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An interface of finite thickness that is elastic and deforms near a solid substrate in a viscous fluid is
a situation relevant to various dynamical processes in biology, geophysics and engineering. Here, we
study the relaxation dynamics of an elastic plate resting on a thin viscous film that is supported by a
solid substrate. By combining scaling analysis, numerical simulations and experiments, we identify
asymptotic regimes for the elastohydrodynamic leveling of a surface perturbation of the form of a
bump, when the flow is driven by either the elastic bending of the plate or thermal fluctuations. In
both cases, two distinct regimes are identified when the bump height is either much larger or much
smaller than the thickness of the pre-wetted viscous film. Our analysis reveals a distinct crossover
between the similarity exponents with the ratio of the perturbation height to the film height.

I. INTRODUCTION

The motion of an elastic sheet supported by a thin layer of viscous fluid is a phenomenon that manifests itself in
processes spanning wide ranges of time and length scales, from e.g. magmatic intrusion in the Earth’s crust [1, 2],
to fracturing and crack formation in glaciers [3], to pumping in the digestive and arterial systems [4–6], or the
construction of 2D crystals for electronic engineering [7]. Elastohydrodynamic flows have been studied in model
geometries in order to understand their generic features and the inherent coupling between the driving force from
the elastic deformations of the material and the viscous friction force resisting motion [8–18]. For instance, when an
elastic sheet deforms onto a wall pre-wetted by a thin viscous film, the dynamics of the advancing front is dictated by
the local curvature of the interface [19]. This elastohydrodynamic relaxation is reminiscent of the capillary spreading
of a viscous drop onto a solid substrate [20–23]. Similar to capillary flows, elastohydrodynamic relaxation processes
are not only limited to very thin pre-wetted films. In fact, an elastic sheet with zero spontaneous curvature but with
an initial shape of a bump (Fig. 1) with a height much larger than the pre-wetted viscous film will relax towards a flat
equilibrium state. Inevitably, the system must then crossover from a situation where the bump height is larger than
the pre-wetted film height, to a situation where instead the pre-wetted film becomes thicker than the bump. We are
wondering how the elastohydrodynamic leveling changes with the ratio between the bump height and the pre-wetted
film thickness. In particular, are there different asymptotic regimes, and how do we transition from one to another?
At the nanoscale, thermal fluctuations are expected to contribute and may even dominate the dynamics [24–28], which
we would like to quantify further in the leveling dynamics. To answer these questions, we combine numerical solutions
of a mathematical model based on the lubrication theory [29] with scaling analysis and experiments.

II. MATHEMATICAL MODEL AND NUMERICAL PROCEEDURE

We consider the model system depicted in Fig. 1, where we focus on a system where gravity can be neglected, i.e.,

the bump height is smaller than the elasto-gravity length [8]. Only situations where the height ĥ(x, t) of the fluid
film is small compared its horizontal extent and where the film slopes are small, i.e. ∂h(x, t)/∂x� 1, are considered.
We describe the viscous flow between the plate and the solid substrate through lubrication theory [29]. When the
deflection of the elastic plate is small compared to its thickness d, we can neglect stretching and the pressure reduces

to p(x, t) = B∂4ĥ(x, t)/∂x4, where B = Ed3/[12(1− ν2)] is the bending rigidity of the plate, E is the Young modulus
and ν is the Poisson ratio [30]. By assuming incompressible flow and imposing no-slip conditions at the two solid
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FIG. 1. Schematic of the system. An elastic plate is supported by a viscous film on a solid substrate, in air. The elastic plate
has a thickness d and a width b. Initially, the overall profile presents a localized bump, whose profile is even in the x-direction
and invariant in the y-direction. Far away from the perturbation, the viscous film has a constant thickness ε. In the bump
region, the height profiles ĥ(x, t) and h(x, t) = ĥ(x, t)−ε of the viscous film and the bump, respectively, vary with the horizontal
position x and time t, and remain symmetric about x = 0. At x = 0, we define the characteristic height h(x = 0, t) = h0(t) of
the bump and its typical radius R(t), with initial values given as h0(t = 0) = hi and R(t = 0) = Ri.

substrates, one obtains the governing equation for the evolution of the height profile (see e.g. Ref. [8]) and we consider
a one-dimensional geometry as we assume no variations along the y-direction

