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11 novembre 1918, F-69622 Villeurbanne cedex, France.

Abstract
In this paper, we offer a proof for a family of functional inequalities interpolating between

the Poincaré and the logarithmic Sobolev (standard and weighted) inequalities. The proofs
rely both on entropy flows and on a CD(ρ, n) condition, either with ρ = 0 and n > 0, or
with ρ > 0 and n ∈ R. As such, results are valid in the case of a Riemannian manifold,
which constitutes a generalization to what was proved in [BGS18, Ngu18].

Keywords: Curvature-dimension condition, Poincaré inequality, Beckner inequalities, En-
tropy flows.

1 Introduction
The family of the Beckner inequalities interpolate between the Poincaré and the logarithmic
Sobolev inequalities. For instance, let dµ = e−V dx be a probability measure on Rd, where
V : Rd → R is a smooth function satisfying ∇2V ≥ ρ Id for some ρ > 0. Then, Bakry-Émery’s
curvature-dimension condition implies that, for any p ∈ (1, 2], and any nonnegative smooth
function f ,

p

p− 1

[∫
f2dµ−

(∫
f2/pdµ

)p]
≤ 2

ρ

∫
|∇f |2dµ, (1)

these results can be found in [BGL14, Sec. 7.6.2]. When p = 2, that is the usual Poincaré
inequality for the measure µ and when p → 1 the inequality becomes the logarithmic Sobolev
inequality, ∫

f2 log
f2∫
f2dµ

dµ ≤ 2

ρ

∫
|∇f |2dµ,

both optimal when µ is the standard Gaussian measure.
Similar inequalities have first been proved by Bidaut-Véron-Véron in [BV91] for the sphere,

using the method proposed in [GS81]. In this article, we refer to them as Beckner inequalities,
in reference to [Bec89], where Beckner proves inequallity (1) for the Gaussian measure. They are
sometimes called convex inequalities.

These inequalities play a major role among functional inequalities for probability measures,
being useful to understand both asymptotic behaviour of parabolic equations, and also the geom-
etry of measured spaces. It is interesting to notice that for the Gaussian measure, although the
∗gentil@math.univ-lyon1.fr
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Poincaré and the logarithmic Sobolev inequalities are optimal and have nonconstant extremal
functions, whenever p ∈ (1, 2), Beckner inequalities do not have extremal functions, and even
admit various improvements (see for instance [AD05, BG10, DEKL13]).

Other attractive examples appear for measures which satisfy a (weighted) Poincaré inequality
but no logarithmic Sobolev inequality. More precisely, let ϕ : Rd 7→ R∗+ be a smooth and positive
function such that for any β > d/2,

∫
ϕ−βdx < +∞. Now, define

dµβ = cβϕ
−βdx, (2)

where cβ is a normalization constant such that µβ is a probability measure on Rd. In [BGS18],
the authors prove that, when ϕ = 1 + |x|2 then for any β ≥ d+ 1 and p ∈ [p∗, 2].

p

p− 1

[∫
f2dµβ −

(∫
f2/pdµβ

)p]
≤ 1

β − 1

∫
|∇f |2ϕdµβ , (3)

where p∗ = 1+1/(β−d). This inequality is rich enough to be equivalent to the Sobolev inequality
on the sphere. This result has then been extended by N’Guyen in [Ngu18], where the author
proves similar inequalities in Rd with a function ϕ satisfying the convex assumption ∇2ϕ ≥ c Id
for some constant c > 0. The only difference with inequality (3) is that the constant (β − 1)−1,
in front of the right hand side, becomes 2(c(β − 1))−1, which is consistant with previous results,
since c = 2 for ϕ : x 7→ 1 + |x|2. In that regard, N’Guyen’s result is more general, but there
exists a limitation: the range of the parameter p for which the inequality remains valid is strictly
smaller.

We would like to extend Beckner’s inequality more precisely inequality (3) in the general
context of curvature-dimension conditions. The goal is twofold. First, we extend some results
of [BGS18, Ngu18] in the context of a Riemannian manifold. Then, under a curvature-dimension
condition CD(ρ, n) with n negative, we also prove Beckner inequalities. We recover for instance
the weighted Poincaré inequality for generalized Cauchy distributions.

More precisely, we prove functional inequalities under two kinds of assumptions, the curvature-
dimension conditions CD(0, n) with n > 0 or CD(ρ, n) with ρ > 0 and n ∈ R. Let us give here
a flavour of our results.

• In Theorem 3.1, we prove the following Poincaré inequality under CD(0, n), n > 0. Let
(M, g) be a smooth d-dimensional Riemannian manifold with a nonnegative Ricci curvature
and let ϕ be a positive function such that Hess(ϕ) ≥ cg, c > 0. Then for any function f
and β ≥ d+ 1,

Varµϕ,β (f) ≤ 1

c(β − 1)

∫
Γ(f)ϕdµϕ,β , (4)

where µϕ,β = Zϕ,βϕ
−βdx is a probability measure. This inequality generalizes previous

results on the subject.

• In Theorem 4.4, we prove a family of Beckner inequalities under CD(ρ, n) with ρ > 0 and
n ∈ R. On a d-dimensional Riemannian manifold, for any nonnegative function f ,

p

p− 1

(∫
f2dµ−

(∫
f2/pdµ

)p)
≤ 2

n− 1

ρn

∫
Γ(f)dµ.

– for all p ∈ (1, 2] if n ≥ d,
– for all p ∈ [p∗, 2] if n < −2, where p∗ = 1 + 1−4n

2n2+1 .
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In this context, µ is the reversible measure and Γ is the carré du champ operator. The use
of a negative dimension is new, up to our knowledge.

The article is organized as follows. In the next section, we state various definitions useful for
the rest of the paper. In Section 3 we prove weighted Beckner inequalities, like inequality (4)
under CD(0, n) conditions, n > 0. The Φ-entropy inequalities are also studied in this context.
Section 4 is devoted to Beckner’s inequality under the curvature-dimension condition CD(ρ, n)
conditions with ρ > 0 and n ∈ R. Finally in Section 5, we apply our methods in the one
dimensional case, giving another way to prove optimal weighted Poincaré inequality on R.

