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Abstract

Using an advanced nonlinear fluid-structure reduced-order computational model, this work revisits and explains a
resonance of the free surface of water contained in a thin elastic cylindrical tank, which was experimentally exhib-
ited by Lindholm, 1962 and Abramson, 1966. The proposed simulation model allows the experimental setup to be
reproduced. The structure undergoes large displacements and large deformations (geometrical nonlinear effects of the
structure) that play an important role on the liquid vibrations. The experimental setup is simulated using a large-scale
numerical model of the elastic cylindrical tank partially filled with water that is considered as a compressible fluid and
that takes into account surface tension and sloshing effects. The results show that for a frequency external excitation
in the frequency band [500, 2,500] Hz of the fluid-structure system, unexpected high-amplitude sloshing vibrations
are observed in the frequency band [0, 150] Hz. The observed phenomenon, which cannot be reproduced with a linear
fluid-structure model, is explained by the transfer of the vibrational energy from the frequency band of excitation into
a low-frequency band (and then exciting the first sloshing modes) by a non-direct coupling mechanism between the
structural modes and the sloshing modes.

Keywords: Fluid-structure interactions, Geometric structural nonlinearities, Vibrations, Reduced-order model,
Sloshing, Capillarity

1. Introduction

This paper deals with a computational study of a fluid-structure system that proposes an explanation to an unusual
sloshing resonance observed in an experimental investigation of a vibrating elastic tank partially filled with water,
exhibited and investigated in (Lindholm et al., 1962; Abramson et al., 1966). The experiments performed in (Lindholm
et al., 1962) were first designed to quantify the effects of an internal liquid on the breathing frequencies of a circular5

cylindrical thin-walled shell. During these experiments, an unexpected behavior was observed when the structure
were subjected to a high-frequency excitation of small amplitude. The unusual results obtained in this first experiment
were then investigated in further details by (Abramson et al., 1966). Indeed, it was observed that a totally unexpected
coupling between low-frequency liquid free-surface oscillation and high-frequency shell-wall vibration could occur
for a wide range of parameter (cited from (Abramson et al., 1966)). This result is all the more unexpected as the10

frequency separation between the first eigenfrequencies of the sloshing modes and the first structural modes is of
order 100. A discussion on these results is proposed in these papers, which suggests that this unexpected behavior
would be based on several unusual characteristics that are not explained readily on the basis of existing theory
(cited from (Abramson et al., 1966)). These authors concluded that the source of such coupling could possibly come
from a nonlinear coupling between the liquid and the structure for which the source of nonlinearities would not be15

precisely known. A first attempt for explaining this unexpected phenomenon has been carried out by (Chu and Kana,
1967) using an analytical approach with a linear theory for the structure and a nonlinear one for the free surface of
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the liquid. These authors conclude that exact quantitative comparisons of theory and experiments may required a
more complicated system. In this paper, an alternative is proposed for explaining the observed phenomenon using
a nonlinear structure (geometrical nonlinearities) and a linear compressible liquid (acoustic fluid) with sloshing and20

capillarity effects using a large-scale computational model. The observed experimental results are simulated and the
mechanisms of this unexpected free-surface response is detailed, which constitutes the novelty of this work.

Theory and applications of liquid sloshing in elastic structures has been investigated in literature (see for example,
(Paidoussis, 1998; Dodge, 2000; Ibrahim, 2005; Faltinsen and Timokha, 2009; Moiseyev and Rumyantsev, 2012)).
The effects of surface tension (capillarity effects) in a rigid structure has also been analyzed (see for instance, (Finn,25

2001, 2006; Finn and Luli, 2007)). On the computational level, variational formulations, computational models,
and reduced-order models concerning vibroacoustics and fluid-structure interactions can be found, for instance, in
(Morand and Ohayon, 1995; Ohayon and Soize, 1997, 2014, 2015; Bermúdez et al., 2003; Schotté and Ohayon, 2005,
2013; Farhat et al., 2013; Hambric et al., 2016).

The effects of the geometrical nonlinearities of structures containing liquids have been studied in order to quantify30

the influence of a fluid on the large amplitude motion of the structure (Dowell, 1998; Amabili and Paıdoussis, 2003;
Amabili, 2008; Strand and Faltinsen, 2017; Alijani and Amabili, 2014). For example, many experimental studies are
available for large amplitude vibrations of thin shells partially filled with liquids such as the ones proposed by (Olson,
1965; Leissa, 1973; Chen and Babcock, 1975; Chiba, 1992; Koval’chuk and Lakiza, 1995) and also by (Carra et al.,
2013) in which the experimental study that is presented could be used as a test case for future nonlinear fluid-structure35

interaction problem. However, to the best knowledge of the authors, only the Chu-Kanna work (Chu and Kana, 1967)
proposed an explanation of this unusual phenomenon put in evidence in (Lindholm et al., 1962; Abramson et al.,
1966; Abramson and Kana, 1970), by using a linear structure coupled with a nonlinear free-surface effects of the
liquid. The analysis of these four last references led us to consider the nonlinear effect of the structure, which was
suggested but not investigated by these authors, coupled with a linear fluid. In order to quantify these effects, we40

have used a formulation that allows for taking into account the nonlinear geometric effects of the structure, while
considering a linear formulation for the internal liquid in presence of sloshing and capillarity effects. This paper
presents a numerical simulation of the experimental setup, using a large-scale computational model based on the
formulation (Ohayon and Soize, 2015, 2016) and gives an alternative more accurate explanation of the phenomenon
observed during the experiments (Lindholm et al., 1962; Abramson et al., 1966).45