∂ĥ(x, t)

∂t
=

∂

∂x

[
B

12µ
ĥ3(x, t)

∂5ĥ(x, t)

∂x
+ Γĥ3/2(x, t)η(x, t)

]
, (1)

where µ is the fluid’s dynamic viscosity. At small scales, thermal fluctuations can also influence the dynamics,
which is described by the last term in Eq. (1), originating from an additional symmetric random stress term in the

Navier-Stokes equations [31]. The amplitude of this term is Γ =
√
kBTA/(6µb) where kB is the Boltzmann constant

and TA is the ambient temperature, b is the width of the plate along the y-direction, and η(x, t) is modelled as
a spatiotemporal Gaussian white noise such that 〈η(x, t)〉 = 0 and 〈η(x, t)η(x′, t′)〉 = δ(x − x′)δ(t − t′), where 〈 〉
indicate average quantities. We non-dimensionalize Eq. (1) by: X = x/Ri, Ĥ(X,T ) = ĥ(x, t)/hi, T = tBh 3

i /(12µR 6
i ),

and Θ(X,T ) = η(x, t)
√

12µR 7
i /(Bh

3
i ). When Γ = 0, this non-dimensionalization procedure gives us a parameter-

free partial differential equation for Ĥ(X,T ). When Γ > 0, the non-dimensional number N =
√

2kBTAR 3
i /(Bh

2
i b)

appears as a pre-factor in front of the stochastic term, and N2 measures the ratio between thermal and bending
energies.

When we solve the dimensionless version of Eq. (1) numerically with the finite element method we split it into three

coupled equations for: the bump profile H(X,T ) = Ĥ(X,T ) − ε/hi, the linearized curvature ∂2H(X,T )/∂X2, and
the bending pressure ∂4H(X,T )/∂X4. These fields are discretized with linear elements and solved by using Newton’s
method from the FEniCS library [32]. For the deterministic case N = 0, an adaptive time stepping routine has been
used with an upper time step limit of ∆T = 0.001 and a discretization in space ∆X ∈ [0.001; 0.01]. For the stochastic
case N > 0, we have used a constant time step ∆T = 0.001, together with a discretization in space ∆X = 0.0025.
When N = 0, we impose the initial condition: H(X,T = 0) = (1−X2)2 for −1 ≤ X ≤ 1 [19] and H(X,T = 0) = 0
otherwise. When N > 0, we impose the initial condition: H(X,T = 0) = 1 − tanh(50X2) with a shorter horizontal
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length scale in order to reduce the computational time and we checked that using this initial condition for N = 0 does
not affect the results presented here. We further impose the following boundary conditions at the boundary ∂Ω of
the numerical domain: H

(
X ∈ ∂Ω, T ) = H

(
X ∈ ∂Ω, 0), ∂2H(X ∈ ∂Ω, T )/∂X2 = 0, and ∂4H(X ∈ ∂Ω, T )/∂X4 = 0.

The noise Θ(X,T ) is implemented independently at each nodal point and time step using the ”random” class from
the Numpy library [33], with zero mean and unit variance.

III. EXPERIMENTAL PROCEDURE

The samples consist of a fiber of liquid polystyrene (PS) with a glass-transition temperature Tg, PS ≈ 100◦C
deposited on a PS film supported on a silicon (Si) substrate. These samples are capped by a thin sheet of polysulfone
(PSU) with Tg, PSU ≈ 180 ◦C. The sample preparation is carried out as follows: PS fibers (with number-averaged
molecular weight Mn = 15.8 kg/mol, and polydispersity index PDI = 1.05, Polymer Source Inc., Canada) are pulled
from the melt at 175◦C by using a glass rod. Thin PS films are spin cast from a toluene solution onto 10×10 mm2 Si
substrates, leading to a thickness of 25 to 380 nm that we measure by using ellipsometry (Accurion, EP3). The films
are annealed at 110◦C for at least 12 hours in vacuum to remove any residual solvent and to relax residual stresses.
The PS fibers are then transferred onto the PS films and briefly heated above Tg, PS. The heating allows the PS to
flow, thereby resulting in a bump. Thin PSU films (Mn ≈ 22 kg/mol, Sigma-Aldrich) are prepared by spin casting
from a cyclohexanone solution onto freshly cleaved mica substrates (Ted Pella, USA). The PSU films have a thickness
of ≈ 160 nm, measured using ellipsometry, and are annealed in vacuum at 200◦C for at least 12 hours. The PSU films
are floated onto water and then transferred onto a supporting apparatus (details are found in Ref. [34]), held only by
the film edges. These freestanding PSU films can be relaxed to an unstrained state ensuring no in-plane tension and
in the last step transferred onto the PS sample.