Acknowledgements: This research was supported by the French ANR-17-CE40-0030 EFI
project. The authors warmly thank L. Dupaigne for discussing the problem and proofreading a
draft version of this work.

2 Settings and definitions
Consider a connected, C∞ Riemannian manifold (M, g) of dimension d and the Laplace-Beltrami
operator ∆g given by, in a local chart

∆gf =
1√
|g|
∂i

(√
|g|gij∂jf

)
,

where gij are the components of the inverse metric tensor, g−1. In this formula and in what
follows, the Einstein notation was used, where the summation on indices is implied.

On this manifold, define the symmetric diffusion operator L = ∆g + Γ∆g (V, .), where Γ∆g is
the carré du champ operator (the definition of which is recalled below) associated to ∆g, and V
is a C∞ function. Most of the notions and results related to this operator Γ can be found in the
quite thorough [BGL14].

Definition 2.1 (Carré du champ operator). Given a differential operator L on a smooth manifold
M , the carré du champ operator ΓL is a symmetric bilinear map from C∞(M) × C∞(M) onto
C∞(M). It is defined by

ΓL(a, b) =
1

2
(L(ab)− aLb− bLa).

An important example to keep in mind is the manifold (Rd, Id), on which the Laplace-Beltrami
operator is the usual Laplacian, and its carré du champ operator is, for any smooth functions a
and b,

Γ∆(a, b) = ∇a · ∇b.

More generally, respectively using the Levici-Vita connection ∇, and in a local chart, operator
Γ∆g is given by

Γ∆g (a, b) = g(∇a,∇b) = gij∂ia∂jb.

We iterate this definition to get the second order operator, Γ2.

Definition 2.2 (Iterated carré du champ operator). Given a differential operator L on a smooth
manifoldM , the iterated carré du champ operator ΓL2 is a symmetric bilinear map from C∞(M)×
C∞(M) onto C∞(M) defined by

ΓL2 (a, b) =
1

2

(
L(ΓL(a, b))− ΓL(a, Lb)− ΓL(b, La)

)
.
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We point out that if L = ∆g + Γ∆g (V, .), then ΓL = Γ∆g : the drift part of L, namely V , does
not appear in this operator. For this reason, and for readability’s sake, we shall simply use the
notation Γ instead of Γ∆g in what follows, as long as it is not ambiguous. We will also write
Γ(a, a) = Γ(a) for brievety. We will do the same for Γ2, but one should keep in mind that the
drift does play a role in Γ2, and ΓL2 6= Γ

∆g

2 . The idea behind the carré du champ operator is
that it contains all the information about the geometry of the space (M, g), and it thus proves
worthwhile to stick to its use in the (sometimes heavy) calculations. Generally, a formula that is
valid for the standard Laplacian on Rd involving only the Γ operator will remain valid on more
general manifolds. For instance, if a, b, and c are smooth functions defined on Rd, the Hessian
of a may be expressed in the following fashion

Hess(a)(∇b,∇c) =
1

2
(∇b · ∇(∇a · ∇c) +∇c · ∇(∇a · ∇b)−∇a · ∇(∇b · ∇c)),

hence the following lemma

Lemma 2.3 (Hessian of a function). Let a, b, c be smooth functions on (M, g). Then, the Hessian
of a is given by

∇2a(∇b,∇c) =
1

2
(Γ(b,Γ(a, c)) + Γ(c,Γ(a, b))− Γ(a,Γ(b, c))),

where Γ is the carré du champ operator associated to the Laplace-Beltrami operator ∆g.

Proof. Since the Hessian is symmetric and bilinear, it is sufficient to prove that

∇2a(∇b,∇b) = Γ(b,Γ(a, b))− 1

2
Γ(a,Γ(b)).

By definition,

Hess(a)(∇b,∇b) = g(∇∇b∇a,∇b)
= ∇∇bg(∇a,∇b)− g(∇a,∇∇b∇b)
= g(∇b,∇g(∇a,∇b))− g(∇a, g(∇∇b,∇b))

= g(∇b,∇g(∇a,∇b))− 1

2
g(∇a,∇g(∇b,∇b))

which is the claimed formula.

In the development of this article, we shall assume so-called curvature-dimension conditions
on the different diffusion operators:

Definition 2.4 (Curvature-dimension conditions CD(ρ, n)). A diffusion operator L is said to
satisfy a CD(ρ, n) condition for ρ ∈ R and n 6= 0, if for every smooth function f ,

Γ2(f) ≥ ρΓ(f) +
1

n
(Lf)2. (5)

For example, the Bochner-Lichnerowicz formula implies that the Laplace-Beltrami operator
∆g satisfies the CD(ρ, n) condition with n ≥ d and ρ ∈ R whenever the Ricci curvature is
uniformly bounded form below by ρg, [BGL14, Sec. C.6].

Denoting by dx the Riemannian measure associated to (M, g), we define µ to be the reversible
measure associated to L, i.e. dµ = ZV e

−V dx, where ZV a normalizing constant such that µ is
a probability measure if finite, and ZV = 1 otherwise. The triple (M,Γ, µ) is a Markov triple,
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as defined in [BGL14, Sec. 3.2]. Then, for any smooth functions a, b such that the integrals are
well defined, we have the following integration by parts formula:∫

M

Γ(a, b)dµ = −
∫
M

aLbdµ = −
∫
M

bLadµ,

a notable consequence of which is that
∫
M
Ladµ = 0.

Remark 2.5. We could have chosen to study a general symmetric Markov semigroup, for instance
a generic Markovian triple (E,Γ, µ) as proposed in [BGL14]. However, assuming L is a symmetric
diffusion operator in a smooth Riemannian manifold, which is the case of interest for us, there
exists a metric g̃ and a function V such that the operator can be rewritten L = ∆g̃ + Γ∆g̃ (V, .),
so we are not, in fact, losing any generality.

3 Weighted inequalities under nonnegative Ricci curvature
For a more pedestrian approach, we first explain the case of the Poincaré inequality, only to
tackle more general inequalities later on.

