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a b s t r a c t 

The calibration of trip lengths is an important challenge for multi-regional MFD-based ap- 

plications, as it can influence the dynamics of regional densities (and speeds). Existing 

research has not paid significant attention in the topic, giving opportunities for answering 

some fundamental questions. In this paper, we propose an original methodology to explic- 

itly determine trip length distributions based on a subset of trips in the city network and 

its partitioning. Since the full description of all realized trips is difficult to estimate for a 

large city network, we propose to define a set of virtual trips corresponding to a full cov- 

erage of potential local origin-destination pairs and shortest-paths in distance. We inves- 

tigate how different levels of information can influence the accuracy of the multi-regional 

dynamic MFD-based models, through the estimated trip length distributions. This infor- 

mation ranges from regional trip lengths without any information of origin, destination, 

previous or next regions up to the specific regional path associated to each trip. 

We test this methodology on a simulated environment with a significant amount of real 

information for a network with 757 links that corresponds to the 6th district of Lyon. We 

first provide guidance on how to properly define the set of virtual trips. We show that a 

single average trip length is not representative of all possible trip lengths estimated by the 

most detailed levels of information for one region. We also highlight that the first level of 

information assigns similar trip lengths for regional paths that are composed by the same 

regions, but in a reverse ordered sequence. Nevertheless, this is not the case for the most 

detailed levels of information since they capture the directed links city network topology. 

We propose a procedure to update the trip lengths when an update of the regional Origin- 

Destination matrix changes, without a need for a full recalculation. We also investigate 

the influence of the trip length tuning on the traffic dynamics of the regional network. 

The traffic states are modeled by a trip-based MFD model. We show that the setting of the 

trip lengths influences the traffic dynamics in the regions. Moreover, the traffic conditions 

predicted by the two most detailed levels of information are close. 
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1. Introduction 

A network level aggregated traffic model was early introduced by Godfrey (1969) and later revisited by Herman and

Prigogine (1979) and Mahmassani et al. (1984) . But only after the works of Daganzo (2007) and Geroliminis and Da-

ganzo (2008) did this kind of traffic models attract more the attention from the scientific community. In these aggregated

traffic models, the city network ( Fig. 1 (a)) is partitioned into regions ( Fig. 1 (b)), where the traffic conditions are approx-

imately homogeneous ( Ji and Geroliminis, 2012 ). The city network encompasses all the connected links that correspond to

the existing roads. Let A be the set of directed links and N be the set of nodes that define the city network. To partition a

network in a number of regions, it is possible to apply the clustering techniques discussed in the literature ( Saeedmanesh

and Geroliminis, 2016; 2017; Lopez et al., 2017; Casadei et al., 2018 ). Let X be the set of the regions that define the regional

network ( Fig. 1 (c)). The system dynamics inside each region is governed by a conservation equation, where the outflow

is given by a well-defined relation between the mean flow and the accumulation, called the Macroscopic Fundamental

Diagram (MFD) ( Daganzo, 2007 ). Using traffic data from the city of Yokohama (Japan), Geroliminis and Daganzo (2008) pro-

vided ground truth evidence of the existence of the MFD. The existence and properties of this relationship have also been

confirmed by other authors ( Geroliminis and Sun, 2011; Ambühl and Menendez, 2016; Loder et al., 2017 ). 

The mathematical formulation of the MFD was introduced by Daganzo (2007) for a single region r . The traffic dynamics

is governed by a state equation that associates the accumulation of vehicles ( n r ( t )) with the balance between the inflow

( Q in,r ( t )) and the outflow ( Q out,r ( t )): 

dn r 

dt 
= Q in,r (t) − Q out,r (t) , t > 0 (1)

Depending on the assumption made on Q out,r ( t ), two models can be distinguished in the literature: the accumulation-

based model ( Daganzo, 2007; Geroliminis and Daganzo, 2008 ); and the trip-based model ( Arnott, 2013; Fosgerau, 2015;

Lamotte and Geroliminis, 2016; Mariotte et al., 2017; Leclercq et al., 2017; Mariotte and Leclercq, 2018 ). A key ingredient

for implementing these models is the definition of the trip lengths L , i.e., the travel distance of vehicles in each region.

The simplest assumption is to consider a constant average trip length for all vehicles traveling in the same region (see

e.g., Daganzo, 2007 ). Up to today, the applications of the MFD-based models have mostly been for testing different con-

trol algorithms or design perimeter control strategies. The first perimeter flow control strategies were designed for single

region cities (see e.g., Daganzo, 2007; Keyvan-Ekbatani et al., 2012; Ekbatani et al., 2013 ), where a constant average trip

length is assumed. Several other authors considered the outflow MFD application in theoretical studies on a 2-region net-

work (see e.g., Geroliminis et al., 2014; Sirmatel and Geroliminis, 2018; Haddad, 2017; Zhong et al., 2017; Yang et al., 2018 ),

where the travel distances were equal for all the vehicles in the same region. Other perimeter control studies have been

applied to real city networks, in detailed simulation environments. For example, Aboudolas and Geroliminis (2013) de-

signed a perimeter control strategy where the San Francisco (USA) downtown network was partitioned into three zones.