After the above preparation, the samples are annealed on a hotstage (Linkam, UK) at 130◦C, which is above Tg, PS

but below Tg, PSU. This makes the PS to become a viscous liquid while the capping PSU film remains an elastic solid,
composing the effective two-dimensional setup described in Fig. 1. The height profile is imaged during annealing using
optical microscopy with a red laser line filter (λ = 632.8 nm, Newport, USA), which creates interference fringes in the
region of the bump, as shown in Fig. 2(a), due to the reflected light from the Si substrate. Each interference fringe
corresponds to a change in height of λ/(4n), where n ≈ 1.57 is the average index of refraction of the two polymers
that make up the sample (nPS=1.53 and nPSU=1.61). This allows the bump profile h(x, t) to be reconstructed by
fitting an even power polynomial to the fringe data, as shown in Fig. 2(b) and allows us to track the height dynamics
shown in Fig. 2(c). Such profiles can then be used to track the leveling dynamics, and to extract in particular the
evolution of the height h0(t) of the bump with time for various initial geometries.

IV. RESULTS

A. Elastohydrodynamic leveling

We first start by investigating the elastohydrodynamic leveling in the absence of thermal fluctuations (N = 0). In
Fig. 3 we show the numerical solutions of the dimensionless version of Eq. (1) for N = 0 and we can see that the
aspect ratio hi/ε controls both the time scale for leveling and the detailed features of height profile. The smaller hi/ε,
the faster the dimensionless leveling process. Also, the dip created near the advancing front of the perturbation is
enhanced both in magnitude and lateral extent for smaller hi/ε. We remark that for each initial aspect ratio there
is a transition period of a few numerical time steps preceding the onset of the leveling process. This period is not
included in Fig. 4 as it is considered as an influence created by the initial condition, but does not influence the later
dynamics. For hi/ε = 43, the numerical height profiles are further compared with our experiments, which are found
to be in good agreement. We recall here that the elastic plate is floating on the liquid film and has edges that are free
to move. Therefore, the pressure contribution from bending still largely dominates any contribution from stretching,
where Eq. (1) is still valid.

We now turn to a scaling analysis of Eq. (1) for N = 0. When h0(t)/ε � 1, the equation can be linearized and
reduces to 12µ∂h/∂t = Bε3∂6h/∂x6 and we deduce the long-term scaling for the temporal evolution of the horizontal
length of the bump: R(t) ∼ [Bε3t/(12µ)]1/6. Since there is area conservation in the (x, z)-plane, we assume R(t)h0(t)
to be constant, that is evaluated to Rihi at t = 0. By combining these scaling relations we get for h0(t)/ε� 1

h0(t)

ε
∼
(τ
t

)1/6

, (2)
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FIG. 2. (a) Typical optical microscopy images showing the temporal evolution of the interference fringes due to the liquid
bump capped by the elastic plate (20 µm scale bar). (b) Intensity profile averaged along the y-direction of the bump at a given
time t, and corresponding reconstructed bump profile at 400 minutes. (c) Temporal evolution of the bump profile.

where τ = 12µh 6
i R

6
i /(Bε

9) is the characteristic time scale for the bending-driven leveling dynamics. When h0(t)/ε�
1, we need to match the curvature of a traveling-wave solution localized near the advancing front with the quasi-static
solution [19], i.e., constant pressure p in the bump, leading to [27]

h0(t)

ε
∼
(τ
t

)2/17

. (3)

By balancing the two asymptotic predictions above, we expect the crossover between them to occur around t/τ ≈ 1.
In addition, these asymptotic regimes suggest that h0(t)/ε is essentially a function of t/τ only, independent of the
value of hi/ε in particular.