3.1 Weighted Poincaré inequality
Let ϕ be a C2 positive function on M such that

∇2ϕ ≥ cg (6)

for some positive constant c. For β ∈ R such that ϕ−β is integrable with respect to µ, let
µϕ,β = Zϕ,βϕ

−βµ, with the constant Zϕ,β such that this new measure is a probability measure.
The main result is the following:

Theorem 3.1 (Weighted Poincaré inequality). Assume that the diffusion operator L satisfies a
CD(0, n) condition with n ≥ d, and fix a real number β ≥ n + 1. Then for all smooth bounded
functions f ,

Varµϕ,β (f) =

∫
f2dµϕ,β −

(∫
fdµϕ,β

)2
≤ 1

c(β − 1)

∫
Γ(f)ϕdµϕ,β . (7)

Remark 3.2. As explained in Section 2, the main example to keep in mind is the Laplace-
Beltrami operator on a Riemannian manifold with a nonnegative Ricci curvature, in which case
µϕ,β = Zϕ,βϕ

−βdx.
This inequality happens to be optimal whenever (M, g) = (Rd, Id), and ϕ(x) = 1+ |x|2, where

the optimal constant is reached for projectors x 7→ xi, 1 ≤ i ≤ d. This optimal case has been
proved in [BBD+07] and also in [Ngu14, ABJ16] with different methods.

Proof. Fix β ∈ R\{2}, and define

L := ϕL− (β − 1)Γ(ϕ, .).

Note that the operator L is, in fact, of the form L = ∆g + Γ∆g (V , .), where g = ϕ−1g and
V = V + (d/2 − β) logϕ, so the operator we are considering here is obtained from the first one
through a conformal transformation. In what follows, everything written with an overline relates
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to objects associated to the operator L or the manifold (M, g). For instance, the carré du champ
operator is given by Γ = ϕΓ, its reversible measure is µ̄ = µϕ,β , and

Γ2(f) = ΓL2 (f) = ϕ2Γ2(f) + (β − 1)ϕ∇2ϕ(∇f,∇f) +
Γ(f)

2
(ϕLϕ− (β − 1)Γ(ϕ))

+ ϕΓ(ϕ,Γ(f))− ϕLfΓ(f, ϕ), (8)

a proof of which can be stringed together with information from [BGL14, Sec. 6.9.2], for instance.
Now, fix f , a smooth and bounded function onM , and consider the Markov semigroup (ft)t≥0,

solution of the initial-value system{
∂tft = Lft on (0,+∞)×M,

f0 = f on M.
(9)

Consider the variance of ft along the flow:

Λ(t) := Varµ̄(ft) =

∫
f2
t dµ̄−

(∫
ftdµ̄

)2

=

∫
f2
t dµ̄−

(∫
fdµ̄

)2

,

because L is mass-preserving. Then, we use the following estimate:

Lemma 3.3. If β > 1 and β 6= 2, then for all t ≥ 0,

Λ′′(t) ≥ −2c(β − 1)Λ′(t) +
4

β − 2

∫
ϕ2
[
(β − 1)Γ2(ft)− (Lft)

2)
]
dµ̄. (10)

Furthermore, there is equality in (10) for all t ≥ 0 whenever the Hessian of ϕ is a constant, i.e.
when inequality (6) is an equality.

Assume that L satisfies the CD(0, n) condition for some n > 0, and that β − 1 ≥ n, and
β > 2. Then, we deduce from equation (10) that

Λ′′(t) ≥ −2c(β − 1)Λ′(t)

which we can integrate once betwen 0 and t to find that

−Λ′(t) ≤ −Λ′(0)e−2c(β−1)t

and then once again, between t = 0 and t = +∞,

Λ(0)− lim
t→+∞

Λ(t) ≤ −1

2c(β − 1)
Λ′(0).

The Markov semigroup studied is ergodic, in other words, it ensures the convergence of ft towards
its mean in L2(µ̄), so that limt→+∞ Λ(t) = 0, and the previous inequality is simply the stated
result, for smooth and bounded functions, and for β > 2. The general case is established by
approximation. The particular case β = 2 (also implying n = d = 1) is proved by letting β → 2
directly in inequality (7).

Proof of Lemma 3.3. By definition of µ̄, we may integrate by parts the derivative of Λ to find

Λ′(t) = 2

∫
ftLftdµ̄ = −2

∫
Γ(ft)dµ̄,
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and, differentiating once again,

Λ′′(t) = −4

∫
Γ(ft, Lft)dµ̄ = −4

∫
Γ(ft, Lft)dµ̄+ 2

∫
L(Γ(ft)) = 4

∫
Γ2(ft)dµ̄.

We may now use formula (8) to find that

Λ′′(t) = 4

∫
(β − 1)ϕ∇2ϕ(∇ft,∇ft)dµ̄

+ 4

∫ [
ϕ2Γ2(ft) +

Γ(ft)

2
(ϕLϕ− (β − 1)Γ(ϕ)) + ϕΓ(ϕ,Γ(ft))− ϕLftΓ(ft, ϕ)

]
dµ̄. (11)

First, the convexity assumption (6) on ϕ yields

4

∫
(β − 1)ϕ∇2ϕ(∇ft,∇ft) ≥ 4c(β − 1)

∫
Γ(ft)dµ̄ = −2c(β − 1)Λ′(t).

Now, in the second integral of equation (11), we may not directly use the integration by parts
formula, because µ̄ is the invariant measure for Γ, and not for Γ. We must thus rewrite it in
terms of µ. First,∫

Γ(ft)

2
ϕLϕdµ̄ = Zϕ,β

∫
Γ(ft)

2
ϕ1−βLϕdµ = −Zϕ,β

∫
Γ

(
ϕ,ϕ1−β Γ(ft)

2

)
dµ

= −
∫
ϕ

2
Γ(ϕ,Γ(ft))dµ̄−

1− β
2

∫
Γ(ft)Γ(ϕ)dµ̄.

Then,∫
ϕΓ(ϕ,Γ(ft))dµ̄ = Zϕ,β

∫
ϕ1−βΓ(ϕ,Γ(ft))dµ =

Zϕ,β
2− β

∫
Γ(ϕ2−β ,Γ(ft))dµ

=
1

β − 2

∫
ϕ2LΓ(ft)dµ̄,

and likewise,

−
∫
ϕLftΓ(ft, ϕ)dµ̄ =

Zϕ,β
β − 2

∫
LftΓ(ft, ϕ

2−β)dµ =

Zϕ,β
β − 2

∫ [
Γ(ft, ϕ

2−βLft)− ϕ2−βΓ(ft, Lft)
]
dµ =

−1

β − 2

∫
ϕ2
[
(Lft)

2 + Γ(ft, Lft)
]
dµ̄.

