) and (2.14) are due onipddel reduction, then®*'= o.

On the other hand, if they are due to both of the model redugtimcess and the model-form
uncertainties and/or modeling errors existing in the HDiWerto™9t = 0®®, whereo®® is based on
experimental data.

0
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8 C. SOIZE AND C. FARHAT

The identification of the hyperparameter in C,, C R™= can be performed using various
approaches for formulating a statistical inverse probletated too®®* including the maximum
likelihood and nonlinear Least-Squares methods [14, 15, B6r example, in the context of
nonlinear transient dynamics problems, the vector-vahygubrparametett was determined in [4]
by:

¢ Defining a total cost function of the form

J(a) = wy Jmean(a) + (1 —wy) Jstd (), (3.2)

where:

— Jmean(a) and Jgiq () are partial cost functions formulated using the deterrtimis
time-dependent function§o®9(t), ¢ € [to, T]} and {0 (t; a),t € [to, T]}, and the
stochastic, time-dependent functiod®™ (t; ), t € [to, T]}. These functions are
designed to control the discrepancies between the meaasvahd standard deviations
of O™ (¢) ando®e{(¢), respectively.

— wy is a real scalar statisfying < w; < 1, so that the total cost functiof is a convex
combination of the partial cost functioofean and.Jgtq -

e Solving the associated minimization problem

a® = min J(a). (3.2)
acCq

In [5] and [10], this approach was extended to the contexigdrezalue computations where the
observed targets are algebraic rather than time-depegdantities, by tailoring the definitions of
Jmean(a) andJgiq (o) to this context. In any case, the reader is referred to [4}Herdetailed
development of the expressions of these two partial costtifums in the case of applications in
nonlinear structural dynamics, and to [5] and [10] for tHatmplications in vibration analysis. These
expressions are not repeated here because an alternginoaelpto (3.1) and (3.2) is proposed in
this paper for identifying the hyperparameterfor the main reason outlined below.

Indeed, the optimization problem defined by (3.1) and (3&) be solved using either a
deterministic method such as the interior point algorithwiti{ potential problems due to the non
convexity of the cost functiod («)), or a probabilistic technique such as a genetic algoritfon.
each candidate/iterate solution= (s, 3, [¢]) proposed by the optimizer, the evaluation/gt) is
performed in either case using a Monte Carlo simulation oe#quipped with/s,, independent
realizations{[G(8;0,)],£ = 1, ...,vsm} Of the random matri¥G(5)] as the stochastic solver for
Equations (2.13) to (2.22), and the mean-square conveggeitl respect tas, is controlled. If
the chosen optimizer incuts; evaluations of the cost functiof(a), it incurs v; x v, repeated
solutions of the governing forward problem using the nadin SPROM (2.13, 2.14). During
the application of the nonparametric probabilistic metlbotiined above to the UQ of nonlinear
transient dynamics problems [4] and generalized eigeevatablems [5, 10], it was found that as
soon as the dimension of the SPRGMiIictated by accuracy requirements becomes greater than a
few units,m, becomes sufficiently large to induce a very large number @fhopation iterations
vs. Inthis case, the numerical cost of the identification apphoof the hyperparametardefined by
(3.1) and (3.2) becomes significant, if not prohibitive tigaarly in the context of model reduction.
For this reason, a faster alternative approach for ideéntify is presented next.

4. PREDICTOR-CORRECTOR METHOD FOR THE ESTIMATION OF THE
HYPERPARAMETER

The alternative approach presented here for identifyiegviirctor-valued hyperparamterof the

probability model of the SROB operates on Fourier transfoaftarget values of time-dependent
Qols, and Fourier transforms of counterpart values prediaising the constructed nonlinear
SPROM. The choice of working in the frequency domain instafathe time domain is made here

0

Prepared usingimeauth.cls



PROBABILISTIC LEARNING FOR MODEL-FORM UNCERTAINTIES 9

because in general, the phase between a time-dependeagttuiahge of a Qol and its counterpart

value predicted using a PROM is generally unknown, and teawden a time-dependent target
value of a Qol and its counterpart value predicted using dRCB® is random and therefore never
known. Hence, it is easier to formulate the discrepancy(em the frequency domain by focusing

on the modulus of the complex-valued Fourier transforms @asared and computed time domain
responses.

The method presented here for identifyingis a predictor-corrector approach based on a
probabilistic learning on manifolds. Its predictor compahcan be written aa® = (s°, 3%, [¢])
in Co, Where[o?] is a predictor for the matrix-valued hyperparamétérc M that is algebraically
constructed through adapted approximatiosts= (3. + Sv)/2, where the subscripté and U
designate here and throughout the remainder of this paper land upper bounds of the quantity
they designate, and is identified by constructing an optimization problem antVisg it using a
fast grid search in algorithm.

If the predictor must be improved, the proposed correctoaged on solving another optimization
problem where the cost function is constructed using theemeé values statistics of a positive-
valued random variabl® that quantifies the error between the frequency-dependeagsttvalues
of some Qols and their frequency-dependent predicted salliee independent realizations of
the extreme values statistics are extracted from a largebauf additional realizations that are
computed by a probabilistic learning on manifolds @without exercising the nonlinear SPROM.
In this case, the optimizer is the interior point algoritifine PLM requires the knowledge of an
initial dataset of a relatively small number of poir{ia’; },» localized in the neighborhood of the
predictora’, and the corresponding realizatic{rmé/}p of {Q(af{)}y computed using the nonlinear
SPROM.

4.1. Observation in the frequency domain and stochastimrerr

Let B, = [0,w,] denote a frequency band of observation that is sampleghpypoints using a

constant frequency incremettw, which implies thatwy = m,, Aw. For any vector-valued time

function {z(t),t € [to, T]}, the associated complex vector-valued frequency funcftiw),w €
T

B,} is defined ag(w) :/ e~ “1'z(t)dt. This function can be viewed as the restrictionp

t
of the Fourier transform o{oz(t)t € [to,T]}, if z(t) =0 for all ¢ in R\[to,T] (which will be the
case, up to a small relative error, for the quantities to wiiids Fourier transform will be applied
to in the remainder of this paper).

Let also0(w) = (01 (w), .. ., Om,(w)) € C™, With O(w) = hreq(—w? Y(w)), denote the complex
vector of frequency-dependent Qol(w),w € B,}, associated with the time-dependent Qols,
{o(t),t € [to, T]}. The mappindhieq from CV into C™ is linear and represented by the matrix
[Q] in ML, n- It extracts the observed dofs from the vectas? y(w) € CV. Such a definition of
frequency-dependent Qols is applied herd®6" (¢),t € [to, T]} defined in Equation (2.10), the
stochastic observatiofO™ (¢, ax), ¢ € [to, T]} defined in Equation (2.16), and to the target data
{0®"¢(t), t € [to, T']} defined in Section 3. It follows that for all in 3,,

8" @)= 0" @) , 6" (wia) = O "wia) , 8" w) =~ 0" w)).

Now, let{dB™ (w; @) = (dB{"” (w; @), ..., dB (w; @)) ,w € B,} denote the stochastic process
defined on(©, 7, P) and indexed bys,, with values inR™- such that, forallj =1, ..., m,,

dBY" (w; @) = log, (|05 (w; ev)]) .

