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Because of their large wavelength, the noise and the vibrations at low frequencies cannot easily be reduced in the structures by using dissipative materials contrarily to the waves at middle and high frequencies. A possible technique for obtaining an attenuation is to randomly distribute absorbers in a matrix to attenuate acoustic waves and vibrations in such a low-frequency band. If linear absorbers are used, then it is difficult to obtain an attenuation on a broad low-frequency band with a reasonable number of absorbers. On the other hand, it is known that nonlinear absorbers allow the absorption bandwidth to be increased. However, such technique requires to properly design such a nonlinear absorber and to perform its experimental validation. The objective of the paper is to present the design of such an absorber with nonlinear geometrical effects and its experimental evaluation. It is experimentally proved that this nonlinearity type induces an attenuation on a broad frequency band around its first resonance. The novelty of this work is to present the design of an inclusion that has the potentiality to be reproduced at any scale, in particular for microstructured materials. For such an inclusion, we present its mechanical model for the simulation, its design, its manufacturing that is realized with a 3D-printing system, the experiments, and the experimental identification of the model. The results show that a significant attenuation is effectively obtained over a broad low-frequency

Introduction

At middle and high frequencies, the reduction of acoustic waves and vibration in structural elements can be obtained by using adapted poroelastic dissipative materials. However, for low frequencies, the wavelength are larger than the pores, and dissipative materials are less efficient. To get around this problem at low frequencies, oscillators-based absorbers have been designed in order to pump the vibratory energy. This type of technologies has extensively been studied in the litterature. Hereinafter, we present a non-exhaustive short bibliographical summary. Among the first papers devoted to the enery pumping by simple oscillators, the work by Frahm [1] in 1911 can be cited, in which the author proposes to add an auxiliary body to a structure to damp or avoid the vibration due to periodic impacts. The resonance vibrations of the main body are annulled by the secondary resonance vibrations of the smaller auxiliary body. In nearer years, tuned-mass dampers have been studied. The principle is to add an oscillator (generally a mass-spring-damper system) to a main structure that exibits an annoying resonance. The eigenfrequency of the damped oscillator is then adjusted for attenuating the resonance amplitude. With that, the peak is splited into two peaks of low amplitudes. A review made by Gutierrez Soto et al [START_REF] Soto | Tuned mass dampers[END_REF] presents a representative study on tuned-mass dampers. Metamaterials have also been used for the reduction of noise and vibration. A metamaterial is generally a composite for which these mechanical properties do not exist at the natural state. For instance, there are materials with both negative permittivity and negative permeability such as in [START_REF] Veselago | The electrodynamics of substances with simultaneously negative values of and ν[END_REF]. In the framework of the absorption of vibration and noise, numerous papers have been published with metamaterials, see for instance [START_REF]Handbook of Micromechanics and Nanomechanics[END_REF][START_REF] Del | Dynamic problems for metamaterials: Review of existing models and ideas for further research[END_REF] for review papers. For instance metamaterials exhibiting a negative refracting index in the field of optics has been presented by [START_REF] Smith | Negative refractive index in left-handed materials[END_REF] and equivalent negative mass in the field of acoustic material by [START_REF] Ding | Metamaterial with simultaneously negative bulk modulus and mass density[END_REF][START_REF] Sheng | Dynamic mass density and acoustic metamaterials[END_REF][START_REF] Yang | Membrane-type acoustic metamaterial with negative dynamic mass[END_REF][START_REF] Lee | Acoustic metamaterial with negative density[END_REF][START_REF] Liu | An elastic metamaterial with simultaneously negative mass density and bulk modulus[END_REF][START_REF] Wang | Dynamic behaviour of a metamaterial system with negative mass and modulus[END_REF]. Another works in the field of acoustic metamaterial can be found in [START_REF] Chen | Acoustic cloaking in three dimensions using acoustic metamaterials[END_REF] for acoustic cloaking, in the field of vibration attenuation with linear multiple discrete oscillators [START_REF] Zhou | Analytic model of elastic metamaterials with local resonances[END_REF][START_REF] Hussein | Metadamping: an emergent phenomenon in dissipative metamaterials[END_REF][START_REF] Zhu | A chiral elastic metamaterial beam for broadband vibration suppression[END_REF] or multiple oscillators induced by continuous systems [START_REF] Yang | Acoustic metamaterial panels for sound attenuation in the 50-1000 Hz regime[END_REF][START_REF] Auriault | Long wavelength inner-resonance cut-off frequencies in elastic composite materials[END_REF][START_REF] Xiao | Sound transmission loss of metamaterialbased thin plates with multiple subwavelength arrays of attached resonators[END_REF][START_REF] Varanasi | The low frequency performance of metamaterial barriers based on cellular structures[END_REF][START_REF] Wang | Membrane-constrained acoustic metamaterials for low frequency sound insulation[END_REF] have presented metamaterials with linear behaviors.