We conclude putting these three identities together.

3.2 Φ-entropy and weighted Beckner inequalities
Instead of the variance, we may consider a generic Φ-entropy along the flow. Choose a strictly
convex real function Φ ∈ C4(I), (where I ⊂ R∗+ is an open interval) and consider the Φ-entropy
of any function f : M 7→ I such that the integrals below are well defined

EntΦ
µϕ,β

(f) :=

∫
Φ(f)dµϕ,β − Φ

(∫
fdµϕ,β

)
,

so that Varµϕ,β = Entx7→x
2

µϕ,β
. Generalizations of inequalities like (7) to Φ-entropies have already

been studied under CD(ρ,∞) condition, ρ > 0 in [Cha04, BG10]. We find a generalized version
of Theorem 3.1:
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Theorem 3.4 (Φ-entropy inequalities). Assume that the diffusion operator L satisfies a CD(0, n)
condition with n ≥ 0, and fix a real number β ≥ n+1. Let Φ : I 7→ R be a strictly convex function
such that

Φ(4)Φ′′ ≥ Cn,β(Φ(3))2, (12)
with

Cn,β =
8(β − 1− n)(2β − 1) + 9n

8(β − 1− n)(β − 1)
.

Then, for all smooth bounded functions f : M 7→ I, there holds

EntΦ
µ̄ (f) ≤ 1

2c(β − 1)

∫
Φ′′(f)Γ(f)ϕdµ̄. (13)

Proof. Let us first assume that β > 2, the case β = 2 can be proved by passing to the limit
in (13). Assume also that f is a smooth and bounded function, the general case can be proved by
approximations. Consider, just like before, the function ft, solution of the initial-value system
(9) starting from f , and define, for t ≥ 0,

Λ(t) = EntΦ
µ̄ (ft) =

∫
Φ(ft)dµ̄− Φ

(∫
ftdµ̄

)
=

∫
Φ(ft)dµ̄− Φ

(∫
fdµ̄

)
,

where, again, µ̄ = µϕ,β . Differentiating the entropy yields

Λ′(t) = −
∫

Γ(Φ′(ft))

Φ′′(ft)
dµ̄,

and, from [BG10, Lem. 4],

Λ′′(t) =

∫ [
2

Γ2(Φ′(ft))

Φ′′(ft)
+

(
−1

Φ′′

)′′
(ft)

(
Γ(Φ′(ft))

Φ′′(ft)

)2
]
dµ̄.

We follow exactly the same steps as in Section 3.1. For brievety, we write h := Φ′(ft). First,
expanding Γ2 in terms of Γ2, Γ and L, and also using the convexity hypothesis on ϕ (6), we find,

Λ′′(t) ≥ −2c(β − 1)Λ′(t) +

∫ [
2

Φ′′(ft)

(
ϕ2Γ2(h) +

Γ(h)

2
(ϕLϕ− (β − 1)Γ(ϕ)) + ϕΓ(ϕ,Γ(h))

− ϕLhΓ(h, ϕ)

)
+ ϕ2

(
−1

Φ′′

)′′
(ft)

(
Γ(h)

Φ′′(ft)

)2
]
dµ̄.

We may now give these terms the same treatment as in the previous section: the goal is to
remove all derivatives on ϕ. The calculations are not made explicit here; they involve the exact
same ingredients we used before, only with more terms appearing. We finally find, using only
integration by parts, that

Λ′′(t) ≥ −2c(β − 1)Λ′(t) +
1

β − 2

∫
ϕ2

Φ′′(ft)

(
a0Γ2(h) + a′0(Lh)2 + a2Γ(h)Lh+ a3Γ(h)2

)
dµ̄,

where 

a0 = 2(β − 1),

a′0 = −2,

a2 = 3
Φ′′′(ft)

(Φ′′(ft))2
,

a3 = (β − 1)
Φ(4)(ft)

(Φ′′(ft))3
+ (1− 2β)

(Φ′′′(ft))
2

(Φ′′(ft))4
.
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Just like for the Poincaré inequality proof, this inequality becomes an equality when Hess(ϕ) = cg.
Invoke the CD(0, n) condition to find that

Λ′′(t) ≥ −2c(β − 1)Λ′(t) +
1

β − 2

∫
ϕ2

Φ′′(f)

(
a1(Lh)2 + a2Γ(h)Lh+ a3Γ(h)2

)
dµ̄, (14)

where a1 = a0/n + a′0 = 2
n (β − 1 − n). In the same way as before, we want this integrated

quantity to be nonnegative. Since Φ is strictly convex, it is sufficient to require the polynomial
function X 7→ a1X

2 + a2X + a3 to be nonnegative, which itself is equivalent to

a1 ≥ 0 and a2
2 − 4a1a3 ≤ 0.

Straightforward computation yields that this, in turn, is equivalent, whenever n ≥ 0, to

β ≥ n+ 1 and Φ(4)Φ′′ ≥ Cβ,n(Φ′′′)2,

where
Cβ,n =

8(β − 1− n)(2β − 1) + 9n

8(β − 1− n)(β − 1)
.

If this condition is satisfied, the integrand is pointwise nonnegative, thus

Λ′′(t) ≥ −2c(β − 1)Λ′(t),

and integrating this twice yields the theorem.

We can explicit this theorem in the particular case where Φ(X) = Xp, p > 1. Condition (12)
is then equivalent to

p ∈ [p∗, 2],

where
p∗ = 1 +

8(β − 1− n) + 9n

8β(β − 1− n) + 9n
∈ (1, 2]. (15)

Thus, if this condition is satisfied,∫
fpdµ̄−

(∫
fdµ̄

)p
≤ p(p− 1)

2c(β − 1)

∫
fp−2ϕΓ(f)dµ̄.