This experimental setup is a tank that is partially filled with a compressible liquid (acoustic fluid) that has a free
surface. The whole system is submitted to earth gravity field inducing sloshing of the free surface. The computational
model of the coupled system is constructed using the finite element method (Zienkiewicz et al., 1977). This compu-
tational model allows for taking into account the geometrical nonlinearities of the structure (Amabili and Paıdoussis,
2003; Wriggers, 2008; Crisfield et al., 2012; Belytschko et al., 2013). A nonlinear reduced-order model (ROM) allow-50

ing for considerably reducing the computational cost is built. Such computational ROMs adapted to fluid-structure
interactions have been extensively studied these last two decades. The method of proper orthogonal decomposition
(POD) has been widely used to construct a ROM, for example by (Amabili et al., 2003; Amabili and Touzé, 2007;
Ballarin and Rozza, 2016). In this paper, we use the ROM proposed by (Ohayon and Soize, 2015, 2016), which
consists in projecting the equations of the model onto a basis constituted of the modal bases issued from each physical55

subset of the fluid-structure system, for the following reasons. (i) A better understanding of the couplings between
each part of the fluid-structure system can be done. (ii) It allows for filtering the eigenfrequencies of the different
physical subsets of the system; it is well known that the frequency gap between the (usually low-frequency) sloshing
resonances and the (usually high-frequency) elastic and acoustic resonances is huge; this means that if we were to
build a global reduced-order basis, we would have to compute an untractable number of (weakly energetics) sloshing60

eigenmodes before reaching any acoustic or elastic eigenmodes. (iii) The computation of a global reduced-order pro-
jection basis would induce some difficulties related to the non-symmetric global formulation of the coupled problem.
(iv) Such ROM allows for being predictive with a reasonable computational time (Ohayon, 2004; Ohayon and Soize,
2014).

As shown in (Ohayon and Soize, 2016), the modal bases are computed by solving three different generalized65

eigenvalue problems: the first one being related to the elastic structure in presence of the liquid, considered as incom-
pressible; the second one being related to the compressible liquid in a rigid container; the third one being related to
the free surface in presence gravity field and with surface tension effects. In addition, the computation of the reduced-
order bases exhibits major difficulties in terms of computational cost when studying a large-scale fluid-structure model
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due (i) to the high flexural motion of the thin-walled cylinder and (ii) to the free surface. These difficulties are circum-70

vented by using the algorithms presented in (Akkaoui et al., 2018).
The outline of the paper is as follows. Section 2 deals with a summary of the computational model. Section 3 is

devoted to the numerical simulation of the experimental setup. The dimensions of the physical system is described, as
well as the strategy used to computationally reproduce the experimental boundary conditions. A modal characteriza-
tion is presented to highlight the frequency separation between the sloshing resonances and the elastic resonances. A75

partial validation of the computational model is performed by comparing the eigenfrequencies of the tank with the ex-
perimental ones. We then end up by showing the forced responses of the coupled system highlighting the geometrical
nonlinearities effects on the dynamical behavior of the system and in particular on the amplitude of the free surface
motion.

2. Summarizing the computational model used for the numerical simulations80

In this section, we summarize the construction of the computational model detailed in (Ohayon and Soize, 2016),
which will be used for simulating the experimental setup.

2.1. Boundary value problem for the nonlinear fluid-structure problem

The fluid-structure system is considered to be taken in its reference configuration defined in Figure 1. The struc-
ture occupies a bounded volume ΩU and is taken in its natural state without prestresses. The structure contains a85

liquid occupying a bounded domain ΩP. The liquid is modeled by a linear dissipative compressible fluid (dissipative
acoustic fluid, see Ohayon and Soize (2014)), which means that the vibrational motion of the liquid is assumed to be
small enough. Gravitational and surface tension effects are taken into account but internal gravity waves are neglected.
It should be noted that the geometry of ΩP is obtained by a first computation allowing the static equilibrium position
of the free surface of the liquid to be found, due to the presence of capillarity effects.90

The boundary of ΩP, assumed to be smooth enough, is denoted as ∂ΩP = ΓL ∪ γ∪Γ (with ΓL ∩ γ = ∅, Γ∩ γ = ∅,
and ΓL ∩ Γ = ∅), where ΓL is the fluid-structure interface, Γ is the free surface of the liquid and γ is the con-
tact line between the structure and the liquid. The boundary of ΩU , assumed to be smooth enough, is denoted as
∂ΩU = Γ0 ∪ ΓE ∪ ΓL ∪ γ ∪ ΓG where Γ0 is a part of the boundary in which there is the Dirichlet condition u = 0,95

where ΓE is the external surface of the structure and ΓG is the structure internal wall without contact with the liquid.
The structure is submitted to a given body force field b in ΩU and to a given surface force field f on ΓE . The external
unitary normals to ∂ΩU and ∂ΩP are written nu and n. Let ν and νL be the external unit normals to γ belonging
respectively to the tangent plane to Γ and to the tangent plane to ΓL.

100

Let x = (x1, x2, x3) be the generic point in a Cartesian reference system (O, e1, e2, e3). The gravity vector is
g = −g e3 with g the gravitational constant. The boundary value problem is expressed in terms of the structural
displacement field u(x, t), of the internal pressure field p(x, t), and of the normal displacement field of the free surface
η(x, t). From here on, in order to simplify the notations, the convention for summation over repeated Greek and Latin
indices is considered and parameters x and t are removed if there is no possible confusion. Let a(x, t) be a given105

function, the following notations are used : a, j = ∂a/∂x j, ȧ = ∂a/∂t, and ä = ∂2a/∂t2.