The following functions w ~ db®%(w) = (dB**(w),....,db**(w)) and w — db™(w) =
(dbln)( ) b(" (w)) with values inR™- are S|m|IarIy defined o8, — that is, such that for
allj=1,...,m,,

A5 (w) = logo([07"*w)) . db" (w) = logyo (9, (@)))

0
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10 C. SOIZE AND C. FARHAT

For a fixed value of the dimensian of the SPROM, the stochastic discrepancy (error) between
the target values of the Qols and their counterpart valuedigted using the nonlinear SPROM
is denoted by the following positive-valued random vage®l o) = {Q(«; 6),0 € O} defined on
(©,7T,P) as follows

Q(a 6) /8 |db®%(w) — dB™ (w; a; 0|3 dw (4.1)

Il
where, for any functiow — r(w) = (r1(w), .. ., rm,(w)) defined onB3, with values inR™e and for
allw € B,, || (w)||. is defined as

mo

I (W)l = {Z rj(w }1/2 (4.2)

with

target(

(W) = ej(w) e (w) — 109P
1) = es @) o9 @) =10

w argel (n)
Jdbf*(w) — dbf” (W) (4.3)

For a fixed hyperparameter, the realizationdB™ (w; a; 0) of positive-valued random variable
dB™ (w; a) (for whichw given is fixed inB, ) is computed by solving the realizatiéne © of the
nonlinear SPROM.

Next, two real numberg®?and¢®™" associated with the random varialijé«) are defined as
follows

e [ g [ ) b @) e (44)

These two positive numbers are used in the remainder of #ierto normalize the cost function
of an optimization problem devoted to the identificationlad hyperparameter.

REMARK 3. For the purpose of the work presented in this paper, the ifumci(w) =
(u1(w), ..., ume(w)) defined above was designed by numerical experiments tolggéithose
frequencies in the ban#}, for which the error is the greatest and make it possible toeamse
the sensitivity of the random variabl@(«) to variations in the hyperparameter

4.2. Construction of the predictor

The construction of the predictor is performed in two staggedescribed below.

Stage 1 The first stage consists in constructing a predi@té} for [o]. Examining the algebraic
structure of Equation (2.13) and Equations (2.17) to (2.22% idea here is to estimafe’]
by using an approximation of the error between the genegliesponse obtained using the
nonlinear SPROM and the projection of the target on the SR@Ba™ (w) = —w?q(w) € C"
be the frequency-dependent generalized acceleratiociatsh with the generalized coordinaje
computed using the nonlinear SPROM (see Section 2.2) araf'¥fw) be its counterpart target.
From Equation (2.6) and the least-squares inversion of ficqué?.7), it follows that

a(w) = V(M (w) , a"w) = [V]T (" w)). (4.5)

In order to focus the construction of the error on the Qol® tomputation ofa™ (w) =
@\ (w),...,a” (w)) and a®=(w) = (d“*w),...,a™*w) can be performed only for the
Qols rather than all dofs of the HDM. This |s well adapted te ttase where the target
consists of experimental data for the Qols. In any case,dtrisr can be written aa®™(w) =
(a5 (w), ..., a2 (w)) where, for alw in B,,

? n

ag™(w) = | (|a¥*w)| — [a{” @))| , k=1,...,n.

0
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Define
[g] — / aerror(w) aerror(w)T dw .
Bo

This positive matrix is assumed to be definifg] € M,") and is scaled as follows to obtain the

matrix [gs] € M
1
[9s] = — 9]+ gmax=max{[glir}.

Imax

Let [5%]/,/m., be the upper trianguldr x n) real matrix resulting from the Cholesky factorization
of the matrix[g,], where the normalization constani,,, is the number of sampling points of the
frequency band, (see Section 4.1). For constructifpg], the matl’iX[E?] is first transformed into a
sparse upper matrix belongingké® in order to keep only its entries that have a major influence on
controlling the error between the target and the generhligeponse computed using the nonlinear
SPROM. This construction allows the reduction of the nuntdfehyperparametersn,,, whose
maximum value isi(n + 1)/2. Itis carried out in two steps as follows. L&} be a relative tolerance
(for instancer, = 0.15), andT = 7, maxy [’532]kk be the corresponding absolute tolerance. Define

the upper triangular matrij}] in Mi;} as follows
[U?]kk/ =0 if [5?]]@]@/ <T and [U?]kk/ = [E?]kk’ if [E?]kk’ > T.

Then, a predictorfc”] for [o] is obtained by keeping in each colunif of the matrix [¢}]
only the entry corresponding to the maximum o¥eof |[0?]kk/|. For k' fixed in {1,...,n}, let
ko(k') = arg maxy.{|[0]xs[}. Thus, forl <k < &’ < n, the upper triangular matrix°] is defined
as

[O’O]kk/ =0 |f k 7& k()(kl) and [O’O]kk/ = [O'Joc]kk/ |f k= k()(kl> . (46)

Now, letm? denote the number of non-zero entries in the mdti¥. Given thatl < m2 < n,
it follows thatm? = 2 + m2 < 2 + n, which highlights the substantial reduction of the numHer o
hyperparameters in the matfix] achieved by the above construction of a predictor for thitrima
Stage 2 The second stage consists in constructing a prediftéor s. Let 3° = (3, + Bv)/2
denote a fixed value of the hyperparameterand recall the predictojo?] for [s] defined in
Equation (4.6). The predictef for the hyperparameterc [s;,sy] C RT is proposed here as the
solution of the following optimization problem

s =arg min  Jyeq(s), 4.7)
s€[sL,su]
where .
w. —w. error
Jrea(s) = gz meam(s) + o Istda(s) — 7 ¢ (4.8)
meamy(s) = E{Q(s, 5% [0°])}, (4.9)
stdy(s) = {E{Q(s, 8°,[0°))*} — meamy(s)*}"/*, (4.10)
o = (57 Bov [0()]) ) (411)

wy is fixed in[0, 1] (for examplew; = 0.5), ¢™**andq¢®™" are defined in Equation (4.4), and is a
constant fixed iff0, 1]. The value ofy; is application-dependent and must be estimated as exglaine
in Section 5. The nonconvex optimization problem defined4i7)is solved using a grid search
algorithm associated witha grid, = s1 < s2 < ... < s,,, = sy constituted ofn, sampling points

of the intervals., sy|. For a givers;, the mean value and standard deviation of the random variabl
Q(s;,8°, [09]) are estimated using the classical statistical estimatats@independent realizations
of the random variabl€(s;, 3°, [¢°]) computed by solving, realizations of the nonlinear SPROM.
Therefore, the computational cost of the proposed corstruof the predictos® is dominated by
that of m, x v, realizations of the nonlinear SPROM.

0
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12 C. SOIZE AND C. FARHAT

This completes the description of the construction of thegljmtora® for the hyperparameter,
which can be written as

a® = (s°,8° [0°]) € R™«  with m® =2+m?. (4.12)

REMARK 4 In Stage 2of the construction of the predictax®, the value ofg is fixed to

Y = (8L + Bu)/2 and the hyperparameteris determined by solving the optimization problem
(4.7), wheres? and[0°] are given. Alternatively[s] could have been fixed to some val{s]
and a different optimization problem could have been foatad to determine and 3. However,
numerical experiments carried out for assessing the pedoce of the predictar® have revealed
that the random matrifV] is not sensitive with respect to different valuessofor this reason, the
first aforementioned approach consisting in fixihgp the midpoint value of the admissible interval
[BL, Bul, where appropriate values gf, and 5y are determined experimentally, was chosen in
formulatingStage 2of the construction of® (note however that in the construction of the corrector
a’Ptdescribed in Section 4.4, is not fixed to some valua priori).