Rewriting this inequality with f̃ = f2/p in place of f , we find

Corollary 3.5 (Weighted Beckner inequalities). Under the same assumptions as Theorem 3.4,
for all p ∈ [p∗, 2], and all smooth bounded functions f , we have

p

p− 1

[∫
f2dµϕ,β −

(∫
f2/pdµϕ,β

)p]
≤ 2

c(β − 1)

∫
ϕΓ(f)dµϕ,β , (16)

where p∗ is given by (15).

Corollary 3.5 is optimal (and thus so is theorem 3.4) in the sense that there exists no constant
0 < C < (c(β−1))−1 such that L satisfies a Beckner inequality Bp(C) (see Definition 4.5 below),
because Bp(C) (for any p ∈ (1, 2)) implies the Poincaré inequality with constant C. Indeed,
testing inequality (16) with the function 1 + εf , f bounded, we find that

p

p− 1

[∫
(1 + εf)2dµ̄−

(∫
(1 + εf)2/pdµ̄

)p]
≤ 2ε2

c(β − 1)

∫
ϕΓ(f)dµ̄,

9



which, after being expanded when ε is small, turns into∫
f2dµ̄−

(∫
fdµ̄

)2

+ o(1) ≤ 1

c(β − 1)

∫
ϕΓ(f)dµ̄,

which is exactly the optimal weighted Poincaré inequality 3.1.
Remark 3.6. In the case of interest, when Φ(X) = Xp, we may explicit inequality (14)

Λ′′(t) ≥ −2c(β − 1)Λ′(t) +
1

β − 2

∫
ϕ2h

2−p
p−1

(
a′1(Lh)2 + a′2

Γ(h)

h
Lh+ a′3

Γ(h)2

h2

)
dµ̄,

where the a′i, i ∈ {1, 2, 3} are real constants. The inequality can be then improved using the fact
that

a′1X
2 + a′2X + a′3 = a′1

(
X +

a′2
2a′1

)2

− (a′2)2 − 4a′1a
′
3

4a′1
,

so that, whenever δ := −1
4a′1

((a′2)2 − 4′a1a
′
3) ≥ 0, we find that

Λ′′(t) ≥ −2c(β − 1)Λ′(t) +
δ

β − 2

∫
ϕ2h

2−p
p−1

Γ(h)2

h2
dµ̄

≥ −2c(β − 1)Λ′(t) +
δ

β − 2

(∫
ϕh

2−p
p−1 Γ(h)dµ̄

)2

∫
h

p
p−1 dµ̄

= −2c(β − 1)Λ′(t) + Cp
Λ′(t)2

Λ(t)
,

by Jensen’s inequality, where, for reference,

Cp =
δ

β − 2
(p− 1)2p

2−p
p−1 ≥ 0.

This leads, when integrated, to a refined version of Beckner’s inequality, which we will come back
to in section 4, and specifically, corollary 4.6.
Remark 3.7. As explained in Section 1, we extend the result of Nguyen [Ngu18] in two aspects.
First, Beckner inequalities (16) are proved in the more general context of Riemannian manifolds
satisfying a CD(0, n) condition, and secondly, the range of parameter p ∈ [p∗, 2] given by (15)
contains strictly the one proposed in [Ngu18].

On the other hand, in [BGS18], corollary 3.5 is proved in the special case of M = Rd and
ϕ(x) = 1+|x|2. Interestingly, the range found in their article is greater than what we can manage
here. Indeed, it is valid for all p ∈ [p∗BGS , 2], where

1 < p∗BGS = 1 +
1

β − d
< p∗.

It might be worth it to note that in our case, we used the fact that the second degree polynomial
appearing in the integral is greater than 0, when this is in fact quite a gross lower bound. Indeed,
the argument is that ∫

ϕ2h
2−p
p−1

(
hLh

Γ(h)
+

a′2
2a′1

)2
Γ(h)2

h2
dµ̄ ≥ 0,

but the squared term can probably be controlled in a way that leads to a wider range of p, since∫ [
hLh+

a′2
2a′1

Γ(h)

]
dµ =

(
a′2
2a′1
− 1

)∫
Γ(h)dµ < 0

whenever h 6≡ 0.
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4 Spaces with positive curvature and real dimension
The family of inequalities considered in this article, especially for sections 4 and 5, is the following
interpolation between the Poincaré inequality and the logarithmic Sobolev inequality

Definition 4.1 (Beckner inequalities). The Markov triple (M,Γ, µ) is said to satisfy a Beckner
inequality Bp(C) with parameter p ∈ (1, 2] and constant C > 0 if, for all nonnegative smooth
bounded functions f ,

p

p− 1

(∫
f2dµ−

(∫
f2/pdµ

)p)
≤ 2C

∫
Γ(f)dµ. (17)

The constants in front of the integrals are chosen so that for p = 2, this is exactly the Poincaré
inequality with constant C, and the limiting case p→ 1 corresponds to the logarithmic Sobolev
inequality, again with constant C. Indeed,

lim
p→1

p

p− 1

(∫
f2dµ−

(∫
f2/pdµ

)p)
=

∫
f2 log

(
f2∫
f2dµ

)
dµ.

Remark 4.2. The weighted Beckner inequalities proved in the previous section can be seen as
classical Beckner inequalities. Indeed, theorem 3.5 states that Bp((c(β − 1))−1) is valid for the
triple (M,ϕΓ, µϕ,β).

In this section, we consider a diffusion operator L defined on (M, g), juste like in Section 3,
with µ being its reversible measure. We assume that L satisfies a curvature-dimension condition
CD(ρ, n), with ρ > 0 and n ∈ R. That means, specifically but not exclusively, that we will
consider negative n. Such spaces, sometimes referred to as having negative effective dimension,
have been studied in the past, with articles dating as far back as 2003, up to our knowledge [Sch03,
Mil17a, Mil17b, BGS18]. Furthermore, one can easily construct examples of such operators
with [Oht16, Cor. 4.13]. Writing down the CD(ρ, n) inequality in good local coordinates like in
[BGS18], one can check that a necessary criterion for the inequality to be true is that d/n ≤ 1,
which means that we are actually restricted to n ∈ R\[0, d]. The main difference, compared to
the previous section, is that the curvature is positive, which is a stronger assumption, but n can
be negative, which is a weaker assumption.

Let us first recall the well known result for the Poincaré inequality, the proof of which is given
in [BGL14, Thm. 4.8.4].