In 1952, Roberson [START_REF] Roberson | Synthesis of a nonlinear dynamic vibration absorber, Portions of a dissertation submitted to the Department of Applied Mechanics[END_REF] has presented the equations of a nonlinear dynamic vibration absorber and highlighted the fact that an auxiliary body with nonlinear dynamical behavior offers significant advantages over a linear absorber. Then, some works have been performed for analyzing vibration of nonlinear oscillators in a stochastic framework, such as in [START_REF] Bouc | The power-spectral density of response for a strongly nonlinear random oscillator[END_REF][START_REF] Soize | Stochastic linearization method with random parameters for SDOF nonlinear dynamical systems: Prediction and identification procedures[END_REF][START_REF] Bellizzi | Analysis of multi-degree of freedom strongly nonlinear systems with random input[END_REF][START_REF] Spanos | On the determination of the power spectrum of randomly excited oscillators via stochastic averaging: An alternative perspective[END_REF] in which it is demonstrated the role plays by the nonlinearities in the transfer of the vibratory energy over a broad frequency band. Another works concerning the energy pumping by discrete nonlinear mechanical oscillators with linear damping without experimental results have been published such as [START_REF] Soize | Vibration damping in low-frequency range due to structural complexity. A model based on the theory of fuzzy structures and model parameters estimation[END_REF][START_REF] Gendelman | Energy pumping in nonlinear mechanical oscillators: part I-dynamics of the underlying hamiltonian systems[END_REF][START_REF] Vakakis | Energy pumping in nonlinear mechanical oscillators: part II-resonance capture[END_REF][START_REF] Vakakis | Shock isolation through the use of nonlinear energy sinks[END_REF][START_REF] Carrella | Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic[END_REF][START_REF] Alexander | Exploring the performance of a nonlinear tuned mass damper[END_REF][START_REF] Ji | Suppression of super-harmonic resonance response using a linear vibration absorber[END_REF][START_REF] Ji | Design of a nonlinear vibration absorber using three-to-one internal resonances[END_REF][START_REF] Viet | On a nonlinear single-mass two-frequency pendulum tuned mass damper to reduce horizontal vibration[END_REF], and with nonlinear damping [START_REF] Cveticanin | Vibration of a two-mass system with non-integer order nonlinear connection[END_REF].

The work presented in this paper has been developed in the framework of the reduction of vibration and induced noise in structures at macro-scale for low frequencies for which the first structural modes are excited. The final objective of this work is to reduce vibrations and induced noise on a broad low-frequency band by using a microstructured material by inclusions that are randomly arranged in the material matrix. The novelty of this work is to present the design of an inclusion that has the potentiality to be reproduced at any scale, in particular for microstructured materials for which both the modelling approach and the parametric experiments performed for several structures manufactured with a 3D-printer, see [START_REF] Lavazec | Attenuation of mechanical vibrations at low frequencies by a nonlinear dynamical absorber[END_REF] for a first example of this approach. The first step of this work is to design and to analyze the efficiency of an inclusion, which is made up of a cantilever beam with a mass at its end. This inclusion behaves as a nonlinear oscillator due to nonlinear geometrical effects, which is designed so that the energy pumping is effective on a broad frequency band around its resonance instead of a narrow frequency band as for an equivalent linear oscillator. The objectives of the paper are (1) to design the nonlinear oscillator in terms of form, dimension, and materials, in order that the vibratory energy is pumped on a broad frequency band around its first resonance, (2) to experimentally manufacture this system with a 3D-printing system, (3) to perform parametric experiments allowing to understand the bandwidth absorption versus the nonlinear amplitude levels, (4) to develop stochastic mechanical model to predict the responses, and (5) to perform the identification of the mechanical model with the experiments. The results that will be obtained will exhibit the physical attenuation over a broad low-frequency band, which is expected. Such a validated mechanical model is useful for designing a structural element including a random distribution of such a nonlinear oscillator. Compared to the communication [START_REF] Lavazec | Attenuation of mechanical vibrations at low frequencies by a nonlinear dynamical absorber[END_REF], published in a French congress, this article develops the bibliography and the design of the inclusion. Above all more experimental results are presented in this article and are discussed in much more details. New and more detailed experimental results are the true novelty of this article which can be interesting for people working in this field.