4.3. Quality assessment of the predictor

The quality of the predictar® = (s°, 3°, [¢°]) of dimensionn?, can be assessedposteriori using
the following empirical indicator that is adapted to theddthmic scale,

Mo

1
_ 7t + +
I=T'+=— . I =y 17, (4.13)
j=1

where e
L S, 187 w) — dbF (w)] de

T [, 1d87w) 4 db (w)] dew (4.14)

and{db;“ (w),w € B,} and{db; (w),w € B,} are the upper and lower envelopes of the confidence

region of the family of random variable{*szy” (w,a%),w € B,} for a probability levelp. (for
instancep. = 0.98). This means that, for al) in B,,

ProbgdB\" (w,a’) < dbf (w)} > p. , ProbddB{"(w,a’) >db; (w)} >1—p.. (4.15)

The dimensionless indicatdr defined in Equation (4.13) is a measure of a membership of the
target{dd"**{w, a®),w € B,} to the confidence regiof[db; (w),db; (w)],w € B,}. The smaller
theZ, the better the prediction of the probabilistic model of mlefibrm uncertainties to represent
the target.

4.4. Construction of the corrector

The computation of the correcter®™ associated with the predictes” for the hyperparameter is
based on:

e The following hypotheses:

— The hyperparametetx = (s, 5, [0]) estimated by the corrector is an update of the
predictor valuex® = (s°, 8%, [¢°]) defined in Equation (4.12); therefore, the dimension
of a remainsm? = 2 + mQ.

— Them? non-zero entries of the upper triangular maf#i% are represented by the vector

o’ =(09,...,0%).
— The correctofs] for [°] has the same sparsity patterri&§ and thereforen? non-zero
entries; these are similarly represented by the vegeter (o1, ..., 0,,0).

— The bounds of the hyperparameterss, and o, which have to be specified for the
corrector algorithm, are defined in terms of the known valsfes3®, and o of the
predictor. These bounds enable the definition of the adbéssietCd, of values for the
hyperparametes, where the superscriptemphasizes the dependenc&gfon a’.

0
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e The PLM for solving nonconvex optimization problems ddsed in [11], and whose
advantages relative to alternatives are discussed in fiR]E3].

REMARK 5 The probabilistic model ofW] being an informative prior probabilistic model, some
of its parameters can be chosen arbitrarily. Here, the gpaattern of[s] is chosen a priori to

be the same as that f°] — which was designed in Section 4.2 for the sole purpose akdsing
the number of individual hyperparameters to identify. Tthésign is relevant to the capacity of
this probabilistic model to generate, for given observatjahe most narrow confidence regions
containing the targets.

4.4.1. Lower bounds for the corrector algorithrAs already stated, the lower and upper bounds
of the hyperparameters 3, and o, which depend om’, define the admissible séf, c R™a

for candidate values a&. The values of the constants appearing in the bounds pezséelow
result from recent and previously performed numerical erpents [4, 5, 10]. These bounds are
constructed as follows.

— The hyperparameter belongs to[s;, si7], wheresy, = s°(1 — 0.5) and sy = s°(1 + 0.5).
This interval is centered at the predictSrand has been identified by numerical experiments.
Since the predictor is assumed to be sufficiently geadhould not deviate significantly from
0.

— The hyperparametet belongs tdg;., Sy, whereg, = 0.01 andjsy = 0.03. These proposed
values for the bounds are consistent with the optimal vakigsined in all previous
applications. However, they are not critical and can béhdljgnodified.

— The lower boundo’ = (af,...,ofng) and the upper bound? = (U{J,...,ngg) of the

hyperparametes = (o1,...,0,,0) are such that, foralt = 1,...,m%, oy € [0}, o[ ]:

— If oy, corresponds to a diagonal entry[ef, the lower bound is,f = max{cgm X oy, T}
and the upper bound af,’j = cqm X op, Wherecqnr = 4 andegy, = 1/canr.
— If o4, corresponds to an upper extradiagonal entrigfthere are two cases to consider
depending on the sign of:
* If o) > 0, the lower bound is% = c.,,, x o) and the upper boundig/ = c.as x o?,
wherec.ys = 20 andce,, = 1/cenr-
x If 02 < 0, the lower bound is = ¢ x o) and the upper bound g/ = cep, x 2.

Note that the proposed values fgn,; andc.,,; are sufficiently large, given the normalization of the
matrix [o] (for further details, see [4]).
Hence, the admissible set faris defined as

m()

0 ={a=(sp,0),s€[s1,50],n€[Br,PBu], o€ ﬂ[a,f,aU]}. (4.16)
k=1

4.4.2. Optimization problemSimilarly to the construction of the predicte? for s (seeStage 2

in Section 4.2), the construction of the corrector for thedmparameter consists in solving an
optimization problem of the form

o' — arg min J(a), (4.17)

a€eCy,

o

whereC? is defined in Equation (4.16). A candidate choice for the éasttion J could be the
same as that in Equation (4.8) —that is,

w, 1—w, error,
J(@) = mgmmean (@) + g Istdy(a) = 70 ¢ (4.18)
wheremeany (o) andstdy («x) are the mean value and the standard deviation of the randiéailea
Q(«) defined in Equation (4.1). However, this cost function isthetmost appropriate here for the
reasons given below.

0

Prepared usingmeauth.cls



14 C. SOIZE AND C. FARHAT

The random variabl@(«) is positive almost surely. If its standard deviation wergstad to zero,
its mean value would also have to tend to zero by virtue of tbleebychev inequality. Since in
principle the target does not coincide with the respons&@fonlinear SPROM, the confidence
region of the prediction computed using the nonlinear SPRids not have a zero width. This
means that the standard deviation@fa) must not tend to zero and therefore its mean value
cannota priori be zero for the optimal value®®. In other words, in order to reduce the mean value
of Q(«a), it is necessary to generate statistical fluctuations innth@inear SPROM. This is the
reason why, thanks to the presence of its second term, théuomsion (4.8) (or (4.18)) allows the
minimization of the mean value while maintaining a significatandard deviation. Nevertheless,
sinceQ(«) is a positive-valued random variable, solving the optitiara(4.17) problem using
the cost function defined in (4.18) consists in searchingiferminimum of a positive-valued cost
function. From a statistical viewpoint, the efficiency oétminimization process can be increased
by using the minimum statistics @¥(«) instead of all its possible values. For this reason, the cost
function J(«) defined in (4.18) is replaced here by

1—wy
7.7 qlaraet

wg
qtarget

J(a) =

meany,,(c) + [ty (@) =7 ¢, (4.19)
wheremean,,,, (o) andstdy, . (o) are the mean value and standard deviation of the randonblaria
Qmin = min{Q}, which depends omx and is defined as the minimum statistics for the random
variableQ(a). The mean value and the standard deviatio@gf () can be written as

meany, ;. (@) = E{Qmin(ct)} , stdy,, () = {E{Qmin(a)Q} - rne"’“@min(a)Q}l/2 . (4.20)

4.4.3. Probabilistic learning on manifolds for estimatiige cost functionRecall from the
technical arguments presented at the end of Section 3 thehexrer algorithm is used to solve the
optimization problem (4.17) equipped with a cost functiantsas that defined in Equations (4.19)
and (4.20), this algorithm is bound to experience techrddétulties that can be summarized as
follows. For each value ak proposed by the optimizer, the mean value and the standeiatioa of
Qmin(e) defined in Equation (4.20) should be estimated using a laugger,vqn,, of independent
realizations of the random variabl@(«). These are typically obtained using the Monte Carlo
technique applied to the nonlinear SPROM. Hence, if the @haptimization algorithm requires
Vo €evaluations of the cost functioi(«), the nonlinear SPROM must be exercisgk v, times.

If n is not sufficiently smally, can be expected to be large and the total solution time to s co
prohibitive.