The nonlinear boundary value problem in (p, η,u) is written as,

1
ρ0c2

0

p̈ −
τ

ρ0
∇2 ṗ −

1
ρ0
∇2 p = 0 in ΩP , (1)

(
1 + τ

∂

∂t

)
∂p
∂n

= −ρ0 ü · n on ΓL , (2)

110 (
1 + τ

∂

∂t

)
∂p
∂n

= −ρ0 η̈ on Γ , (3)
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Figure 1: Reference configuration of the coupled fluid-structure system

p = ρ0 η g (ez · n) − σΓ

{(
1

R1
+

1
R2

)
η + ∇2

Γ
η

}
on Γ , (4)

∂η

∂ν
= cη η + J u on γ , (5)

ρS ü − div (F · S) = b in ΩU , (6)

u = 0 on Γ0 , (7)

115

(F · S) · nu = f on ΓE , (8)

(F · S) · nu dΓL = p nu dΓL − σΓ (J ′η) dµγ on ΓL , (9)

in which the tensor F is the deformation gradient tensor defined in ΩU by

Fi j = δi j + ui, j , (10)

where δi j denotes the Kronecker symbol such that δi j = 1 if i = j and δi j = 0 otherwise. In Eq. (10), the tensor S is
the second Piola-Kirchhoff symmetric tensor in the reference configuration written as

Si j = ai jk` Ek` + bi jk`
d Ek`

dt
, (11)

where the tensors ai jk` and bi jk` are fourth-order real tensors, verifying the symmetry and positiveness properties and120

where the Green-Lagrange strain tensor is written as

Ek` =
1
2

(
uk,` + u`,k + um,k um,`

)
. (12)

In Eqs. (1) to (3), ρ0 is the constant mass density of the homogeneous liquid, c0 is the constant speed of sound, and τ
is the constant coefficient that characterizes the dissipation in the internal liquid. In Eqs. (4) and (5), σΓ is the surface
tension coefficient, R1 and R2 are the main curvature radii of the free-surface, and cη is the contact angle coefficient.
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In Eq. (6), ρS is the constant mass density of the structure. Equations (4) and (9) correspond to the contact angle125

between the elastic structure and the free surface of the liquid in which the operator J is such that

J u = E u · nu −
∂(u · nu)
∂νL

, (13)

in which E a real coefficient. In Eq. (9), dµγ is a real measure on ΓL such that
∫

ΓL
f (x) dµγ(x) =

∫
γ

f (x) dγ(x) (this
means that the support of measure dµγ is γ), and the term (J ′η) dµγ is defined on ΓL by algebraic duality of the term
J u defined on γ.

2.2. Nonlinear computational model130

Let np, nh, and nu be the number of degrees of freedom related to the fluid, to the free surface, and to the structure,
issued from the finite element discretization of the system. We then denote by P, H, and U the Rnp -vector, Rnh -
vector, and Rnu -vector corresponding to the finite element discretization of the fields p(x, t), η(x, t), and u(x, t). The
computational finite element model of the fluid-structure system is then written as

[M] P̈ + [D] Ṗ + [K] P − [Cpη]T Ḧ − [Cpu]T Ü = 0 , (14)

135

[Cpη] P + [Kgc] H + [Cηu] U = 0 , (15)

[Cpu] P + [Cηu]T H + [Mu] Ü + [Du] U̇ + [Ku] U + FNL(U) = Fu . (16)

In Eq. (14), the (np × np) symmetric positive-definite matrix [M] is the fluid ”mass” matrix. The (np × np) positive-
semidefinite matrices [K] and [D] = τ [K] are the ”stiffness” and ”damping” matrices of the liquid. In Eq. (15),
the (nh × nh) symmetric positive-definite matrix [Kgc] is the matrix related to the sloshing/capillarity effects on the
free surface. In Eq. (16), only the linear part of the damping forces are kept and are represented by the term [Du]U̇.140

Consequently, the nonlinear forces FNL are independent of U̇ and therefore, depend only on U. The (nu×nu) symmetric
positive-definite matrix [Mu] is the structural mass matrix. The (nu × nu) symmetric positive-definite matrices [Ku]
and [Du] = τS [Ku] are the stiffness and damping matrices of the structure. The rectangular (nu × np), (nh × np), and
(nh × nu) matrices [Cpu], [Cpη], and [Cηu] are the coupling matrices between the fluid and the structure, between the
fluid and the free surface, and between the structure and the free surface. In Eq.(16) the Rnu -vector Fu corresponds145

to the discretization of the external force field applied on the structure. The Rnu -vector FNL(U) is the discretization of
the nonlinear conservative internal forces induced by the geometrical nonlinearities of the structure.

The numerical solution of the nonlinear coupled differential equations (Eq. (14) to (16)) appears to be expensive
or even impossible for large finite element models. It is thus essential to introduce an efficient adapted reduced-order
model as we have explained in Section 1.150

2.3. Construction of the nonlinear reduced-order computational model
The admissible space CP,H,U is decomposed in the following direct sum,

CP,H,U = CP ⊕ CH ⊕ CU , (17)

where the admissible spaces CP, CH and CU are defined as follows.