In Section 2, the mechanical model of the inclusion and the related stochastic solver are introduced. In Section 3 the experimental design is performed in order to obtain an effective attenuation in the frequency band of analysis. The experimental measurements and the identification of the mechanical model are presented in Section 4. The last section is devoted to the conclusions on the results obtained and to the perspectives of the future work.

2. Construction of a nonlinear model for representing the absorber and stochastic solver

Model of the nonlinear oscillator

As explained in Section 1, a nonlinear oscillator with one-DOF is proposed to model the nonlinear dynamical behavior of the inclusion. The one-DOF nonlinear model is composed of a mass-spring-damper system with a nonlinear spring and a nonlinear damper, subjected to an excitation of its base (see the scheme displayed in Figure 1). We introduce a parameterized family of one-DOF nonlinear oscillators, for which the proposed algebraic model is inspired/coherent with the linear viscoelasticity theory in finite displacements (nonlinear model) without memory [START_REF] Coleman | Foundations of Linear Viscoelasticity[END_REF][START_REF] Desceliers | Non-linear viscoelastodynamic equations of three-dimensional rotating structures in finite displacement and finite element discretization[END_REF]. The motivation of this choice is the following: the nonlinear absorber that will be designed will not have material nonlinearities but only nonlinear geometrical effects and will have a viscoleastic type behavior related to the choice of the material. This is the reason why we have constructed a model coherent with the finite viscoelasticity theory.

In addition, we want that the stochastic response of the one-DOF nonlinear oscillator submitted to a centered stochastic excitation be a centered stochastic process. This constraint will be taken into account in the construction of the nonlinear damping force and of the nonlinear stiffness force deduced from the viscoelasticity theory in finite displacements. Let X exp imp (t) be the displacement imposed at the support in the absolute frame and let X s (t) be the relative displacement of the point mass with respect to the support. Let { Ẍexp imp (t), t ∈ R} be the acceleration imposed to the support, which is assumed to be a Gaussian stationary second-order centered stochastic process, defined on the probability space (Θ, T , P), for which the power spectral m X s (t)

X exp imp (t) F exp s (t) f K (X s (t)) f D (X s (t), Ẋs (t))
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(t)) + f D (X s (t), Ẋs (t)) + f K (X s (t)) = 0 ,
which is rewritten as

m Ẍs (t) + f D (X s (t), Ẋs (t)) + f K (X s (t)) = F exp s (t) , (1) 
in which the applied stochastic force F exp s (t) is written as

F exp s (t) = -m Ẍexp imp (t) , (2) 
and where the nonlinear damping force f D and the nonlinear stiffness force f K are written as

f D (X s (t), Ẋs (t)) = c 1 + c 2 |X s (t)| Ẋs (t) , (3) 
f K (X s (t)) = k 1 X s (t) + k 3 (X s (t)) 3 . (4) 
The absolute displacement X a of the mass is such that

X a (t) = X s (t) + X exp imp (t) . (5) 
In these equations, m is the participant mass of the inclusion, associated with the one-DOF oscillator, c 1 and c 2 are the two parameters describing the family of nonlinear damping force, and k 1 and k 3 are the two parameters related to the nonlinear stiffness force. It should be noted that the algebraic expression of the nonlinear terms that comes from the viscoelasticity theory without memory in finite displacements, should induce, for the nonlinear stiffness force, linear, quadratic, and cubic terms, corresponding to the nonlinear geometrical effect, and for the nonlinear damping force, a linear function of the velocity with a nonlinear coefficient of the displacement. Due to the constraint that we have introduced (centered response for a centered excitation), the quadratic term in the stiffness force must vanish and the nonlinear coefficient of the displacement in the damping force must be an even function of the displacement.