On the other hand, the PLM described in this section will menly v, calls to the nonlinear
SPROM, whereyy < vaxvsm. Therefore, it will drastically reduce the number of timdsst
computational model is exercised and thereby drasticatjuce the total computational cost
associated with the identification ef This method has two key components, namely:

¢ A PLM that enables the generation if additional realizations concentrated on a manifold
identified using an initial set af; data points (withyy < vy). These additional realizations
are determined without performing any additional expliitaof the nonlinear SPROM.

e A smoothing technique for estimatinff«¢) at any trial pointa? in C% generated for the
optimization algorithm, using only the,, additional realizations computed from the initial
dataset.

The method consists dfsteps:

Step 1. The first step consists in constructing an initial datasegxsrcisingy, times the nonlinear
SPROM. To this end, consider a fixed number of values of the hyperparameter,
al,...,af in CJ, obtained using a uniform random samplingiefpoints in the compact
set ¢, defined in Equation (4.16). For each fixed in {1,...,v4}, a realizations’ of
the nonlinear SPROM is constructed with= o’ and excercised to obtain the realization
g = Q(a!';6") of the stochastic error. Them, data pointsx},...,x’* in R™«*t! are

0
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Step 3.

Step 4.
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introduced such that, faf = 1,..., vy,

’ ’ ’ 0
xi = (af,0}) €COXRT ¢ R™at!,

The second step consists in constructing a diffusion magis bad in generating additional
independent realizations. For this purpose, the followarglom variable is introduced

X=(AQ)),

defined on(®, 7', P), with values inCo x R+ C R™a+1 such thafxt, ¢/ = 1,...,vq} areyy
independent realizations &f. The diffusion maps basis is constructed using only théainit
dataset{x!,¢ = 1,...,v4}. Then,vsy > v, additional independent realizationgx’,, ¢ =
1,...,var}, Of the random vectaX are generated using the PLM without using the nonlinear
SPROM (for further details, the reader is referred to [11}tes details of this part of the
method are similar to those described in this referencefeQnese additional realizations
have been computed, thg, additional independent realizatiorﬁ&g,,é =1,...,va} Of the
random variabled and v, additional independent realizatiods’,, ¢ = 1,...,va} of the
random variabl& are obtained by performing the following extraction

A, ¢
(Qar Oar) =Xz > £=1,...,Va.

If vy is sufficiently large, the learning can be expected to beessfal and the realizations
{at,}o and{g4}, will belong toC?, andR™, respectively.

The third step pertains to the computation of independealizagions of the minimum
statistics, represented by the positive-valued randoriavigr Onin on (©,7T,P), for the
random variableQ. Let v, and v, be two integers such that, = v. xv,.. Consequently,
vy = var/Ve. It is assumed here that and v, are sufficiently large — say,. = 100, v, =
10000, and thenv,, = 1000 000. Consider thesy realizations{ o}, € C, of A and thevy
realizations{a4,}, € RT of Q, all of which have been computed in Step 2. For a sufficiently
large value of ., the minimum statistics of the positive-valued randomalale Q is typically
defined as the positive-valued random varia@lg, such thatQ,, = min{ QM ... Q)1
whereQ® ... Q) arer, independent copies of the positive-valued random varigble
The random variabl®,, depends omw.. However, the dependence ppis not highlighted
here in order to keep the notation simple. Theealizations{a},,, - - -, gy} Of Omin, Which
are assumed to be independent, are then computed as

V4
Gar >

Tmin :ée{ue(r—rlr;iill,m,rue} r=1,...,v,, (4.22)
where the minimumy”,, = g% is reached fo¥ = ¢, € {v.(r — 1) +1, ..., rv.}. Now, let
ar,. designaten’; — thatis,a”;, = a4 — and letAn, denote the random vector associated
with Qmin and for which{aj,,,» =1,...,v,.} arev, independent realizations. Note that,
here,Anin is simply a notation: in particular, it does not represesmtitiinimum statistics of
A. Itis a random variable for which the realizations correspto those 0 min.

The last step consists in evaluating the cost functiém?) at any poinia? in C2, using only
the additional independent realizatiofi@x},,, ahin), ™ = 1, ..., v} of the random variable
(Amin, Omin). Taking into account Equations (4.19) and (4.20), the dhjeds to compute
E{Qmin(a?)} and E{Qmin(a?)?}, where fora? given inC2, the random variabl@mi,(a?)
is the minimum statistics for the random variaf@éa9) (the stochastic error). Fer= 1, 2,

E{(Qmin(a?))"} = E{(Qmin)" | A = a’}, (4.22)

0
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16 C. SOIZE AND C. FARHAT

where the conditional mathematical expectation appeaimghe right-hand side of
Equation (4.22) is carried out using the kernel densitynetion method and the additional
realizations{(opn, amin), ” = 1, ..., v} computed in Step 3 (the details of the computation
of the conditional expectation can be found in [13]).

REMARK 6.There is no theoretical limit for the value of the dimensiof) of the hyperparameter
a in the proposed PLM. However, the largef, the larger the overall computational cost, which is
true for any optimization algorithm adapted to the solutiba nonconvex problem. In any case, for
the PLM to be effective, the number of data poinisn the initial dataset for which each poixﬁ' is
computed using the nonlinear SPROM must be adapted to thendionm!, of the hyperparameter
a, so that this method can actually achieve learning. In géniérm?, is increased, the number of
data points,; should also be increased.

4.4.4. Optimization algorithms. A prigra grid search algorithm [17] is a candidate choice for the
solution of the nonconvex optimization problem defined iru&ipns (4.17), (4.19), and (4.20);
however, this choice would be strongly limited to the casem? is of the order of a few
units and therefore is not necessarily appropriate heteerQandidate choices are any Bayesian
optimization algorithm [18], or any random search [17] onggc algorithm [19]. In general, such
algorithms tend to generate a very large number of evalusid the cost function and therefore
are relatively computationally intensive. However, thaitdcthe PLM introduced for evaluating the
cost function, this shortcoming is avoided here. Therefsueh algorithms are appropriate in this
context.

In principle, gradient-based algorithms [20] are not di@afor the solution of nonconvex
optimization problems. However, they may be considered fartwo reasons:

e A good estimation of the solution® is provided by the predicton® and can be used
as an advantageous initial condition. In this casé' can be searched 62, defined in
Equation (4.16), which is localized in a neighborhooadf

e Thanks to the PLM, a very large numhbey of independent realizations of the stochastic error
is available for constructing a good estimate of the mininstaistics (see Step 3 of the PLM
described in Section 4.4.3).

These two specificities justify the use of a deterministigodathm such as the interior-
point algorithm (for example, see [21]) for solving the optiation problem defined in
Equations (4.17), (4.19), and (4.20). Furthermore, it ieddhat in several numerical experiments
associated with applications such as those discussed tio®&; the deterministic interior-point
algorithm outperformed various genetic algorithms atisgthe nonconvex optimization problem
underlying the construction of the corrector tef.