Vector basis of CP. The admissible space CP is related to the conservative part of the discretized problem in P155

(see Eq. (14)) for which a zero Neumann boundary condition for the pressure is applied on ΓL and a zero Dirichlet
boundary condition for the pressure is applied on Γ ∪ γ. Therefore, a vector basis of CP can be constructed as the
acoustic modes, which are the eigenvectors of the generalized eigenvalue problem (in which the boundary conditions
have to be added),

[K] [ΦP] = [M] [ΦP] [ΛP] . (18)

In Eq. (18), [ΦP] = [ϕ1
p, . . . ,ϕ

NP
p ] is the (np × NP) real matrix whose NP columns are constituted of the eigenvectors160

associated with the NP first smallest positive eigenvalues sorted by increasing order such that λ1
p ≤ . . . ≤ λ

NP
p contained
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in the diagonal matrix [ΛP].

Vector basis of CH . The admissible space CH is related to the conservative part of the discretized problem in H (see
Eq. (15)) for which the liquid is considered as an inviscid incompressible liquid, with sloshing and capillarity, and for165

which a zero Neumann boundary condition for the pressure is applied on ΓL. Therefore, a vector basis of CH can be
constructed as the sloshing modes of the liquid in presence of capillarity, which are the eigenvectors of the generalized
eigenvalue problem (in which the boundary condition have to be added),

[K] [ΦPH] + [Cpη]T [ΦH] [ΛH] = 0 , (19)

[Cpη] [ΦPH] + [Kgc] [ΦH] = 0 . (20)

In Eqs.(19) and (20), [ΦH] = [ϕ1
h, . . . ,ϕ

NH
h ] and [ΦPH] = [ϕ1

ph, . . . ,ϕ
NH
ph ] are the (nh × NH) and the (np × NH) real ma-170

trices whose NH columns are constituted of the eigenvectors associated with the NH first smallest positive eigenvalues
sorted by increasing order such that λ1

h ≤ . . . ≤ λ
NH
h contained in the diagonal matrix [ΛH].

Vector basis of CU . The admissible space CU is related to the conservative and homogeneous linear part of the
discretized problem in U (see Eq. (16)) related to the structure coupled with a liquid that is inviscid and incompressible,175

with a zero Dirichlet boundary condition for the pressure on Γ ∪ γ (in addition to the Dirichlet condition on Γ0).
Therefore, a vector basis of CU can be constructed as the elastic modes of the underlying linear structure with the fluid
added mass, which are the eigenvectors of the generalized eigenvalue problem

[Ku] [ΦU] = ( [Mu] + [MA] ) [ΦU] [ΛU] . (21)

In Eq. (21), the (nu × nu) symmetric positive-definite added-mass matrix [MA] is defined by

[MA] = [Cpu] [K∗]−1 [Cpu]T , (22)

where [K∗]−1 denotes the solution in [P] of the linear matrix equation [K] [P] = [I] (in which [I] is the identity180

matrix) for which, each column P j of [P] satisfies the constraint P j = 0 for the dofs related to Γ ∪ γ. In Eq. (21),
[ΦU] = [ϕ1

u, . . . ,ϕ
NU
u ] is the (nu × NU) real matrix whose NU columns are constituted of the eigenvectors associated

with the NU first smallest positive eigenvalues sorted by increasing order such that λ1
u ≤ . . . ≤ λ

NU
u contained in the

diagonal matrix [ΛU].
185

Computational aspects related to the calculation of the bases. For large-scale 3D computational models, solving the
three generalized eigenvalue problems with standard algorithms induced major difficulties for mid-power computers.
This is the reason why non-standard algorithms have been proposed in (Akkaoui et al., 2018) for solving these gener-
alized eigenvalue problems. The limitations of the computer resources are principally due to the RAM limitations and
a prohibitive CPU time. A double projection method and a subspace iteration method have been proposed and allow190

for solving such a problem that cannot be treated with standard algorithms.

Reduced-order computational model. The nonlinear reduced-order computational model is constructed by projecting
the equations of the fluid-structure system (defined by Eqs. (14) to (16)) on the reduced-order basis [Ψ] constituted of
the vector bases constructed above. The solutions P, H, and U are then written as195 P

H
U

 =

[ΦP] [ΦPH] 0
0 [ΦH] 0
0 0 [ΦU]


q

p

qh

qu

 = [Ψ] Q , (23)

in which Q = [qp qh qu]T is the RNphu -vector of the generalized coordinates, with Nphu = Np + Nh + Nu, solution of the
reduced nonlinear differential equation

[MFS I] Q̈ + [DFS I] Q̇ + [KFS I] Q + FNL(Q) = F , (24)
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in which the (Nphu × Nphu) matrices [MFS I], [DFS I], [KFS I], and the RNphu vector F are defined as

[MFS I] = [Ψ]T

[M] −[Cpη]T −[Cpu]T

0 0 0
0 0 [Mu]

 [Ψ] , (25)

[DFS I] = [Ψ]T

[D] 0 0
0 0 0
0 0 [Du]

 [Ψ] , (26)

200

[KFS I] = [Ψ]T

 [K] 0 0
[Cpη] [Kgc] [Cηu]
[Cpu] [Cηu]T [Ku]

 [Ψ] , (27)

F = [Ψ]T

 0
0

Fu

 . (28)

In Eq. (24), FNL(Q) denotes the nonlinear conservative contribution of the geometrical nonlinearities of the structure.
The generalized conservative internal nonlinear forces are written (Mignolet and Soize, 2008) as

FNL(Q) = K (2)
αβγ qu

β qu
γ + K (3)

αβγδ qu
β qu

γ qu
δ , (29)

where the quadratic and cubic stiffness K (2)
αβγ and K (3)

αβγδ are such that

K (2)
αβγ =

1
2

(
K̂ (2)

αβγ + K̂ (2)
βγα + K̂ (2)

γαβ

)
, (30)

205

K̂ (2)
αβγ =

∫
ΩS

ai jk` ϕ
α
i, j ϕ

β
m,k ϕ

γ
m,` dx , (31)

K (3)
αβγδ =

1
2

∫
ΩS

ai jk` ϕ
α
s,i ϕ

β
s, j ϕ

γ
m,k ϕ

δ
m,` dx , (32)

The numerical aspects of the generalized nonlinear forces are detailed in (Capiez-Lernout et al., 2012).