As we are interested in quantifying the vibratory energy absorbed by the oscillator, we introduced the mean input power Π in and the mean power dissipated Π diss , which are such that

Π in = E{F exp s (t) Ẋs (t)} , Π diss = E{f D (X s (t), Ẋs (t)) Ẋs (t)} , (6) 
in which E is the mathematical expectation. Since the stochastic processes F exp s and Ẋs are stationary, these two quantities are independent of time and can be rewritten

Π in = R π in (ω) dω , Π diss = R π diss (ω) dω ,
in which the density π in (ω) and π diss (ω) are such that

π in (ω) = S F exp s Ẋs (ω) , π diss (ω) = S f D Ẋs (ω) . (7) 
In Eq. ( 7), S F exp s Ẋs is the cross-spectral density function of the stationary stochastic processes {F exp s (t), t ∈ R} and { Ẋs (t), t ∈ R}, and S f D Ẋs (ω) is the cross-spectral density function of the stationary stochastic processes {f D (X s (t), Ẋs (t)), t ∈ R} and { Ẋs (t), t ∈ R}. The frequency-dependent energy pumping is therefore characterized by π diss (ω), which is equal to π in (ω) due to the power balance equation of the stochastic system. In order to qualify the efficiency of the energy pumping as a function of the intensity of the nonlinearity that will be characterized by the value of the dimensionless response amplitude defined in Section 4.2, we introduce the normalized quantity,

π in,norm (ω) = π in (ω) S F exp s (ω) . (8) 
In order to experimentally identify the vector-valued parameter of the model, denoted by w = (c 1 , c 2 , k 1 , k 3 ), which belongs to an admissible set C ad , we introduce the frequency dependent function FRF(ω; w) 2 , defined on B o by

FRF(ω; w) 2 = |S ẊsF exp s (ω)| 2 |S F exp s (ω)| 2 = |π in,norm (ω)| 2 , (9) 
in which the w-dependence in the right-hand side of Eq. ( 9) has been removed.

It should be noted that if f D (x, ẋ) = c 1 ẋ and f K (x) = k 1 x, the model corresponds to the one of a linear oscillator and FRF 2 represents the square of the modulus of the frequency response function of the associated linear filter for which F exp s is the input and Ẋs is the output.

Stochastic solver and signal processing

Stochastic solver. For constructing the stationary stochastic solution of the nonlinear differential equation defined by Eq. (1), the Monte Carlo method (see [START_REF] Rubinstein | Simulation and the Monte Carlo Method[END_REF]) is used. Let {F exp s (t; θ ), t ∈ R} be a realization of the stochastic process F exp s for θ in Θ. We consider L independent realizations θ = 1, ..., L in Θ constructed with the generator described in a next paragraph of this section. For each realization θ , we would have then to solve the deterministic nonlinear differential equation associated with stochastic Eq. (1): calculate X(t; θ ) for all t in R such that

m Ẍ(t; θ ) + f D (X(t; θ ), Ẋ(t; θ )) + f K (X(t; θ )) = F exp s (t; θ ) . (10) 
This deterministic Eq. ( 10) cannot numerically be solved because t belongs to an infinite interval. Consequently, this problem is replaced by the following approximate problem with initial conditions over a finite interval of length T : calculate X(t; θ ) for t belonging to the finite interval ]0, T ], solution of Eq. ( 10) with the initial conditions at time t = 0,

X(0, θ ) = 0 , Ẋ(0, θ ) = 0 . (11) 
With such initial conditions, the transient part of the response would be 0 for a linear second-order dynamical system and it is assumed to be 0 or negligeable for the family of the nonlinear second-order dynamical systems that are considered (we have effectively checked the validity of these hypotheses for the numerical application presented in the paper). The part of the trajectory on [0, T ] corresponds to the stationary response, X s (t; θ ) X(t; θ ) for t in [0, T ]. Time T that is related to the frequency resolution is defined in a next paragraph. The deterministic problem defined by Eq. (10) for t in ]0, T ] with the initial conditions defined by Eq. ( 11) for t = 0 will be solved by using the Störmer-Verlet scheme presented in a next paragraph.