Theorem 4.3 (Poincaré inequality under CD(ρ, n)). Assume that the diffusion operator L sat-
isfies a CD(ρ, n) condition, with ρ > 0 and n ∈ R\[0, d). Then the following Poincaré inequality
holds,

Varµ(f) ≤ n− 1

ρn

∫
Γ(f)dµ. (18)

We extend this result to Beckner inequalities in the following theorem:

Theorem 4.4 (Beckner inequalities under CD(ρ, n)). Assume that the diffusion operator L
satisfies a CD(ρ, n) condition, with ρ > 0 and n ∈ R\[−2, d). Then, Bp

(
n−1
ρn

)
is satisfied

• for all p ∈ (1, 2] if n ≥ d,

• for all p ∈ [p∗, 2] if n < −2, where

p∗ = 1 +
1− 4n

2n2 + 1
.

11



Interestingly, we find nothing for n ∈ [−2, 0), which corresponds to the weakest CD(ρ, n)
conditions possible, even though the Poincaré inequality remains valid in that range. It seems
like there is not enough structure in that case.

Proof. In the same fashion as the previous section, fix f , a bounded smooth nonnegative function
on M , and consider the function ft, solution of the initial-value system{

∂tft = Lft on (0,+∞)×M,

f0 = f on M,
(19)

and consider its Φ-entropy along the flow, where Φ is assumed to be strictly convex.

Λ(t) = EntΦ
µ (ft) =

∫
Φ(ft)dµ− Φ

(∫
ftdµ

)
,

Invoking once again,

Λ′(t) = −
∫

Γ(Φ′(ft))

Φ′′(ft)
dµ, Λ′′(t) =

∫ [
2

Γ2(Φ′(ft))

Φ′′(ft)
+

(
−1

Φ′′

)′′
(ft)

(
Γ(Φ′(ft))

Φ′′(ft)

)2]
dµ.

Classically, one can assume −1/Φ′′ to be convex, whence the CD(ρ, n) condition yields

Λ′′(t) ≥
∫

2

Φ′′(ft)

[
ρΓ(Φ′(ft)) +

1

n
(LΦ′(ft))

2

]
dµ,

and, when n > 0, this leads to
Λ′′(t) ≥ −2ρΛ′(t),

which, ultimately, proves Poincaré-type inequalities, using arguments like the ones in section 3.
The problem is that the constant appearing in the inequality is, in fact, not optimal, and further-
more, the argument fails whenever n < 0. For the sake of simplicity, we will now assume that
Φ(X) = Xp, with p ∈ (1, 2], but the argument could very well be generalized to more general Φ.
The derivatives of the entropy then become

Λ′(t) = − p

p− 1

∫
f2−p
t Γ(fp−1

t )dµ, Λ′′(t) =
p

p− 1

∫ [
2f2−p
t Γ2(fp−1

t ) +
2− p
p− 1

f4−3p
t Γ(fp−1

t )2

]
dµ.

Rewriting these quantities with respect to q := 2−p
p−1 ∈ [0,+∞), and h = fp−1

t ,

p− 1

p
Λ′(t) = −

∫
hqΓ(h)dµ,

p− 1

p
Λ′′(t) =

∫ [
2hqΓ2(h) + qhq−2Γ(h)2

]
dµ.

To get the most information out of this, we shall apply the CD(ρ, n) condition not to the function
h, but to η(h), where η is some function to be chosen later. Expanding every term in the CD(ρ, n)
inequality (5)

Γ2(η(h)) ≥ ρΓ(η(h)) +
1

n
(Lη(h))2

yields

η′2(h)Γ2(h) + η′(h)η′′(h)Γ(h,Γ(h)) + (η′′(h)Γ(h))2 ≥ ρη′2(h)Γ(h) +
1

n
(η′(h)Lh+ η′′(h)Γ(h))2.

12



This inequality is, in particular, true for the power function η(x) = xθ+1, with θ ∈ R, so that

Γ2(h) ≥ ρΓ(h)︸ ︷︷ ︸
i

+2θ
1

n

Γ(h)Lh

h︸ ︷︷ ︸
ii

−θ Γ(h,Γ(h))

h︸ ︷︷ ︸
iii

+θ2

(
1− n
n

)
Γ(h)2

h2︸ ︷︷ ︸
iv

+
1

n
(Lh)2︸ ︷︷ ︸
v

.

Multiplying this inequality by hq and then integrating it, we are left with five terms to consider.
The first term corresponds to the first derivative of the entropy, Λ′(t), so we may leave it as it
is. Terms ii and iii are trickier, because their sign is not known, so we must take care of them.
Term iv is always negative since n /∈ [0, 1], but it is compensated by another (positive) term of
the same nature appearing naturally in Λ′′(t). The sign of the last term depends on the sign of
n, so we must take care of it as well, at least for negative n.

Term ii: an integration by parts yields∫
hq−1Γ(h)Lhdµ = −

∫ [
hq−1Γ(h,Γ(h)) + (q − 1)hq−2Γ(h)2

]
dµ.

Term iii: we do not do anything for now with this term, and will adjust θ later so that it
disappears.

Term v: we use the fact that, by definition,∫
Γ2(h)dµ =

∫ [
1

2
L(Γ(h))− Γ(h, Lh)

]
dµ =

∫
(Lh)2dµ

to prove that, for any real function η,∫
η′2(h)(Lh)2dµ =

∫ [
η′2(h)Γ2(h) + 3η(h)η′(h)Γ(h,Γ(h)) + 2(η′′2(h) + η′(h)η′′′(h))Γ(h)2

]
dµ.

In particular,∫
hq(Lh)2dµ =

∫ [
hqΓ2(h) + q(q − 1)hq−2Γ(h)2 +

3

2
qhq−1Γ(h,Γ(h))

]
dµ.

Finally, we are left with an equality still involving the parameter θ:∫
hqΓ2(h)dµ ≥ ρn

n− 1

∫
hqΓ(h)dµ+

∫ [
Ahq−1Γ(h,Γ(h)) +Bhq−2Γ(h)2

]
dµ

where 
A =

1

n− 1

(
3q

2
− θ(n+ 2)

)
,

B =
q(q − 1)

n− 1
− θ2 − 2θ

q − 1

n− 1
.