4.4.5. Initialization of the interior-point algorithmBecause it was computed using the cost
function defined by Equation (4.19), the predicte? cannot be applied “as is” to initialize
the solution of the minimization problem (4.17) formulatesing the cost function defined by
Equation (4.19). Instead, the initial condition of the éatproblem,a™, should be chosen in
C% (4.16) which, as explained in Section 4.4, accounts d8t Furthermore, since the cost
function (4.19, 4.20) is formulated in terms of the minimuiatistics,Qmin, of the random variable
Q, o can be selected by considering the correspon@ing. Recalling that the minimum statistics
are constructed from the, independent realization’,, ¢ = 1, ..., v, } of Q associated with the
var realizations{ad,, £ = 1,...,va} of A, it follows that a candidate choice fex™ could be

anit — agi,nit, where /™ = arg minge (1,4 5 Unfortunately, this minimum value is selected
almost surely and is too sensitive to the statistical fluodna. For this reason, a more appropriate
choice fora™! is to first compute™* such that

init

a"™ = arg max po, (a).
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whereq — po.. (g) on R* is the PDF of Quin, then choosex™ = o, where /"t is such
that /M = arg minge(1, . ay [6™ — @b, |. The PDFpg,;,(a) can be estimated using the Gaussian
kernel-density estimation method (for example, see [23), &3d ther, independent realizations
{gkin, - - - o} computed in Step 3 of the PLM described in Section 4.4.3.

4.4.6. Quality assessment of the correctonce the correctar® has been determined by solving

problem (4.17), its quality can be assessed as explaineédtiod 4.3 but after substituting® by
o,

5. APPLICATIONS

The performance of the predictor-corrector approachmedlin Section 4 for identifying the vector-
valued hyperparameter of the nonparametric probabilistic approach for modeling quantifying
model form uncertainties outlined in Section 2 is illusticihere for two 3D, nonlinear, structural
dynamics problems associated with two different configanst of the same MEMS device. This
device is made of two parts: a mobile part, and a suspendecipached to the mobile part. It is
excited by a transient acceleration prescribed at the biaeanobile part. The two considered
configurations of this device differ only by the type of naowarity that characterizes them. In
the first considered configuration (Config-1), the strudtalinearity is induced by nonlinear
stiffnesses between the suspended and mobile parts of #ieedén the second one (Config-2),
the structural nonlinearity is induced by the presence ofidrs that induce shocks between the
mobile and suspended parts. For Config-1, the level of mfmtei-uncertainties is relatively low;
for Config-2, it is high. Hence, these two different configioas are also chosen for the additional
purpose of demonstrating the performance of the nonparamebbabilistic approach for modeling
and quantifying model-form uncertainties for two very difint levels of uncertainty.

For both problems considered here, the solution of the lyidgmonlinear PROM (2.8) is time-
integrated using the midpoint rule equipped with adapiiveistepping. This, in order to guarantee
the convergence at each time-step of the fixed point methplikapto the solution of the nonlinear
discrete equations of motion with a relative precision@f®.

5.1. Three-dimensional MEMS device

A schematic of the 3D MEMS device considered here is shownigarE 1(a). The mobile part

of this device is constituted of a square frame with a velrtigeam attached to it. Its suspended
part is constituted of a parallelepipedic solid with twaatied vertical beams. The suspended part
is attached to the mobile part by a 3D suspension mad® springs. Its geometry is described
in a Cartesian coordinate systebx;z,x3 that is attached to its mobile part and adopted as a
reference frame. The origi® of this frame is located at the bottom left corner of the devic
The axisOz; is horizontal and oriented positively from left to right. §laxisOz; is vertical and
oriented positively from bottom to top. The axisrs is perpendicular to the plan@z;xs; it is
also oriented positively from bottom to top. The MEMS itsislfa cylinder of noncircular cross
section whose major axis 3zs; the dimensions of its plane section are given in Figure. T{lag
external width of the square framedg x 10~%m, its external height i81 x 10~%m, and its depth
is4x 10~%m. The vertical surface at the bottom of the MEMS is describetih € [0, 30x 1079],

29 € [0, 31x107%), 23 = —4x1075). The suspended and mobile parts are made of a homogeneous,
orthotropic, linear elastic material whose mechanicapprties in the aforementioned reference
frame are those of a standaftio0) silicon wafer [24]. Specifically, the Young moduli of this
material areEy; = Eqy = 169x10° N/m? and E33 = 130x10° N/m?; its Poisson ratios are
Vo3 = 0.36, v3; = 0.28, andvy, = 0.064; its shear moduli aréry3 = G31 = 79.6 x 10° N/m? and

G112 = 50.9x10° N/m?. The mass density of the silicon materiaki830 Kg/m?3. The stiffnesses

of the springs and suspension depend on the axis along wiegtactk;; = 4 N/m (alongOz),

kso =6 N/m (along Ox2), andkss = 1.5 N/m (along Oxs). Structural damping is represented

0
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=7

0.5—1J< J—LO.S

(a) 2D view of the MEMS device (lengths (b) 3D view of the FE mesh underlying the HDM
are shown in microns)

Figure 1. Schematic and FE-based HDM of a 3D MEMS device witiohile part (yellow) and a suspended
part (blue) attached to the mobile part via a suspensioesyst

using the global damping model described in Appendix A, Wwidgnables the control of the modal
damping rate of the structural model in the frequency barahafysis.
As stated above, two different configurations of this degieeconsidered here. They differ only

by the type of nonlinearity introduced between the two eeltbeams of the suspended part and the
vertical beam of the mobile part:

Config-1 In this configuration, a nonlinear elastic material is g between the aforementioned
beams. Its constitutive equation corresponds to a culastie] restoring force whose elastic
constant isy, = 2x 1012 N/m.

Config-2 In this alternative configuration, two continuous eladtarriers are introduced at the left
and right sides of the vertical beam attached to the mobite phe constitutive equation
of each elastic barrier is linear and characterized by tastielconstant;, = 2 x 10'2 N/m.
The horizontal gap between the left (right) beam of the sudeé part and the beam of the
mobile part is denoted by, (). Initially, e, = eg = 0.5x 10~ m.

For both configurations, zere,-, x2-, and z3-displacement boundary conditions with respect
to the reference framé&uz,x,x3 are prescribed at the base of the mobile part of the device —
specifically, at the pointéz; € [0, 30x 1075, 22 =0, 23 € [0, —4 x 1079]}. The following time-
dependent, square integrable, and real-valtjedcceleration is also prescribed at these same points

I(t) = Lo {sin(t(we + Awe/2)) — sin(t(we — Awe/2)} ,  t € [to, T),

wt
whereTy = 120 m/s?, w. = 27 x13x10% rad/s is the central angular frequency, addo, =
27 x 10x 10% rad/s is the angular frequency bandwidth. This acceleration aplically depicted
in Figure 2(a). The graph aof — |I'(w)| defined on27x [0, 70x 105 rad/s, whereT'(w) =
T

/ e~ “'T(t) dt, is plotted in Figure 2(b). The energy of the excitation siga mainly concentrated
to

in the frequency bané-w., —wmin] U [wmin, we], Wherewmin = we — Aw,/2 = 27 x8x 108 rad/s
andw, = we + Aw,/2 = 27 x 18 x 10° rad/s.

At time to, the device is at rest (its displacement and velocity fielgszero). In all analyses,
to < 0 is written asty = —mo 7/we = —2.7778 x 10~° 5, wherem, = 1000, and the time-interval
of analysis is set tfty, 1.8559 x 10~ s]. The latter setting is chosen becaus& at 1.8559x 10~ s,
the device is returned to its zero equilibrium with a smalhtige error. The frequency band of
observation is chosen & = [0, w,], wherew, = 2 7x 70 x 10° rad/s.
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(a) Time-dependent acceleratior I'(t) (b) Frequency-dependent acceleration: f(27r v)

Figure 2. Prescribed acceleration at the base of the mobhite gf the MEMS device. (a): graph of

I'(t) defined in[—2.78x107°, 1.86x10~%] s and represented if-5x107%, 5x1075] s. (b): graph of

IT'(2mv)| (in thelog,-scale) defined ifi-72x 10° , 72x 10%] Hz and represented in the frequency band of
observatior{0, 70 x 10°] Hz.