Time and frequency sampling. For solving the nonlinear deterministic equation with initial conditions associated with a given realization θ , we need to generate realizations of the Gaussian stationary stochastic process F exp s on the time interval [0, T ]. Consequently, the time and the frequency samplings are constructed with respect to this time interval. The signal processing requires a time sampling with a constant time step ∆ t that is performed using the Shannon theorem for the stationary stochastic processes [START_REF] Papoulis | Probability, Random Variables and Stochastic Processes[END_REF]. The sampling frequency is f e = 2 f max where f max is the maximum frequency that exists in the frequency band of analysis and the time step is ∆ t = 1/f e . The corresponding time sampling is t α = α ∆ t with α = 0, 1, ..., N -1 in which the integer N is chosen in order that the time duration T = 8 s, with T = N ∆ t yielding N = 16, 384. The frequency resolution ∆ f = 1/T = 0.125 Hz. The corresponding sampling points in the frequency domain are

f β = -f max + (β + 1/2)∆ f for β = 0, 1, ..., N -1.
Generation of independent realizations of Gaussian stationary stochastic process F exp s . The usual second-order spectral representation of the stationary stochastic processes is used [START_REF] Guikhman | The Theory of Stochastic Processes[END_REF][START_REF] Priestley | Spectral Analysis and Time Series[END_REF]. The power spectral density function S F exp s (ω) of the Gaussian stationary second-order centered stochastic process second-order stochastic process Ẍexp imp is based on the usual spectral representation (see [START_REF] Shinozuka | Simulation of multivariate and multidimensional random processes[END_REF][START_REF] Poirion | Numerical methods and mathematical aspects for simulation of homogeneous and non homogeneous Gaussian vector fields[END_REF]). Let ψ 0 , . . . , ψ N -1 be N mutually independent uniform random variables on [0, 1] and let φ 0 , . . . , φ N -1 be N mutually independent uniform random variables on [0, 2π], which are independent of ψ 0 , . . . , ψ N -1 . The spectral representation used is written, for all t, as

F exp s is such that S F exp s (ω) = m 2 S Ẍexp
Ẍexp imp (t; θ ) 2∆ ω Re N -1 β=0 S Ẍexp imp (ω β ) Z β e -iω β t e -iφ β , (12) 
with ∆ ω = 2π ∆ f , where Z β = -log(ψ β ), where ω β = 2π f β , and where Re denote the real part of complex numbers. From Eq. ( 12), it can be deduced that, for all t, the realization Ẍexp imp (t; θ ) is written as

Ẍexp imp (t; θ ) 2∆ ω Re N -1 β=0 g β, e -iω β t , (13) 
in which θ ) . In practice, for each , Eq. ( 13)

g β, = S Ẍexp imp (ω β ) Z β (θ ) e -iφ β (
is computed for t = t α with α = 0, . . . , N -1. Consequently, the numerical calculation is done by using the FFT { g 0, , . . . , g N -1, } of {g 0, , . . . , g N -1, }, which is such that g α, = N -1 β=0 g β, exp -2i π αβ/N and which yields, for α = 0, 1, . . . , N -1,

Ẍexp imp (t α ; θ ) = 2∆ ω Re exp -iπα 1 -N N g α, . (14) 
Störmer-Verlet integration scheme. The Störmer-Verlet integration scheme is well suited for the resolution of dynamical Hamiltonian systems [START_REF] Verlet | Computer "experiments" on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules[END_REF][START_REF] Hairer | Geometric numerical integration illustrated by the Störmer/Verlet method[END_REF] and stays very efficient for dissipative Hamiltonian systems as proposed in [START_REF] Soize | Time-domain formulation in computational dynamics for linear viscoelastic media with model uncertainties and stochastic excitation[END_REF]. Such a scheme preserves the mechanical energy during the numerical integration. Equation [START_REF] Lee | Acoustic metamaterial with negative density[END_REF] with initial conditions defined by Eq. ( 11) is then written as the following first order differential equation, for t in ]0, T ],

         Ẋ(t; θ ) = 1 m Y (t; θ ) , Ẏ (t; θ ) = -f D (X(t; θ ), Y (t; θ ) m ) -f K (X(t; θ )) + F exp s (t; θ ) . (15) 
We use the notations x α = X(t α ; θ ) and y α = Y (t α ; θ ). The Störmer-Verlet integration scheme for Eq. ( 15) is then written, for α = 0, 1, ..., N -1, as

                             x α+1/2 = x α + ∆ t 2m y α , y α+1 = y α + ∆ t - 1 2 (f D (x α+1/2 , y α /m) + f D (x α+1/2 , y α+1 /m)) -f K (x α+1/2 ) + F exp s (t α+1 ; θ ) , x α+1 = x α+1/2 + ∆ t 2m y α+1 , (16) 
in which F exp s (t α+1 ; θ ) = -m Ẍexp imp (t α+1 ; θ ) and where x 0 = y 0 = 0.