3. Simulating the experimental setup with the nonlinear reduced-order computational model

3.1. Experimental setup, computational model, and updating the structural model with experimental eigenfrequencies
of the structure in vacuo210

The experimental setup is the one described in (Lindholm et al., 1962; Abramson et al., 1966). The structure is a
steel tank constituted of a thin circular cylinder closed at both ends by circular plates. Its isotropic material properties
are given by E = 2.05 × 1011 N.m−2, ν = 0.29, ρS = 7 800 Kg.m−3, and damping coefficient τS = 10−6. This tank is
filled with 30% water with sound velocity c0 = 1 480 m.s−1, mass density ρ0 = 1 014 kg.m−3, and damping coefficient
τ = 10−5.215

Since capillarity effects are taken into account in the computational model, a water-steel contact angle of θ = 83◦

has been considered to compute the equilibrium position of the free surface of the liquid using the software Surface
Evolver (Brakke, 1992). Let Re = 3.7833 × 10−2 m and Ri = 2.76047 × 10−2 m be the external and the internal radii
of the steel cylinder. The thickness of the end plates and the thickness of the cylindrical shell are hd = 2.54 × 10−2 m
and e = 2.286 × 10−4 m. The total height of the tank and the fluid depth are h = 0.23876 m and h f = 0.3 h. The220

geometry of the computational model is described in Figure 2 (left). The origin O of the Cartesian coordinates system
(O, e1, e2, e3) is located at the center of the bottom of the cylindrical tank. Axis e3 coincides with the revolution axis
of the system. A particular attention is paid to the modeling of the boundary conditions of the experimental setup.
Thus, the structural node located at the bottom center of the tank is locked along its directions e1, e2, and e3. The node

7



located at the top center of the tank is locked along its directions e1 and e2. The rotation of the bottom plate is locked225

with one dof on the edge of the plate. The boundary conditions described hereinabove (represented by ◦ symbol)
are displayed in Figure 2 (right figure). Moreover, the experimental pin-ended and cantilever boundary conditions
are set in order to study the breathing vibrations of the cylinder. In the present numerical simulation, the structural
model in vacuo has been calibrated by optimizing the thickness of the bottom and top plates such that the numerical
eigenfrequencies of the structure coincides with the experimental ones. The optimization must take into account the230

fact that the plates have to stay rigid compared to the cylinder wall. This is why the optimal thickness of these plates
has been set as hd = 2.54 × 10−3 m.

Figure 2: Dimensions of the fluid-structure system (left) and representation of the numerical boundary conditions applied on the system (right).

Nodes Dof Elements
Fluid 431 354 431 354 296 459
Free surface 11 566 11 566 5 684
Structure 660 385 1 981 155 334 784

Table 1: Table of the finite element mesh properties.

The finite element model of the fluid-structure system is constructed using 3D-solid tetrahedral finite elements
with 10 nodes for the structure and for the acoustic fluid (see Figure 3). The free surface of the liquid is meshed using
2D finite elements with 6 nodes and the triple line is meshed using 1D finite elements with 3 nodes. Table 1 sums up235

the characteristics of the finite element mesh. This high-order finite element modeling is chosen in order to accurately
simulate the highly flexible motion of the thin shell and also of the liquid free surface. This choice has been motivated
by the fact that there are few difficulties for obtaining correct structural eigenfrequencies and representative slosh-
ing eigenmodes when using linear interpolation functions for finite elements with order 1. Consequently, the finite
element mesh is constituted of finite elements with order 2, which allows for accurately representing the dynamical240

behavior of the system. It is important to note that only the eigenfrequencies are available from the experiments.

Observation points. The dynamical response of the fluid-structure system is analyzed for different observation points
of the finite element mesh. These observations points are chosen to be of best interest for the dynamical study of
the system. One of them is common to both the structure, the fluid, and the free surface. It allows for seeing the245

correspondance between the pressure in the acoustic fluid, the displacement of the structure, and the elevation of the
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Figure 3: Finite elements meshes of the structure with 1 981 155 dofs (left figure), of the liquid with 431 354 dofs (right figure), and of the free
surface with 11 566 dofs (top of the right figure).

free surface. This common point is denoted as xp
1 in the fluid, xh

1 on the free surface, and xu on the structure. Moreover,
another observation point xp

2 is the point located at the bottom of the fluid is also chosen. Finally, another observation
point xh

2 is also chosen as the point located at the center of the free surface. For the sake of clarity, the coordinates of
these observation points are summarized in Table 2. The quantities Pi and Hi denote the pressure and the elevation250

of the free surface at observation points xp
i and xh

i (for i = 1, 2), and U j is the component j (for j = 1, 2, 3), of the
structural displacement at observation point xu.