Choosing θ so that A = 0, i.e. θ = 3q
2(n+2) , we find that∫ [

2fqΓ2(h) + qhq−2Γ(h)2
]
dµ ≥ 2ρn

n− 1

∫
hqΓ(h)dµ+ α

∫
hq−2Γ(h)2dµ,

with

α = 2B + q =
q

2(n+ 2)2
(q(4n− 1) + 2n(n+ 2))

=
1

2(n+ 2)2

(
2− p
p− 1

)(
2− p
p− 1

(4n− 1) + 2n(n+ 2)

)

13



Remembering that q ≥ 0, this constant α turns out to be nonnegative for the following range of
parameters {

n ≥ d
q ≥ 0

or

{
n < −2

q ∈ [0, q∗]
with q∗ =

2n(n+ 2)

1− 4n
,

or equivalently, in terms of the exponent p,{
n ≥ d
p ∈ (1, 2]

or

{
n < −2

p ∈ [p∗, 2]
with p∗ = 1 +

1− 4n

2n2 + 1
,

Whenever α ≥ 0, we may, at last, compare Λ′′ to Λ′. Indeed, we find that

Λ′′(t) ≥ − 2ρn

n− 1
Λ′(t),

which proves the claimed Bp
(
n−1
ρn

)
inequality when integrated twice.

To prove this theorem, we used the nonnegativity of a specific term in a differential inequality,
but in fact, we can do a little bit better and compare it to the other terms, in order to prove a
refined version of the Beckner inequalities we are considering.

Definition 4.5. The Markov triple (M,Γ, µ) is said to satisfy a refined Beckner inequality
B∗p(C, θ) with parameter p ∈ (1, 2] and constants C > 0 and θ ≥ 0 if, whenever θ 6= 1,

p

p− 1

(
1

1− θ

)(∫
f2dµ−

(∫
f2/pdµ

)(1−θ)p(∫
f2dµ

)θ)
≤ 2C

∫
Γ(f)dµ

for all smooth functions f , and, when θ = 1,

p

p− 1

(∫
f2dµ

)
log

( ∫
f2dµ(∫
f2/pdµ

)p
)
≤ 2C

∫
Γ(f)dµ.

With this definition, Bp(C) is the same as B∗p(C, 0). The inequality given for θ = 1 is simply
the limit of the other inequality when θ → 1. This indeed corresponds to an improved version of
the Beckner inequality, because for all x, y > 0 and θ ∈ R+\{1},

x− y1−θxθ

1− θ
≥ x− y,

and more generally, B∗p(C, θ) implies B∗p(C, θ′) for all θ′ ∈ [0, θ]. Such improvements have been
shown in [AD05, BG10] under the CD(ρ,∞) condition. The limit case, that is, for the usual
entropy, is proposed in [BGL14, Thm. 6.8.1].

Theorem 4.6 (Improved Beckner inequalities). Under the same assumptions of in Theorem 4.4,
the inequality B∗p

(
n−1
ρn , θ

)
is satisfied for the same range of parameter p, and for θ given by

θ =
1

2(n+ 2)2

(
p

p− 1

)(
2− p
p− 1

)(
2− p
p− 1

(4n− 1) + 2n(n+ 2)

)
.
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Proof. Coming back to the proof of theorem 4.4, we have that∫ [
2fqΓ2(h) + qhq−2Γ(h)2

]
dµ ≥ 2ρn

n− 1

∫
hqΓ(h)dµ+ α

∫
hq−2Γ(h)2dµ,

or, in terms of Λ,

Λ′′(t) ≥ − 2ρn

n− 1
Λ′(t) + α

p

p− 1

∫
hq−2Γ(h)2dµ.

Invoking Jensen’s inequality, we find that∫
hq−2Γ(h)2dµ ≥

(∫
hqΓ(h)dµ

)2∫
hq+2dµ

=

(
p− 1

p

)2
Λ′(t)2

Λ(t)
,

so that

Λ′′(t) ≥ − 2ρn

n− 1
Λ′(t) + α

p

p− 1

Λ′(t)2

Λ(t)
,

just like we found in remark 3.6. Writing θ = α p
p−1 , we may now integrate this inequality, to

find that
−Λ′(t)

Λ(t)θ
≤ −Λ′(0)

Λ(0)θ
exp

(
− 2ρn

n− 1
t

)
,

which, integrated once more between 0 and +∞, leads to the claimed inequality.

Remark 4.7. As it turns out, the operator L from last section does not verify a good enough
CD(ρ, n) condition. The best constant c(β−1) only arises using an integrated CD(ρ, n) criterion.
To see this, we can use the following result from [Bak94]: the operator L = ∆g + Γ(V, .), defined
on (M, g), satisfies a CD(ρ, n) condition if, and only if,

n− d
n

(
Ricg −∇2V − ρg

)
≥ 1

n
∇V ⊗∇V,

this tensorial reformulation being valid for any ρ ∈ R and n 6∈ [0, d]. As stated in the proof
to theorem 3.1, the operator Lf = ϕLf − (β − 1)Γ(ϕ, f) on (M, g) is related to a Laplace-
Beltrami operator through the conformal transformation with conformal factor ϕ−1. Thus,
writing L = ∆g + Γ∆g (V , .), for some explicit function V , we find a somewhat easier to verify
criterion for the CD(ρ, n) condition in (M, g):

Ricg +(β − 1)
∇2ϕ

ϕ
+

(
2− d− (2β − 1)2

n− d

)
∇ϕ⊗∇ϕ

4ϕ2
+

(
∆ϕ

2ϕ
− 2β

Γ(ϕ)

4ϕ2
− ρ

ϕ

)
g ≥ 0. (20)

We leave it to the courageous to verify that indeed, even in the case where everything is nice
and explicit, for instance for ϕ(x) = 1 + |x|2, there exists no couple (ρ, n) ∈ R∗+× (R\[0, d]) such
that inequality (20) is verified and

ρn

n− 1
= c(β − 1),

making theorem 3.1 truly an integrated CD(ρ, n) criterion result.
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5 Results on the real line
In dimension d = 1, simplifications happen, so that we are able to do calculations directly. All
manifolds of dimension 1 are conformal to (R, 1), and even though the study of a generic manifold
(R, g) does not reduce exactly to the study of (R, 1), the calculations are similar, and so we will
only consider the Lebesgue measure λ for the reference measure. Following the work in section
3, assume ϕ is a C2, positive, convex function such that

ϕ′′ ≥ c

for some constant c > 0. Fix β ∈ R such that ϕ−β is in L1(R, λ). Then, we find the following
result version of the Poincaré inequality, for the probability measure µϕ,β = Zϕ,βϕ

−βλ

Theorem 5.1. Fix a real number β > 1. Then for all smooth bounded functions f ,∫
f2dµϕ,β −

(∫
fdµϕ,β

)2

≤ 1

c(β − 1)

∫
(f ′)2ϕdµϕ,β . (21)

For β > 2, this is in fact theorem 3.1, so this theorem is an extension to smaller exponants β.