Signal processing. For estimating, the power spectral density functions and the cross-spectral density functions defined in Eqs. ( 7) and ( 9), the periodogram method [START_REF] Papoulis | Probability, Random Variables and Stochastic Processes[END_REF] is used for which the rectangular time-window on ]0, T ] is used.

Experimental design

In Section 2, we have presented the nonlinear dynamical model of the inclusion and the related stochastic solver. In this section, we present the design of an inclusion whose response can be simulated with this nonlinear dynamical model.

Defining the constraints for the design of the inclusion and its consequences on the design. The following constraints have been taken into account for defining the design:

• The dimension of the inclusion has been setted at about two centimeters in order to be representative of the scheduled technology for which such inclusions would be incorporate in a composite material such as a concrete panel.

• The inclusion must have the capability to exhibit a strong nonlinear geometrical effect with reasonable finite displacements to remain in the bulk whose geometry has previously been defined.

• The inclusion must exhibit a relatively small damping in order to optimize the transmitted mechanical power to the nonlinear oscillator in order to optimize the absorption.

The first system that we have worked was made up of a point mass centered in a spherical steel shell with an internal elastomer layer around the mass. The main advantage of this system was to have an isotropic absorption property no matter the direction of excitation. The elastomer had a hyperelastic behavior and after experimental tests, we have rejected this system because of the important damping due to the elastomer. After that, we studied a system inspired by the nonlinear energy sinks (NES) composed of a point mass linked to two prestressed traction springs clamped at their ends. In this configuration, the springs had effectively a nonlinear behavior when the point mass is excited in the transverse direction. However, large displacements are needed for obtaining a significant geometrical nonlinear effect what was not possible. Then, we focused on two systems composed of a point mass attached to a beam. For the first one, the beam was biclamped and the point mass was located at its center. The second one was a cantilever beam with a point mass located at its free end. In these two cases, the excitation is transverse to the beam and the nonlinear behavior is obtained by the geometric nonlinearities of the beam submitted to finite displacements.

For limiting the developments in this paper, only the inclusion that has been designed with a cantilever beam and its mass at its end is presented. The point mass m of the inclusion is equal to the sum of the mass of the cube, with the mass of the accelerometer attached to it for the measurements and with the mass of the accelerometer cable.

Preliminary experiments have been performed with a monopoint velocimeter Polytech PDV-100 without accelerometer for testing possible damping and stiffness effects of the accelerometer cable. No significant effect has been found with respect to the material damping and structural stiffness by comparison with the same results obtained with the accelerometer.

Design of the inclusion. To determine the length of the beam, its bending stiffness EI, and the point mass m of the inclusion,we have used the equation of the resonance frequency of a cantilever beam with a point mass at its end:

f p = 1 2π 3EI m 3 , (17) 
for which it is assumed that the mass of the beam is negligeable with respect of the point mass. The magnitudes of these parameters are shown in Table 1, in which f p , , E, d max have been defined taking into account the experimental constraints for the manufacturing of the inclusion and where I has arbitrarily be fixed for limiting the number of design parameters. Material of the inclusion. The first idea for the material of the inclusion was to use metallic parts (steel, aluminum) for the beam and the point mass.

Parameters

However, it was difficult to correctly embed the point mass to the beam and the beam to its support. That is why we have chosen to use a 3D-printing system and to print the beam, its support, and the point mass in a single piece, using a polymer material.

Final design of the inclusion with its support. The inclusion is attached to a rigid frame for which the CAO of the final design is shown in Figure 8(a).

The point mass of the inclusion is constituted of a cube, embedded at the free end of the beam. The other end of the beam is continuously connected to the frame. The beam length is 0.026 m and the width of its square section is around 0.001 m. The width of the cube is about 0.008 m. The point mass m of the inclusion is equal to the sum of the mass of the accelerometer attached to it for the measurements (0.4 g), with the mass of the accelerometer cable (0.2 g), and with the mass of the cube (0.55 g), that is to say a total point mass of 1.2 g (the mass of the beam is neglected as we have assumed). The mass density of ABS is 1, 780 kg/m 3 . Some experimental traction tests have been carried out to identify the mechanical properties of ABS. The experiments give 2.2×10 9 P a for the Young modulus and 0.35 for the Poisson coefficient. This inclusion has been designed so that the first eigenfrequency of the frame is 1, 200 Hz and the first eigenfrequency of the inclusion around 24 Hz, which shows that the frame can effectively be considered as rigid for analyzing the dynamical response of the inclusion in the observed frequency band B o that is centered around the first eigenfrequency.