For both configurations described above, theacceleration of the response of the system is
observed at44 spatial points distributed across various locations oMEMS device, in particular
on the boundaries of the vertical beams of the suspended ahdenparts. Hence, the dimension
of each of the observation vectoft) and its frequency domain representat@w) is mq = 744.

All of these observations are used to identify the hypempatar« using the predictor-corrector
approach presented in Section 4. However, in order to keeputimber of figures within a reasonable
limit, two observations are selected amongrall possible ones and denoted by ®agd Obs for
Config-1, and Obisand Ob$ for Config-2.

If the dynamical system associated with either considecgdiguration was linear, the energy
of the response signal would be concentrated in the sameeney bandwmin, we| as that of the
energy of the excitation signal (see Figure 2(b)). Due towdbinearity however, part of the energy
of the excitation signal is transferred outside its freqqyeband and consequently, the frequency
band of the response is Npmin, w.] but [0, wmad, Wherewma > w. is to be determined. To this
end: the sampling time-step is chosen M= 7 /wma = 6.9444 x 1079 s, Wherewma = 4w, =
27 x 72x 10° rad/s; and the frequency band of analysis is sef+tQmax, Wma, Wherew. < wmax.
This yieldsnime = 30 725 time points in the time-intervdt,, T']. The sampling frequency step is
set toAw = 27 x4686.7 rad/ s, yielding alsonqeq = 30 725 frequency points in the frequency band
of analysis—wmax, Wmax]-

5.2. Finite element based nonlinear high-dimensional rieode

First, a linear, FE-based HDM is constructed for the newtafiguration of the 3D MEMS device
defined here as the configuration where no material or bamrerinserted between the two vertical
beams of the suspended part of this device, and the vertéeahf its mobile part. This HDM has
7328 8-noded solid elements$) 675 nodes, andV = 32 025 dofs (see Figure 1(b)). There a1@5

of these nodes, which belong to the base of the mobile paheofievice: at each of these nodes,
all displacement dofs are constrained to zero in the mowefigrence framé&x,xo23, due to the
boundary conditions described in Section 5.2. Her¢e,= 615. Next, two nonlinear variants of
this HDM are generated to account for the nonlinear spe#fgcof Config-1 and Config-2. Both
variants have the same dimension. Furthermore, this dimemns the same as that of the linear
HDM as both nonlinear variants can be constructed withoaegaing additional dofs. For this
reason, for the sake of simplicity, and unless otherwiseiipd, HDM is used to refer to the linear
HDM associated with the linear, neutral configuration of tlewice, or to the nonlinear HDM of
the same dimension associated with Config-1 or Config-2.l kaaks, the displacement vecidt)
associated with the HDM is measured in the aforementiorfedxece frame: therefore, it represents

0
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a relative displacement vector. The HDM is used to analyeedfmamic response of the neutral
configuration, configuration Config-1, or configuration Cgti of the device to the prescribed
excitationI'(¢). In all cases, the associated governing equations for thimedisplacement vector,
y(t), are those given in Equations (2.1) to (2.3), where:

— The vector of external forcdét) is a function of the mass matrj&/], thex;-dofs where zero
relative displacement boundary conditions are applied the relative acceleratidn(t).
— The vector of internal forceg(y(t), y(¢)) can be written as

9(y(®),y(1)) = DIy () + [K]y(t) + fu(y(#)) , (5.1)

where:

— As stated in Section5.1, the damping mafii is constructed using the global damping
model described in Appendix A, which enables the controhefmodal damping rate
of the modeled device in the frequency band of analysis.

— The stiffness matriK] belongs toM}" and has a null space of dimensiérbefore
applying the zero boundary conditions.

— The nonlinear vector functiofy,_(y(¢)) is constructed to account for the structural
nonlinearity introduced in Config-1 or Config-2, as applies.

— The initial conditions arg(to) = y(to) = 0.
— The matrix[B] € My ., represents th&, zero boundary conditions and is constructed such
that[B)” [B] = [Ix.,].

5.3. Projection-based reduced-order models

First, a deterministic ROBV] € My ,, of dimensionn <« N is constructed using the classical
method of snapshot collection and compression. For eacloofigz1 and Config-2, the nonlinear
HDM is exercised to compute the time-sampled respdysgAt), i = 1,. .., nime}. The solution
snapshoty%,, k = 1,..., nsnp}, Whereyé,, = y(k usnpAt), psnp denotes the snapshot-step, and
Nisnp = Niime/ snp Are extracted from this response. Next, the thin singuddmes decomposition
of the matrix [yénp. ..Ysop] is computed, and the singular valugs> ... > Snsnp @re ordered in
descending order. Thefily] is defined as the matrix whose columns are thkeft orthonormal
vectors associated with the firstordered singular values > ... > s,,, wheren is determined
n nsnp
from the convergence rate of the compression measuréd by / ) " 7.
k=1 k=1

For nime = 30725 and usnp = 10 (nspp = 3072), the aforementioned convergence rate analysis
yieldsn = 8 for Config-1 andn = 20 for Config-2 (note that in both cases, a ROB based on the
natural modes of the linear, neutral configuration of theigevequiresnmoge = 40 modes for
convergence and therefore is less efficient).

Next, each constructed ROB’] € My, is randomized following the procedure given by
Equations (2.17-2.22) to obtain the counterpart SR@B. Then, the corresponding nonlinear
PROM and SPROM are constructed by Galerkin projection of tlealinear HDM as in
Equations (2.7-2.9) and (2.13-2.15), respectively.

5.4. Model-form uncertainty quantification

For each nonlinear PROM constructed in Section 5.3, a modifesion is designed to generate
targets for both selected observations in lieu of expertaletiata. Specifically, each modified
nonlinear PROM constructed for Config-1 or Config-2 is destgrio generate model-form
uncertainties.

Figure 3 (Config-1) and Figure 4 (Config-2) display the gragfttie functionv — db***(2xv) of
the observed targets, the graphs of the functien db™ (2mv) of the counterpart values predicted
using the nonlinear PROM, and the graphs of the funatien dqﬁg>(2m) of the counterpart values
using the deterministic PROM. The reader can observe thatfitn configurations:
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Figure 3. Config-1: graphs of the function— db®%{27v) of the observed targets (red thick lines), graphs
of the functionv — db(")(Zm/) of the counterpart results predicted using the nonlinea®™Rblue mid

solid lines), and graphs of the function— dq(ig)(%w) of the counterpart results obtained using the linear
HDM associated with the linear, neutral configuration ofdeeice (black thin line).
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Figure 4. Config-2: graphs of the function— db®%{(27v) of the observed targets (red thick lines), graphs
of the functionv — db(")(sz) of the counterpart results predicted using the nonlineaMRblue mid

solid lines), and graphs of the function— dq(ig)(%w) of the counterpart results obtained using the linear
HDM associated with the linear, neutral configuration ofdeeice (black thin line).

e The effect of the structural nonlinearity is very importantside the frequency bafdmin, we]
of the excitation, as there are large differences betweemtimerical predictions obtained
using the nonlinear PROM and those obtained using the likEd¥! associated with the
neutral, linear configuration of the device.

e The model-form uncertainties — which can be analyzed byneging the difference between
the target and numerically predicted values — are not homages neither as a function of
the frequency, nor as a function of the selected observation

e The effects of the model-form uncertainties are small inftbguency bandunyin, w.| of the
excitation, but can be very large outside this band.

e For observations Obsand Obs$, the effects of the model-form uncertainties are smallanth

for the observations Opsnd Obg.