Location Name x coordinate y coordinate z coordinate
Fluid xp

1 0.0187 0 0.0076
xp

2 0.0187 0 0.0708
Free surface xh

1 −0.0144 −0.0347 0.1248
xh

2 0 0 0.1245
Structure xu −0.0144 −0.0347 0.1248

Table 2: Coordinates of the observation points for the fluid, the structure and the free surface
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3.2. Dynamical excitation of the system

The dynamical excitation is a time-dependent force for which its Fourier transform is a constant in the frequency
band of excitation Be = [νmin , νmax] Hz, with νmin = 500 Hz and νmax = 2 500 Hz. The nonlinear responses is255

computed in the time domain. The Fourier transform of the time response allows for obtaining the response in the
frequency domain. The external load vector, which was denoted by Fu, is written as

Fu = α g(t) F , (33)

in which α is the intensity coefficient taken as α = 4, g(t) is the time function of the dynamical excitation, and F is the
normalized vector representing the spatial distribution of the external time load. The excitation is located on a small
rectangular patch, which is radially oriented (see the red patch in Figure 2 left). In Eq. (33), the signal g(t) is written260

as
g(t) = 2∆ν sincπ(∆ν t) cos(2π s ∆ν t) , (34)

in which ∆ν = νmax−νmin, s =
νmax + νmin

2∆ν
, and sincπ(x) =

sin(π x)
π x

. Therefore, the Fourier transform of g(t) is written
as

ĝ(2πν) = 1Be
(ν) , (35)

which is 1 if ν ∈ Be and 0 otherwise. The main computational difficulty is to well capture the very low-frequency
sloshing modes of the free surface. Consequently, the time duration of the response computation has to be sufficiently265

high for obtaining a good frequency resolution and to be such that the response at the final time corresponds to the
static equilibrium. The computation is carried out on a truncated time domain [tini, tini + T ] with a long time duration
T for which tini = −1.28 s and T = 21 s. The sampling frequency and the number of time steps are chosen as
νe = 25 000 Hz and Nt = 524 288.

3.3. Computation of the reduced-order bases270

The computation of the reduced-order bases is performed by solving the generalized eigenvalue problems pre-
sented in Section 2.3. The computed elastic, acoustic, and sloshing-capillarity modes are indexed by their eigenfre-
quencies denoted by ν a

i = (λ a
i )1/2/2π, for i = 1, . . . ,Na with a ∈ {p, h, u}.

Acoustic modes. Figure 4 displays four acoustic modes (rank 1, 4, 9, and 15) of the liquid with their respective
eigenfrequencies. It should be noted that the fundamental frequency of the internal liquid is νp

1 = 5 194 Hz. Note that275

this first acoustic eigenfrequency is much greater than the upper bound of the frequency band of excitation.

ν
p
1 = 5 194 Hz ν

p
4 = 15 581 Hz ν

p
9 = 24 240 Hz ν

p
15 = 28 327 Hz

Figure 4: Example of acoustic modes of the liquid

Sloshing modes. Figure 5 (upper figure) displays four sloshing modes (rank 1, 20, 25, and 107) of the liquid free
surface taking into acount the capillarity effects. It is shown that the fundamental frequency of the free surface is
νh

1 = 3.44 Hz, that is of order 103 smaller than the fundamental frequency of the internal liquid. Moreover, one can
see that the modal density of the sloshing phenomena is significant since νh

107 = 19.67 Hz. The acoustic part of the280
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νh
1 = 3.44 Hz νh

20 = 8.28 Hz νh
25 = 8.71 Hz νh

107 = 19.67 Hz

Figure 5: Example of 4 sloshing eigenmodes of the free surface (top) and the corresponding pressure in the acoustic liquid (bottom).

sloshing eigenmodes in the liquid are displayed in Figure 5 (lower figure), for which we can see that the pressure
exponentially decreases with respect to the depth of the liquid, as it was expected.
Structural modes with added mass effects. The geometry of the structure has preliminarily been updated in order
to match, for the best, the experimentally measured eigenfrequencies for the structure in vacuo. Figure 6 quantifies
this updating and displays the graph of the structural eigenfrequencies of the structure in vacuo with respect to the285

longitudinal and circumferential wave numbers m and n. It should be noted that all the calculations have been carried
with the 3D computational model and that the longitudinal and circumferential wave numbers of the structural modes
have been identified from the 3D calculations (note that the identification of the values of n and m has been done by
examining the 3D plots of the modes). It must also be noted that, in the reduced-order model, all the structural modes
have been taken into account in the frequency band: the structural modes n = 0 and all the modes n ≥ 1 for which290

their eigenfrequencies have a multiplicity greater that one (due to the symmetries). The updated computed structural
eigenfrequencies are displayed in blue solid line and the experimental ones (Lindholm et al., 1962) in red triangles.
One can see that the updated computational model correctly fits the experimental eigenfrequencies. Concerning the
structural modes for which no experiments are available, we have only the computed structural modes. Figure 7
displays two structural modes (rank 6 and 12) in vacuo (two left figures) and displays the corresponding two structural295

modes (rank 6 and 10) with the added mass effect involved by the liquid for the structure filled with 30% water (two
right figures). It is shown that the presence of the liquid locally modifies the in vacuo structural modes in the spatial
area where the liquid is in contact with the structure. A decrease of its structural eigenfrequencies is observed (as
expected). It should be noted that the structural modes could be constructed for the structure in vacuo. Nevertheless,
for this elastic tank partially filled with water, the use of the structural modes computed with the effects of the added300

mass, yields a much faster speed of convergence of the reduced-order model with respect to the truncation order.
Concerning the structural modes in vacuo identified as n = 0, the rank of the first one is 89 and its eigenfrequency is
4 509 Hz. The rank of the corresponding structural mode with the added mass effects is 32 and its eigenfrequency is
1 852 Hz (there is an important shift due to the added mass). It can be seen that this first n = 0 structural mode with
added mass effects has an eigenfrequency that belongs to the frequency band of excitation. There is no other n = 0305

structural mode with added mass effects whose rank is less than or equal to 100.