Experimental measurements and identification of the model

Manufacturing of the test inclusion

The inclusion is manufactured using a 3D-printing system. The inclusion and the rigid frame on which the inclusion is attached, are printed in one piece in ABS (Acrylonitrile Butadiene Styrend) that is a material commonly used for 3D printing with the fused deposition modeling technique (see Figure 2(b)).

Description of the experimental procedure

We are interested in analyzing the stationary random response of the inclusion in the frequency band of analysis B a = [0, f max ] with f max = 1, 024 Hz, induced by the stationary random excitation generated by an imposed acceleration of the embedded end of the beam via the rigid frame (see Figure 3). This acceleration is equal to the acceleration that is imposed to the frame (that can be considered as rigid in the observed frequency band), on which a stationary random external force is applied. The observed frequency band is B o = [START_REF] Wang | Membrane-constrained acoustic metamaterials for low frequency sound insulation[END_REF][START_REF] Spanos | On the determination of the power spectrum of randomly excited oscillators via stochastic averaging: An alternative perspective[END_REF] Hz ⊂ B a , which contains the resonance frequency for the all amplitudes that are considered for the excitation. A Gaussian stationary random excitation in the frequency bandwidth [5 -800]Hz is applied, which is delivered by a shaker (Brüel & Kjaër 4808) with a power amplifier (Brüel & Kjaër 2719). The excitation signal, Ẍexp imp , is measured by an accelerometer (Brüel & Kjaër 4507-B004) attached to the frame and the response Ẍexp of the inclusion point mass by an accelerometer Endevco 2250A-10 attached to the point mass (see Figure 3). We have chosen to attach an accelerometer to the point mass for measuring its response, in order to avoid some problems that would be induced by the use of different instrumentations adapted to different excitation levels. The sensors data are acquired with National Instrument Hardware. A CompactDAQ module 9234 is used for the measurements of the two IEPE accelerometers and a module 9263 is used for the signal generation of the excitation. The modules are used with a 4-slot USB chassis 9174. The software used to process the measurements is SO Analyzer from m+p international. The useful bandwidth is set to 1, 024 Hz that leads us to a time sample rate of 2, 048 Hz. The block size is 16, 384 points, which corresponds to an acquisition time of 8 s for a measurement block and so the frequency step is equal to 0.125 Hz. The overlap factor is chosen equal to 66%. The number of blocks that are processed is 101, which corresponds to a total acquisition time of 280 s for each excitation level. The H 1 estimator with Hanning window is used to estimate the FRF functions. The experimental configuration can be viewed in Figure 3. Experimental responses have been measured for seven excitation levels. These cases are identified by the dimensionless response amplitude d/h in which h is the thickness of the beam (h = 0.001 m) and d is defined as the statistical mean of the " peak-to-peak" deflection amplitudes relative to the frame obtained for each measurement block, such that, using Eq. ( 5),

d = 1 2 E{max t (X exp s (t)) -min t (X exp s (t))} ( 18 
)
where X exp s (t) = X exp a (t) -X exp imp (t). For instance, if d/h = 1, the displacement of the inclusion is of the order of magnitude of the thickness of the beam. Seven values of d/h are considered for the experiments and are, in percent, 1.9, 11, 52.3, 82.4, 96.7, 131, and 134. 

Experimental results

The experimental power spectral density (PSD) functions S exp Fx of the excitation are displayed in Figure 4 for the seven considered values of d/h. Figure 5 depicts the measured transmissibility functions obtained from the post-processing of the time data of the two accelerometers for each values of d/h. For each block, the displacement signals are obtained by numerical double integration of the acceleration signals. A high-pass filter is applied before each numerical integration. The square of the modulus FRF exp (2πf ) 2 of the experimental frequency response function is displayed in Figure 6 and the experimental normalized input power density π exp in,norm (2πf ) is displayed in Figure 7 (which is the square root of FRF exp (2πf ) 2 as noted in the Eq. ( 9)).