In order to test our scaling predictions, we compute numerical solutions of the dimensionless version of Eq. (1) for
N = 0, with hi/ε ∈ [10−2, 103] and extract h0(t)/ε as a function of t/τ . These numerical results are plotted in Fig. 4
and compared to the experimental data. For each sample, the experimental data is matched to the numerical data
through one free fitting parameter α in front of the time scale τ . The values of the fluid viscosity and elastic Young
modulus are highly sensitive to temperature in the experiments, and we estimate them to be µ ≈ 104 Pa.s [35, 36] and
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FIG. 3. (a-b) Bump height profiles for an initial aspect ratio hi/ε = 43, from a numerical solution and an experiment at two
dimensionless times T as indicated, which correspond respectively to t = 37 min and t = 416 min. The geometrical parameters
are hi = 2.9 µm, Ri = 16.5 µm, and ε = 67 nm. In order to account for the experimental uncertainties in the geometrical
parameters, the experimental time t is divided by a free fitting factor α = 0.13. Note that, specifically for these figures, the
initial condition for the numerical solution was fixed by a curve fitting of the actual experimental profile at t = 13 min. (c-d)
Bump height profiles for an initial aspect ratio hi/ε = 0.1, from a numerical solution at two dimensionless times T , as indicated,
chosen so that the central heights H(X = 0, T ) match the ones in the top row.

E ≈ 2.6 GPa [37], respectively. Since all experiments were carried out at the same temperature and with the same
polymer, sample-to-sample variations in τ result only from uncertainties in the geometrical parameters hi, Ri, d, and
ε. The obtained α values are 0.13, 0.7, and 1.3 for the three samples and each of these values are reasonably close to
unity. More importantly, the sample-to-sample variations in α do not exceed a factor of 10, which is well within the
expected relative error arising from the high sensitivity of τ to the geometrical parameters. The general agreement
between the experimental data and the numerical predictions is good, over about 5 orders of magnitude in t/τ . The
systematic early-time tail in the experimental data might be attributed to the initial compressive thermal stresses in
the elastic layer, which arise due to the rapid heating of the samples from room temperature to T = 130◦C, which
relax prior to leveling and the time needed for the initial shape to enter the asymptotic regime [22, 38].

The master curve in Fig. 4 confirms that h0(t)/ε is a function of t/τ . Furthermore, the two scaling regimes predicted
above are indeed present, with pre-factors close to unity, and the crossover between the two being located near t/τ ≈ 1
as predicted. Any bump that initially starts in a thin pre-wetted film regime h0(t)/ε� 1 will eventually crossover to
a thick-film regime h0(t)/ε� 1, with the corresponding power laws in time. As a final remark, a similar combination
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FIG. 4. Non-dimensional bump height as a function of dimensionless time in the bending case, for various initial values
of hi/ε ∈ [10−2; 103]. The coloured diamond-shaped markers are rescaled data points from the numerical solutions of the
dimensionless version of Eq. (1) with N = 0, and the black circle-shaped markers are scaled experimental data points. The
exponents of the two asymptotic regimes of Eqs. (2) and (3) are indicated with triangles. The inset provides a zoom in the
region containing the experimental data for the three samples, with initial aspect ratios hi/ε = 30, 43, 56; corresponding
respectively to ε = 50, 67, 26 nm; hi = 1.52, 2.9, 1.48 µm; and Ri = 9.6, 16.5, 9.9 µm. The uncertainties in all experimental
length scales are about 5%. To compensate for those, the characteristic time τ for each sample is multiplied by a free fitting
factor α = 0.7, 0.13, and 1.3, respectively.

(not included here) of numerical simulations and scaling analysis can been performed for an axisymmetric geometry,
leading to h0(t) ∼ t−2/11 for hi/ε� 1, and h0(t) ∼ t−1/3 for hi/ε� 1.

B. Stochastic leveling

We investigate here the leveling process when it is dominated by thermal fluctuations (N > 0). As shown in
Fig. 5, the numerical solutions suggest that the aspect ratio hi/ε is again essential, as it sets the time sale for leveling
where the smaller hi/ε, the faster the dimensionless leveling process. Moreover, by comparison with the deterministic
(N = 0) case in Fig. 3, the stochastic (N > 0) profiles exhibit spatiotemporal fluctuations and adopt different average
shapes and leveling dynamics.