5.4.1. Identification of the hyperparameter via the premlicFor each of Config-1 and Config-2,
the predictora® for the hyperparametet is computed using the method presented in Section 4.2.
For Config-1,» = 8 and therefore the number of hyperparameters associatedheitmatrix(c] is
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Figure 5. Graph of the functiofn— Jieq(s) for the grid used by the grid search algorithm.

m, = 36. For Config-2,n = 20 and thereforen, = 210. Specifically,Stage 1lis used to compute
the predictoric?]: it leads tom? = 4 for Config-1 and ton? = 13 for Config-2. Hence, it achieves
a significant reduction in the number of hyperparameterscasted with the matrixs']. In Stage
2, the optimization problem defined in Equations (4.7) an8)(4s solved using the grid search
algorithm and the grid{1.0,1.3,1.5,1.8,2.0,2.2,2.5} x 10~° with m, = 7 points for Config-1,
and the grid{1.0,2.0,3.0,4.0,5.0,6.0} x 10~ with m, = 6 points for Config-2. For each value
of a = (s, 3%, [0]), the nonlinear SPROM is solved for = 100 independent realizations.

Figure 5(a) and Figure 5(b) show the graph of the functies Jieq(s) for Config-1 and Config-2,
respectively. The predictaf for s is equal t2.0 x 10~? for Config-1 and tet.0 x 10~ for Config-2.

The quality of the computed predictef is assessed by plotting each target and the corresponding
confidence region constructed using the nonlinear SPROMofer a® and computed using
Equation (4.15) withp, = 0.98. For each selected observation, Figure 6 (Config-1) andr&igu
(Config-2) display the graph of the functien— db®*(27v) of the observed target, the graph of
the functionv — db(”)(2m/) of the observation predicted using the nonlinear PROM, hadtaph
of the confidence region of the random function> dB(”)(Zm/) of the observation computed using
the nonlinear SPROM. A quality criterion is that the targeloimgs to the confidence region with a
probability 0f0.98. The reader can observer that for this criterion, the pteditelivers a reasonable
performance. Nevertheless, Figure 6 shows that the pediedftget ati8.76 x 10° Hz does not
belong to the confidence region and Figure 7 shows that thergmvelope of the confidence region
is somehow high. For these reasons, the correctanfds considered next.

5.4.2. Identification of the hyperparameter via the comector both Config-1 and Config-2,
the parameters; and~; of the cost function/(«) defined by Equation (4.19) are set here to
wy = 0.5 and; = 1.0. A convergence analysis of the PLM is performed with respgecthe
dimensiony, of the initial dataset computed in its Step 1, using the foitgy values ofy,: 100,
300, 500, 1000, 1500, and2000. For each of these, the convergence of the quality indicatier
analyzed with respect to the number of additional realiwetti/,, using the following set of values
for this variable:{200 000, 1 000 000,2 100 000}. For each value ofy in this set, the value of
usingry = 1000 000 is found to be close to its counterpart computed usig= 2 100 000, which
suggests that convergence is reachedfoe 1 000 000. Still, the convergence analysis with respect
to vy and the QA of the corrector are performed using the largarevaf vy, = 2100 000. To this
end, the parameters introduced in Equation (4.21) are amaseh thav, = 100 andv,. = 21 000.
The results of the convergence analysis of the PLM with retSjee/; are reported in Table I. They
show that for Config-1, the corrector improves the value efdhality indicator obtained for the
predictor as soon ag, > 1000; the best value is reached fay = 2 000. For Config-2, the corrector
improves the value of the quality indicator obtained for pnedictor as soon ag, > 1500, and the
best value off is obtained for,; = 1500.
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Figure 6. QA of the predictor for Config-1: graphs of the fuoet, — db®?{(27v) of the observed target
(red thick line), graphs of the function— db(”)(Qm/) of the observation computed using the nonlinear

PROM (blue mid solid line), and graphs of the confidence megibthe random functiow — dB(")(Zm/)
of the observation predicted using the nonlinear SPROMdyetegion with green lines for the upper and
lower envelopes).
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Figure 7. QA of the predictor for Config-2: graphs of the fuoet — db®®(27v) of the observed target
(red thick line), graphs of the function— db(”)(27w) of the observation computed using the nonlinear

PROM (blue mid solid line), and graphs of the confidence megibthe random functiow — dB(")(Zm/)
of the observation predicted using the nonlinear SPROMdyetegion with green lines for the upper and
lower envelopes).

Table I. Convergence analysis of the PLM with respectto

Predictor Corrector
Vg — 100 300 500 1000 1500 2000
Config-1:Z 3.18 — — 3.96 3.02 3.07 2.89
Config-2:Z 2.01 4.30 4.60 2.80 4.21 1.90 1.83

The quality of the corrector faw is further assessed by plotting each target and the comespp
confidence region constructed using the nonlinear SPROMofer a°P and computed using
Equation (4.15) withp. = 0.98. Attention is focused on the results obtained when the PLM is
converged with respect ta, — that is, forv, = 2000 for Config-1 andv; = 1500 for Config-2
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Figure 8. QA of the corrector for Config-1: graphs of the fumety — dib®?{(27v) of the observed target
(red thick line), graphs of the function— db(”)(Qm/) of the observation computed using the nonlinear

PROM (blue mid solid line), and graphs of the confidence megibthe random functiow — dB(”)(Zm/)
of the observation predicted using the nonlinear SPROMdyetegion with green lines for the upper and
lower envelopes).

— and with respect to the number of additional realizatiornkat is, forv, = 2100000 for both
configurations. The optimal values of the hyperparametensd 3 of o are found to be°Pt =
1.01x10~° and 3°"' = 0.026 for Config-1, ands®® = 3.56 x 10~% and 3°"* = 0.016 for Config-2.
Figure 8 (Config-1) and Figure 9 (Config-2) display for eaclected observation the graph of
the functionv — db®®(27) of the observed target, the graph of the functions db™ (27v) of
the observation computed using the nonlinear PROM, and ridgghgof the confidence region of
the random function’ — dB™ (271 of the observation predicted using the nonlinear SPROM.
Again, a quality criterion is that the target belongs to tbhaefidence region with a probability of
0.98. Comparing these figures with Figures 6 and 7 shows that theator for « improves the
confidence region obtained using the predictor for thisameealued hyperparameter. In particular,
Figure 8 shows that the peak of the target&at6 x 10° H z is now inside the computed confidence
region and Figure 9 shows that the upper envelope of the cagonfidence region is now lower.
Figure 8 also shows that for some frequencies, the respdribe aonlinear PROM is outside the
computed confidence region, but the target is always weliwithe computed confidence region.
These results highlight the ability of the overall nonpagtic probabilistic method for modeling
and quantifying model-form uncertainties to reach a gieeget.

5.4.3. Wall-clock time performance analysill computations described above were performed
on a Linux cluster in double precision arithmetic. The maaps of the model-form UQ analysis
were performed in parallel execution mode on 70 cores ofdister as described below:

— Predictor Gtage 3: this stage was performed witth, = 6 for Config-1 andm, =7
for Config-2; for both configurations, the nonlinear SPROMsvexercised fow; = 100
independent realizations.

— Predictor (QA): for this purpose, the nonlinear SPROM wasreised forvg, = 1000
independent realizations.

— Corrector (Step 1 PLM): Step 1 of the PLM for constructingithital dataset was performed
with v4 = 2000 for Config-1 and/; = 1500 for Config-2.

— Corrector (Step 2 PLM): Step 1 of the PLM for computing adufiil realizations was
performed withvy = 1050 x 14 for Config-1 andv,, = 1400 x v, for Config-2.