The MFD model was implemented considering a similar trip length value for all vehicles traveling in the same region.

Kouvelas et al. (2017) implemented an outflow MFD-based model for a perimeter control application in part of the Barcelona

(Spain) city network, divided into four regions, by controlling only inter-transfers among regions and not the inflow of the

outer regions of the network (as happened in Aboudolas and Geroliminis (2013) ). As with the previous studies, a simi-

lar trip length per region associated with the outflow MFD assumption, is considered. Compared to the previous studies,

Ramezani et al. (2015) and Sirmatel and Geroliminis (2018) considered variable mean trip lengths in the implementation

of an MFD model for perimeter control purposes. The average trip lengths were estimated dynamically for a toy network,

based on the exchange flows between adjacent regions and the accumulation of vehicles. Moreover, the trip lengths are kept

constant per Origin-Destination regional pair in each region. Route guidance coupled with an MFD-based models has been

recently addressed in Yildirimoglu et al. (2015) and Yildirimoglu et al. (2018) , with similar approaches to determine the trip

lengths. 

Little attention has been paid in the literature to the proper setting of trip lengths for MFD-based applications. In general,

a similar distance for all vehicles traveling inside the same region is considered. This is a rough approximation, clearly
Fig. 1. (a) City network. (b) Partition of the city network. (c) Regional network. 
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Fig. 2. (a) Partition of the city network with three trips represented. (b) Regional paths that correspond to the blue and green trips. (c) Zoom in the gray 

region, where the trip lengths distributions L 1 and L 2 of the green and blue regional paths are represented, respectively. A scheme of an MFD diagram is 

also represented. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

influencing the modeled traffic states even when the trip lengths are distinguished considering different regional paths, e.g.,

per regional OD pair inside the regions, the trip lengths are assumed to be given the MFD model. In reality, the proper

setting and calibration of trip lengths for the application of MFD-based models is a complex task. To better highlight this,

consider as an example the partitioned city network in Fig. 2 (a), where three trips are represented. These trips represent

vehicle trajectories in the city network. As can be observed, these trips will cross a different sequence of regions from their

origin to their destination nodes, defining different regional paths ( Yildirimoglu and Geroliminis, 2014 ). A regional path is

the ordered sequence of regions crossed by the trips from their Origin (O) to their Destination (D) regions. Generically, a

regional path p can be defined as: 

p = (p 1 , . . . , p m 

, . . . , p R ) , ∀ m = 1 , . . . , R ∧ m ∈ X (2)

where R is the number of regions that define p; p 1 and p R are the Origin (O) and Destination (D) regions, respectively.

Batista and Leclercq (2018) distinguishes between regional paths that cross different regions and internal paths defined by

trips that only travel inside the same region. 

The associated regional paths to the blue and green trips are represented in Fig. 2 (b). Let us now focus on the green

trips and the region highlighted in gray in Fig. 2 (b). As can be seen in Fig. 2 (a), the green trips have different travel

distances inside this gray region. The latter are also different from the travel distance of the blue trip inside this same region.

The green and blue regional paths are therefore characterized by different trip length distributions L 1 and L 2 ( Fig. 2 (c)),

respectively. As far as we know, Yildirimoglu and Geroliminis (2014) is one of the first effort s that proposes a methodology

to set up different travel distances inside the same region, for MFD-based model applications. The authors discussed a

methodology where the time-varying average trip lengths are implicitly estimated. Nevertheless, this approach does not

allow taking into account explicitly estimated distributions of trip lengths. As far as we know, no study has been performed

as yet to describe a methodological framework based on trip patterns and city network partitioning, aimed at explicitly

defining distributions of trip lengths for the calibration of dynamic MFD models. The purpose of this paper is to fill this gap.

We propose a methodology to explicitly estimate distributions of trip lengths based on a set of trips in the city network and

its partitioning, in order to calibrate an MFD-based model. The true trip patterns in a city network are unknown and change

over time. The question now is how to calibrate the MFD model when the true set of trips is not available. To this end, we

construct a set of virtual trips by randomly sampling origin-destination (od) nodes in the city network and calculating the

shortest-path in distance for all od pairs. This process is performed only one time before running the MFD model. Let � be

the set of virtual trips and N od be the total number of od pairs that are uniformly sampled in the city network. Once the

set of virtual trips has been obtained, the question regarding the calculation of trip length distributions is how should we

differentiate the trips inside each region? To tackle this question, we propose a methodology in this paper, that considers

different levels of information from the regional network. These different levels include: 

• Level 1: no information on the Origin and Destination regions of the trips. 
• Level 2: the next region to be traveled by the trips. 
• Level 3: the previous and next regions traveled by the trips. 
• Level 4: the specific regional path associated with each trip. 