Experimental identification of the model

As explained in Section 2.1, for all the considered values of d/h, the experimental identification of the damping and stiffness parameters is performed by minimizing over the observed frequency band B o , the distance between the function FRF(ω, w) 2 (defined by Eq. ( 9)) computed with the model and its experimental counterpart FRF exp (ω) 2 that is to say, by solving the following optimization problem,

w opt = arg min w∈C ad J(w) , (19) 
in which the objective function J(w) is written as

J(w) = Bo |FRF(ω, w) 2 -FRF exp (ω) 2 |dω . (20) 
Note that the right-hand side member of the above equation is the L 1norm of the function ω → FRF(ω, w) 2 -FRF exp (ω) 2 . The optimal value

w opt = (c opt 1 , c opt 2 , k opt 1 , k opt 3 ) obtained is        c opt 1 = 0.0038 N s/m , c opt 2 = 10 N s/m 2 , k opt 1 = 26.8 N/m , k opt 3 = -4 × 10 6 N/m 3 . (21) 
During the identification process, we have noted that the damping effect is effectively nonlinear, that is coherent with the nonlinear dynamical model introduced in Section 2. This damping nonlinearity can also be explained by the fact that the beam of the 3D-printing inclusion exhibits a stratified structure of layers with pores (miss of matter) generated by the 3D-printing process (Figure 8). For high response amplitudes, the shear deformation could induce small slides at the interface of the layers. agreement between the experiments and the identified model. The prevision could certainly be improved by using a model with more than one degree of freedom. Figure 10 Furthermore, the results presented in these figures confirm a strong effect of the nonlinearity that allows the pumping energy phenomenon to be efficient over a broader frequency band around the resonance frequency than for the linear case.

Conclusions

In this paper, we have presented the results related to the first stage of a work devoted to the design and the analysis of a nonlinear microstructured material to reduce noise and vibration at low frequencies. We have designed an inclusion that is a nonlinear absorber at macroscale, which has been manufactured with a 3D printing system. The dimension of this inclusion could easily be reduced with the same technology, in order to be inserted in a macro-structural element. A nonlinear dynamical model of the inclusion has been developed and its parameters have been identified with experiments. Both the predictions given by the nonlinear dynamical model and the experiments confirm that the pumping energy phenomenon is more efficient over a broad frequency band around the resonance frequency than for a linear dynamical system. Note that the parametric experiments, which have been presented, allow for demonstrating the role played by the nonlinear geometrical effect absorption bandwidth, which is the expected phenomenon. The work in progress is the use of such inclusions for analyzing the attenuation of acoustics waves and vibrations in structural elements. 
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Figure 2 :

 2 Figure 2: CAO and 3D printing of the test structure.

Figure 3 :

 3 Figure 3: The experimental configuration.

  Measured transmissibility for the considered values of d/h. Zoom around the first eigenfrequency of the measured transmissibility for the considered values of d/h.

Figure 5 :

 5 Figure 5: Transmissibility functions for the different excitation levels of the inclusion base (the frame).

For

  each one of the seven values of d/h, Figure 9 displays the experimental function ω → FRF exp (ω) 2 (upper figure) and the optimized function ω → FRF(ω, w opt ) 2 (lower figure) corresponding to the experimental identification of the model. The comparison of these two figures shows a reasonable

  displays the experimental function ω → π exp in,norm (ω) (upper figure) and optimized model function ω → π in,norm (ω, w opt ) (lower figure), for the seven values of d/h. A reasonable agreement can also be seen between the prediction and the experiments.

  (a) Top view of the inclusion beam. (b) Side view of the inclusion beam. (c) View of a cross section of the inclusion beam.

Figure 8 :

 8 Figure 8: Several views of the 3D-printing beam of the inclusion.

4 )Figure 9 :

 49 Figure 9: For the seven values of d/h, experimental function ω → FRF exp (ω) 2 (upper figure) and optimized model function ω → FRF(ω, w opt ) 2 (lower figure).

2 )Figure 10 :

 210 Figure 10: For the seven values of d/h, experimental function ω → π exp in,norm (ω) (upper figure) and optimized model function ω → π in,norm (ω, w opt ) (lower figure).

Table 1 :

 1 Magnitudes of parameters for the design of the inclusion.

		Magnitudes
	f p	≤ 300 Hz
		≤ 0.03 m
	I	8.3 × 10 -14 m 4
	E	{10 9 , 250 × 10 9 } P a
	m	≥ 4.4033 × 10 -6 kg

  Square of the modulus FRF exp (2πf ) 2 of the experimental frequency response function for the seven values of d/h.
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