— Corrector (Step 3 & Step 4 PLM): the interior point algorittoonverged inl9 iterations
during which it performed 41 evaluations of the cost function (4.19) in the case of Cohfig-
it converged irb8 iterations during which it performe@b0 evaluations of the cost function in
the case of Config-2.
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Figure 9. QA of the corrector for Config-2: graphs of the fumety — db®?{(27v) of the observed target
(red thick line), graphs of the function— db(”)(Qm/) of the observation computed using the nonlinear

PROM (blue mid solid line), and graphs of the confidence megibthe random functiow — dB(”)(Zm/)
of the observation predicted using the nonlinear SPROMdyetegion with green lines for the upper and
lower envelopes).

— Corrector (QA): for this purpose, the nonlinear SPROM wasreged forvg, = 1000
independent realizations.

The wall-clock time elapsed in the execution of each of thma@ steps and the total wall-clock
time are reported in Table Il for each of Config-1 and Config¥o observations are noteworthy:

¢ In each case, the total wall-clock time of the predictorrector approach is dominated by the
computational cost of the corrector component: specific@i% of the total wall-clock time
in the case of Config-1 and 80% in the case of Config-2 is duestadirector component.

e The model-form UQ analysis of Config-2 is more computatibnadtensive than that of
Config-1, due to the presence of shocks in the second cortiigurddowever, most of the
difference between the computational costs of both UQ aealys due to the predictor
component for which the wall-clock time for Config-2 is rolgh.6 times higher than for
Config-1.

Table II. Wall-clock time in seconds (and in hours betweerepteses) on 70 cores of a Linux cluster for
the main steps of the model-form UQ analysis.

| Main step | Config-1 ] Config-2 ||

Predictor Stage 2 934 3991
Predictor (QA) 185 1134
Corrector (Step 1 PLM) 1850 1833
Corrector (Step 2 PLM) 16018 17243
Corrector (Step 3 & Step 4 PLM 11 13
Corrector (QA) 178 1448
Total (Predictor + Corrector) 19176 25662

(5.33 hrs) || (7.13 hrs)

As shown above, the solution of the optimization problerh 7%~ that is, the computation of the
correctora®* — dominates the total cost of the identification of the vestlued hyperparameter
«a. The total cost of this identification itself dominates thee@ll computational cost of the
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26 C. SOIZE AND C. FARHAT

nonparameteric probabilistic method for model-form UQlgsia at the heart of this paper. The
computer implementation of the standard solution of pnaob{é.17) can be described as an overall
algorithm with three main loops: an outer-loop where eashaince is associated with one iteration
of the optimizer and incurs a few evaluations of the cost fioncto be minimized; an inner-
loop for performing thes;, independent realizations (herg,, = 1 000); and an innermost-loop
for performing the SPROM-based simulation in the time dom@in the other hand, once training
has been performed, the computer implementation of theigolaf problem (4.17) using the PLM
described in this paper is organized around two main loopgs tme same aforementioned outer-
loop, and the same aforementioned innermost-loop. Heheggdin in computational speed enabled
by the proposed predictor-corrector approach for ideintifyx can be easily estimated using the
information given above and in Table II. To this end, it istfineted thats,, = 1 000 executions of
the nonlinear SPROM in the time domain using 70 cores andgogitnmic parameters described in
the introduction of Section 5 and in Section 5.1 require arage 181 seconds wall-clock time for
Config-1, and 1 448 seconds for Config-2. It follows that a gestimate of the wall-clock time on
70 cores for the standard approach for determiwifijis 141 x 181 = 25521 seconds for Config-
1, and950 x 1448 = 1375600 seconds for Config-2. Therefore, the speedup factors ehdiyle
the PLM proposed in this paper are equal 183 in the case of Config-1, ani8.61 in the case of
Config-2 where the effect of the nonlinearity on the solutidthe optimization problem (4.17) is
much stronger. In any case, it is emphasized here that tipeselsp factors are only estimates as
the analysis given here assumes that the number of outgifistances associated with the interior
point algorithm is the same in the presence and absence Bl ke

6. SUMMARY AND CONCLUSIONS

A novel, predictor-corrector approach for identifying thector-valued hyperparameter of a
nonparametric probabilistic method for modeling and qifiging model-form uncertainties is
presented in this paper. Its key component is a probabilissirning on manifolds for constructing
a low-cost, surrogate model for the Monte Carlo simulatiohgiterest. Specifically, this model
enables the economical generation, within the solutiomafizerse statistical problem, of stochastic
realizations that are concentrated on a manifold identifigdg an initial set of data points. The
computational advantages of this proposed approach arerddrated in this paper for the model-
form uncertainty quantification analysis, using the afaeationed nonparametric probabilistic
method, of two three-dimensional, nonlinear, structusatainics problems associated with two
different configurations of a MEMS device. For this applioaf a speedup factor — with respect to
a standard approach for solving an inverse statisticallpnob- as high as 56 is achieved.
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APPENDIX A: CONSTRUCTION OF THE DAMPING MATRICESD]

The structural damping model chosen for constructing thieixngD] of the FE-based HDMs of the
3D MEMS device described in Section 5 is based on the newrdiguration of this device defined
in Section 5.2 — that is, the configuration where no materidasriers are inserted between the
two vertical beams of the suspended part of this device amdehtical beam of its mobile part.
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Hence, this model leads to the same malffik for both Config-1 and Config-2. It corresponds to
the following adaptation of the structural damping repn¢éaton presented in [25] (Chapter VI,
Equation (45)).

Let [®] = [¢!...¢"mode| denote the matrix of the firstmege Natural vibration modes associated
with the firstnmogeloOwest eigenvalues < A; < ... <\, .. Of the undamped neutral configuration
of the 3D MEMS device. In the time domain, the dynamics of tiislamped configuration are
governed by the linear equations of motidd] y(¢) + [K]y(¢) = 0. Then, the deterministic matrix
[D] € M is constructed here as follows:

M'mode

[ Z 2§d \/7 \Z "mode Sok)T + 2§d \% )\nmode [M] : (Al)

k=1

The reader can verify that the above definitiondf satisfies

[@]7[D] [@] = [D],
where the generalized damping mat@X < M} is diagonal and its diagonal entries &8y, =
2&4 vV Ak FOr{k > nmode, ¥’ > nmode}, this matrix also satlsfle@p’c bl = 2§d \/ nmode5kk/
For {k < nmode, k&’ > nmode} @and for {k > nmode, & < nmode}, it satlsfles( )T[]D)] =0. It
follows that:

e The structural damping model defined by Equation (A.1) y&ehll constant damping
rate £; for the first nmege Natural modes of the system, and yields the damping rates
{4 \/)\nmode/\/)\nmodeH, o ov &/ Mrmoge/ VAN } fOr the N — nmoge higher natural modes

{(pnmodeJFl . (P
e This model is a gIobaI damping model that enables the coafriie modal damping rate in

the frequency band of analysis.

By construction,nmege iS chosen such thatmege > n. Then, the deterministic and stochastic
reduced-order damping matrices

[D™] = [v]"[D][V] and [D™]=[W]"[D][W]
are nonsingular. They can also be written as

Tmode

[D(n) Z 2€d \/_ Y ”Lmode + 2§d \% ”mode [V]T[M] [V]’

k=1
wherex* = [V]T[M] ¢* is a deterministic vector with values &r*, and

M'mode

[D(n) Z 2§d \/7 V "mode ‘I’k ‘Ilk + 2§d V )‘nmode [W]T[M] [W] ’

k=1

where¥* = [W|T[M] ¢* is a random vector with values R".
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