3.4. Eigenfrequency characterization of the system in the frequency band of analysis Ba

Physically there are sloshing modes in the frequency band of excitation Be but their contributions in this band Be

are negligible. Consequently, only the sloshing modes whose eigenfrequencies are below 500 Hz are kept for con-
structing the ROM. Note that the sloshing eigenfrequencies increase at a very slow rate since νh

500 = 57.78 Hz. The first310
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Figure 6: Graph of the structural eigenfrequencies in vacuo calculated with the updated computational model (blue solid line) compared with the
experimental eigenfrequencies (red triangles).

νu
6 = 993 Hz νu

12 = 1 402 Hz νu
6 = 683 Hz νu

10 = 874 Hz

Figure 7: Two structural modes (rank 6 and 12) in vacuo (two left figures) and the corresponding two structural modes (rank 6 and 10) with the
added mass effect involved by the liquid for the structure filled with 30% water (two right figures)

acoustic mode has an eigenfrequency νp
1 = 5 194 Hz greater than the upper bound 2 500 Hz of Be. Note that only the

the first acoustic eigenfrequency belongs to Ba since the second acoustic eigenfrequency is νp
2 = 12 504 Hz. Conse-

quently, only the structural modes occur in the frequency band of the excitation. The eigenfrequency characterization
of the fluid-structure system is summarized in Table 3.

Frequency (Hz) 0 500 2 500 6 000
Acoustic ν

p
1 = 5 194

Sloshing νh
1 = 3.44 νh

500 = 57.8
Structural modes νs

1 = 513 νs
53 = 2 486 νs

196 = 5 963
with added mass

Table 3: Eigenfrequency characterization of the fluid-structure system
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3.5. Solver for computing the nonlinear response in the time domain315

The nonlinear coupled differential equation Eq. (24) is solved by using an implicit iterative Newmark scheme
for which, at each time step, the nonlinear algebraic equation is solved using the fixed point method or the Newton-
Raphson algorithm when the fixed point method is not convergent. Once the time response has been computed, a
Fourier transform is performed to analyze the frequency response of the system in the frequency band of analysis
Ba = [0, 6 000] Hz.320

3.6. Convergence of the reduced-order model with respect to the modal truncation

The nonlinear reduced-order model presented in Section 2.3 is constructed using the modes calculated in Sec-
tion 3.3. A convergence analysis of the nonlinear response is performed with respect to the order of the nonlinear
reduced-order model. Since the reference solution cannot be computed for such large-scale nonlinear computational
model, it is assumed that the convergence is reached when the response is no longer sensitive to parameters Np, Nh325

or Nu. We choose to normalize the convergence function with respect to the solution constructed with N p = 200,
Nh = 2 250, and Nu = 100. The convergence functions are then defined by,

ConvX(Np,Nh,Nu) =
1{∫

Ba

| X̂(N p,Nh,Nu, 2πν) |2 dν
}1/2

{∫
Ba

| X̂(Np,Nh,Nu, 2πν) |2 dν
}1/2

, (36)

for the Fourier transform X̂ of a solution X at a given observation point. Three convergence analyses are then per-
formed with respect to Np, with respect to Nh, and with respect to Nu. Figure 8 displays the graphs of the following
convergence functions,330

Np 7→ ConvX̂(Np,Nh,Nu) ,
Nh 7→ ConvX̂(N p,Nh,Nu) ,
Nu 7→ ConvX̂(N p,Nh,Nu) .

(37)

It is shown that the convergence analyses yields an optimal size of the ROM of Np = 40, Nh = 1 500, and Nu = 60. It
should be noted that the large number of sloshing eigenmodes required for the convergence of the solution is due to
the high modal density of the sloshing modes.

Concerning the nonlinear geometrical effect that induces a coupling between displacements of type n = 0 and of type335

n ≥ 1, the reduced-order model has carefully been constructed and validated by the convergence analysis presented in
Section 3.6 for Nu up to 100 (rank of structural modes with added mass effects). The first structural mode with added
mass effects, of type n=0, is inside the frequency band of excitation and is kept in the reduced-order model. As the
boundary condition of the cylinder at its top end is free in the vertical direction, the structural modes with added mass
effects, of type n=0, whose eigenfrequencies are greater than the frequency band of analysis, should a priori be less340

important.

3.7. Linear and nonlinear dynamical responses of the fluid-structure system

As previously, the notation Â(2πν) denotes the Fourier transform of quantity A(t). The geometrically nonlinear
effects induced by the structure are analyzed by comparing the linear and the nonlinear dynamical responses of the
system for a given external excitation. For notational convenience, we denote by superscript L the quantities calculated345

with the linear system and by superscript NL the quantities calculated with the nonlinear system. For i = {1, 2},
Figure 9 displays the graph of ν 7→ |P̂i(2πν)| for the acoustic pressure computed with the linear ROM and with the
nonlinear one. First, one can see that numerous resonances arise outside the excitation frequency band Be due to
the structural nonlinearities. The contributions of most of the elastic modes located above 2 500 Hz appear in both
nonlinear responses. On the other hand, below 500 Hz and for these two observation points, the sloshing modes350

are not detected due to the exponential decreasing of the sloshing-induced pressure with the depth. In addition,
for the nonlinear responses, the resonance peaks located inside Be are largely spread out with respect to the ones
obtained by the linear responses. This is the case, for example, for the resonance located at 2 089 Hz. For i =

{1, 2, 3}, Figure 10 displays the graph of ν 7→ |Ûi(2πν)| for the structural displacement computed with the linear
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Figure 8: Graph of the convergence functions for P, H, and U at the observation points with respect to Np (top left), to Nh (top right), and to Nu
(down central).