To go further, we propose a scaling analysis of Eq. (1), inspired by Ref. [22]. We consider specifically the N � 1
limit, for which the thermal fluctuations are the dominant driving contribution to the dynamics and we assume that
we can neglect the bending term so that Eq. (1) reduces to ∂h/∂t = Γ∂[(ε + h)3/2η]/∂x. We consider the average
quantities 〈h0(t)〉 and 〈R(t)〉, where we invoke a ∼ (tx)−1/2 scaling [24] for the root mean square value of the averaged



7

−1.0 −0.5 0.0 0.5 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
×10−5

0.00

0.25

0.50

0.75

1.00

T

〈H
(X

,T
)〉

X

hi/ε = 10 hi/ε = 0.2

FIG. 5. Contour plot of the dimensionless bump height profile 〈H(X,T )〉 as a function of both the dimensionless position
X and time T , as obtained from numerical solutions of the dimensionless version (see text) of Eq. (1), with N = 5, and for
hi/ε = 10 (left) or hi/ε = 0.2 (right). The thick solid lines indicate 〈H(X,T )〉 = 0.03 as an arbitrary reference.

noise over a space interval x and a time interval t. By assuming that the average area conservation in the (x, z)-plan
can be expressed as 〈h0(t)〉〈R(t)〉 ∼ hiRi, we get

〈h0(t)〉
ε

[
1 +
〈h0(t)〉
ε

]3

∼ τΓ
t

(4)

where τΓ = 6µh 3
i R

3
i b/(kBTAε

4) is the characteristic time scale for the stochastic leveling dynamics. Interestingly,
Eq. (4) describes a complete crossover between two asymptotic regimes in the stochastic leveling dynamics – a situation
that is reminiscent of the bending case but with different exponents and time scale: for 〈h0(t)〉/ε � 1, we obtain
〈h0(t)〉/ε ∼ (τΓ/t)

1/4, and thus we recover 〈h0(t)〉 ∼ t−1/4 [24]; while for 〈h0(t)〉/ε� 1, we get 〈h0(t)〉/ε ∼ τΓ/t. We
expect the crossover between the two asymptotic regimes to occur around 〈h0(t)〉/ε ≈ 1, i.e. around t/τ ≈ 1/8.

In order to test the prediction in Eq. (4), we compute the numerical solution of the dimensionless version of Eq. (1)
for 5 ≤ N ≤ 8, with hi/ε ∈ [10−1, 102]. By averaging over a minimum of 30 realizations, we study specifically 〈h0(t)〉/ε
as a function of t/τΓ and the results are plotted in Fig. 6. The data from the numerical solutions is in good agreement
with Eq. (4) for all 〈h0(t)〉/ε, with no adjustable parameter. Our results highlight that Eq. (4) gives an accurate
prediction for the stochastic leveling dynamics and show that the missing pre-factor is close to unity. Finally, in order
to highlight further the underlying self-similarity associated with each of the two asymptotic regimes, the insets of
Fig. 6 show the corresponding full bump height profiles rescaled according to Eq. (4). In each asymptotic regime the
height profiles collapse onto a universal shape and confirm the overall self-similarity in the dynamics.
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FIG. 6. Non-dimensional bump height as a function of dimensionless time in the stochastic leveling dynamics, for different
initial values of hi/ε ∈ [10−1, 102]. The coloured diamond-shaped markers are rescaled data points from the numerical solutions
of Eq. (1) with 5 ≤ N ≤ 8. Each data set is an average from minimum 30 numerical solutions. The solid red line corresponds
to Eq. (4) with unit prefactor. The insets show rescaled bump height profiles for hi/ε = 100 with T ∈ [1, 10] × 10−3 (lower
left); and for hi/ε = 0.1 with T ∈ [4, 4.6]× 10−3(upper right).

V. CONCLUSION

We have described the elastohydrodynamic and stochastic leveling of an elastic plate placed atop a thin viscous
film. By combining numerical solutions, scaling analysis, and experiments, we identified various canonical regimes.
Our results highlighted the importance of the driving mechanism, either by elastic bending of the plate or thermal
fluctuations and the influence of the aspect ratio of the bump height to the film height. For each of these two driving
mechanisms, a crossover between two distinct asymptotic regimes is controlled by the aspect ratio. These findings
can be helpful to explain relaxation processes in elastohydrodynamic settings, which can be found in biological,
engineering, or geological processes.
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