Proof. The idea is to apply Theorem 4.4 to the special case of the operator L defined by

Lf = ϕf ′′ − (β − 1)ϕ′f ′,

after proving it satisfies a CD(ρ, n) condition with negative dimension. Since we are working
in dimension 1, expliciting the CD(ρ, n) is not too hard, and that is just what we do. Indeed,
straightforward computations yield

Γ2(f) =
1

2
L(Γ(f))− Γ(f, Lf)

=
1

2

(
(2β − 1)ϕϕ′′ + (1− β)(ϕ′)2

)
(f ′)2 + ϕϕ′f ′f ′′ + ϕ2(f ′′)2,

so that, given ρ ≥ 0 and n ∈ R\[0, 1],

Γ2(f) ≥ ρΓ(f) +
1

n
(Lf)2

for all smooth functions f if, and only if,

A(f ′)2 +Bf ′f ′′ + C(f ′′)2 ≥ 0

for all f , where 

A =
1

2

(
(2β − 1)ϕϕ′′ + (1− β)(ϕ′)2

)
− ρϕ− 1

n
(1− β)2(ϕ′)2,

B =
1

n
(n+ 2β − 2)ϕϕ′,

C =

(
1− 1

n

)
ϕ2.

since C ≥ 0, this is in turn equivalent to B2 − 4AC ≤ 0, which, after simplifications, boils down
to the condition

−
(
β − 1

2

)(
1

n− 1

(
β − 1

2

)
+

1

2

)
(ϕ′)2

ϕ
+

(
β − 1

2

)
ϕ′′ − ρ ≥ 0. (22)
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For n = 2(1− β), the first term in the above inequality disappears and the condition becomes(
β − 1

2

)
ϕ′′ − ρ ≥ 0,

which is clearly true for ρ = c
(
β − 1

2

)
, which proves that L satisfies the CD(c

(
β − 1

2

)
, 2(1− β))

condition. We may now apply the theorem 4.3 to conclude that the Poincaré inequality is valid
with constant

n− 1

ρn
=

1− 2β

c(1− β)(2β − 1)
=

1

c(β − 1)
,

which is the claimed result.

This proof proves more than just the Poincaré inequality, since theorem 4.4 provides a range
of exponants for which the Beckner inequality holds, but this is only true when n < −2, which
corresponds to β > 2. As far as Beckner inequalities go, this result is exactly the same as the
one in section 3, and as such only constitutes an example of application of the results in section
4. The interest, however, lies in the fact that we extend the range of β for which the Poincaré
inequality is valid.

As it turns out, this inequality is optimal for β ≥ 3/2, but it is not optimal anymore for
β ∈ [1, 3/2), as proved in [BJM16] for the function ϕ(x) = 1 + x2. In fact, they find that
inequality (21) is valid for β ∈ (1/2, 3/2], and the optimal constant in that range changes from
(2(β− 1))−1 to (β− 1/2)−2. It might be worth noting that the method presented in theorem 5.1
actually works for the full range of β, as summed up in the following proposition

Proposition 5.2. Let ϕ : x 7→ 1 + x2. Fix a real number β > 1
2 . Then for all smooth bounded

functions f , ∫
f2dµϕ,β −

(∫
fdµϕ,β

)2

≤ 1

Cβ

∫
(f ′)2ϕdµϕ,β , (23)

where

Cβ =


2(β − 1)if β ≥ 3

2
,(

β − 1

2

)2

if β ∈
(

1

2
,

3

2

)
.

(24)

Proof. The proof builds on the proof for theorem 5.1, using the explicit form of ϕ. The condition
(22) becomes

−(2β − 1)

(
1

n− 1
(2β − 1) + 1

)
x2

1 + x2
+ (2β − 1)− ρ ≥ 0,

for all x ∈ R, or, equivalently,

ρ ≤ 2β − 1 and − (2β − 1)2

n− 1
− ρ ≥ 0.

Restricting our study to nonnegative curvatures, we thus prove that the condition CD(ρ, n) (with
ρ > 0) is satisfied if, and only if,

0 < ρ ≤ 2β − 1 and 0 < ρ(1− n) ≤ (2β − 1)2 (and n 6∈ [0, 1]).

We are looking, for a fixed β > 1/2, for the parameters (ρ, n) satisfying those criteria that lead
to the best possible value of ρn/(n− 1).
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Assuming (ρ, n) is such a couple, since n/(n − 1) is decreasing on R∗−, it is necessary that
ρ(1 − n) = (2β − 1)2, which then implies that ρ < 2(β − 1)2. We thus reduce the problem to
finding the maximum of the function

ρn

n− 1
= ρ− ρ2

(2β − 1)2

under the constraints 0 < ρ < max(2β − 1, (2β − 1)2). An easy study yields that this maximum
is Cβ as defined in equation (24). In other terms, the operator Lf = (1 + x2)f ′′ + (1 − β)2xf ′

satisfies

• CD(2β − 1, 2(1− β)) when β ≥ 3/2,

• CD((2β − 1)2/2,−1) when β ∈ (1/2, 3/2),

and this leads to the proposition.

Remark 5.3. This method is applicable to other functions than just x 7→ 1+x2. For instance, for
the function ϕ : x 7→ 1+x2 +x4, one finds that the condition CD(2β−1, 4β−1) is satisfied, and
it is the one that leads to the best possible ρn/(n− 1) constant for the corresponding operator.
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