Figure 9: Linear and nonlinear responses of the acoustic pressure. Graphs of ν 7→ |P̂1(2πν)| (left) and ν 7→ |P̂2(2πν)| (right): pressure computed
with the linear ROM (blue line or smooth down grey line for black and white printing) and pressure computed with the nonlinear ROM (red line or
irregular top grey line for black and white printing).

ROM and with the nonlinear one. In addition, one can see that some sloshing modes below 500 Hz contribute to the355

structural displacements. The structural nonlinearities strongly modify the frequency responses in excitation band Be;
the resonance peaks are not only spread out, as for the acoustic pressures, but they are also less isolated and less acute;
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Figure 10: Linear and nonlinear responses for the structural displacement. Graphs of ν 7→ |Û1(2πν)| (top left), ν 7→ |Û2(2πν)| (top right), and
ν 7→ |Û3(2πν)| (down central): structural displacements computed with the linear ROM (blue line or relatively smooth down grey line for black and
white printing) and structural displacements computed with the nonlinear ROM (red line or irregular top grey line for black and white printing).

this is due to the fact that the energy of the responses in the frequency band Be is partially transferred outside this
band yielding an apparent damping by this transfer of mechanical energy. The dynamical behavior of the structure is
thus significantly damped as it can be seen that the resonances levels inside Be are strongly damped by a factor up to360

100. Note that the frequency spreading effect is again observed for the resonance located at 872 Hz.
For i = {1, 2}, Figure 11 displays the graph of ν 7→ |Ĥi(2πν)| for the free-surface elevation computed with the linear

ROM and with the nonlinear one. It can be seen an unexpected response in frequency band [0 , 150] Hz (below the
excitation band Be); the first sloshing modes are excited by the energy transferred in this band, [0 , 150] Hz, due to the
structural nonlinearities. Let us note that, for the same reasons as the ones given for the structural displacements, an365

apparent damping by a factor up to 100 occurs in excitation band Be. In Figure 12, when zooming in the sub-frequency
band [0 , 150] Hz, one can see that numerous isolated sloshing resonances of high amplitude appear. It is essential
to underline that there is a high-amplitude low-frequency free-surface motion while no external excitation exists in
this very low-frequency band. The experimental results presented in (Lindholm et al., 1962; Abramson et al., 1966),
concerning the unexpected free-surface elevation of liquid in a vibrating cylindrical shell, have been reproduced in the370

present work that clearly exhibits the same unexpected phenomena. The understanding of such complex mechanisms
requires to quantify the influence of the different coupling operators involved in the dynamical behavior of the free
surface. The investigations that have been done for understanding this phenomenon show that the dynamical response
of the free surface is weakly sensitive to the coupling operator Cηu, meaning that the direct energy transfer between
the structure and the free surface is almost negligible. The complete analysis of this phenomenon is detailed in the375

next section.
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Figure 11: Linear and nonlinear responses for the free-surface elevation. Graphs of ν 7→ |Ĥ1(2πν)| (left) and ν 7→ |Ĥ2(2πν)| (right): free-surface
elevation computed with the linear ROM (blue line or relatively smooth down grey line for black and white printing) and free-surface elevation
computed with the nonlinear ROM (red line or irregular top grey line for black and white printing).

Figure 12: Zoom of the linear and nonlinear responses for the free-surface elevation. Graphs of ν 7→ |Ĥ1(2πν)| (left) and ν 7→ |Ĥ2(2πν)| (right)
displayed over the frequency band [0 , 150] Hz: free-surface elevation computed with the linear ROM (blue line or down grey line for black and
white printing) and free-surface elevation computed with the nonlinear ROM (red line or top grey line for black and white printing).

4. Discussion and conclusion

In this paper, we have simulated, using with a large-scale nonlinear computational model, an experimental setup
made up of a thin elastic cylinder partially filled with water, for which the available experimental results are limited to
the eigenfrequencies of the structure in vacuo but for which unexpected high-amplitude of sloshing phenomenon has380

been experimentally observed at low-frequency for a high-frequency excitation, which cannot be explained by a linear
model. The updated computational model that has been used takes into account the geometrical nonlinearities of the
tank, the compressibility of the liquid, the sloshing and the capillarity effects with an adapted contact angle condition.
The geometrical nonlinearities of the tank allow for highlighting the phenomenon observed in the experiments.

Considering the numerical results obtained, it appears that the high-amplitude motion of the free surface in the385

very-low frequency band outside the frequency band of excitation, can be explained by the the couplings illustrated in
Figure 13 and explained hereinafter. The geometrical nonlinearities of the structure induce a transfer of the vibrational
energy from the high-frequency band of excitation in the very low- and low-frequency band (outside the frequency
band of excitation). As the first acoustic modes of the liquid is greater that the upper bound of the high-frequency
band of excitation, the acoustic fluid has a quasistatic behavior in the low-frequency band. Therefore, the energy390

transferred by the structure in the very low-frequency band is transmitted through the acoustic liquid to the first
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very low-frequency sloshing modes. This means that the observed phenomenon appears to be an indirect transfer of
energy from the structure to the free surface through the acoustic liquid and is due to the presence of the geometrical
nonlinearity of the elastic tank.

Figure 13: Scheme of the energy transfers between the nonlinear structure, the linear acoustic liquid, and the linear free surface, which explain the
excitation of the first sloshing modes in the the very-low frequency band that is outside the frequency band of the external excitations.
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