The mathematical formulation of the proposed methodology in this paper is introduced in Section 2 . We test this

methodology on the 6 th district of the Lyon network (France), which is divided into eight regions. In Section 3 , we first

investigate how the set � should be properly calibrated in terms of N od . We then analyze the distributions of trip lengths

for each region, considering the four levels of information. Changes in the origins and destinations of the trips can have

a significant influence on the trip lengths ( Leclercq et al., 2015 ). Therefore, we introduce a procedure to update the trip

lengths, when the OD flows are modified inside the regional OD matrix, without the need to re-sample the set of virtual

trips in the city network. The updated OD matrix has the same zoning for origins and destinations but a different number

of trips between OD pairs. In Section 3 , we consider the static case when the OD matrix is constant over time. In Section 4 ,

we investigate how the trip lengths estimated on the basis of the four levels of information influence the traffic dynamics
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in the regions. To do this, we consider the trip-based MFD model as described in Mariotte et al. (2017) . We consider two

scenarios. In the first scenario, we assume that we have the full information on the trip patterns in the city network. So, we

can not only determine the time-dependent evolution of the OD matrix but also the trip distributions for all regional paths.

In the second scenario, we still know the time-dependent OD matrix but we compute the trip distributions based on the

Deterministic User Equilibrium. In Section 5 , we outline the conclusions of this paper. 

2. Methodological framework: trip length distributions for the calibration of MFD-based models 

One of the core variables for the calibration of an MFD-based model is the setting of the trip lengths, i.e. the distance that

vehicles have to travel in a region. In Section 2.1 , we describe the role of trip lengths in the formulation of the accumulation-

based ( Daganzo, 2007; Geroliminis and Daganzo, 2008 ) and trip-based ( Arnott, 2013; Fosgerau, 2015; Lamotte and Gerolim-

inis, 2016; Mariotte et al., 2017; Leclercq et al., 2017; Mariotte and Leclercq, 2018 ) MFD models. In Section 2.2 , we introduce

the mathematical basis of the methodological framework proposed in this paper to estimate the distributions of trip lengths.

In Table 1 we summarize the notations of all the symbols and variables used in this paper. 

2.1. The role of trip lengths in the formulation of MFD-based models 

The traffic states inside a region r are modeled through the temporal evolution of a state variable called accumulation

n r ( t ) (see Eq. (1) ). In the literature, two MFD-based models can be distinguished: the accumulation-based model ( Daganzo,

20 07; Geroliminis and Daganzo, 20 08 ); and the trip-based model ( Arnott, 2013; Fosgerau, 2015; Lamotte and Geroliminis,

2016; Mariotte et al., 2017; Leclercq et al., 2017; Mariotte and Leclercq, 2018 ). 

In the accumulation-based model, the outflow function Q out,r ( t ) ( Daganzo, 2007 ) is defined as the ratio between the

production-MFD P r ( n r ( t )) and the average trip length L r : 

Q out,r ≈ P r (n r (t)) 

L r 
(3)

where L r is the distance that vehicles have to travel in region r to complete their trips. 

This outflow function (see Eq. (3) ) is then embedded in the dynamic equation that describes the evolution of traffic

states in the system. For a single region, the state is the accumulation n r ( t ) of the region. For multi-regions the state rep-

resentation is more complicated as Origin-Destination flows matter. The state representation for multi-regional systems can

have different degrees of complexity. The most parsimonious models utilize states of type n ij , where i is the current region

and j the final one. Then the same trip length can be assumed for all vehicles crossing a region i independently of where

they are coming from or what is the regional path towards their destination ( Geroliminis et al., 2014 ). More complicated

applications ( Yildirimoglu and Geroliminis, 2014; Geroliminis, 2015; Mariotte and Leclercq, 2018 ) consider different regional

paths crossing the same region r are assigned different trip lengths. Let L rp be the average trip length of regional path p

inside region r . The outflow function Q out,r ( t ) is rewritten as: 

Q out,rp ≈ n rp (t) 

n r (t) 

P r (n r (t)) 

L rp 

(4)

where n rp ( t ) is the accumulation of vehicles traveling on regional path p and inside region r ; and n r ( t ) is the total accumu-

lation of vehicles in region r . For the simplest models, Eq. (4) simplifies to Q out,i j ≈
n i j (t) 

n i (t) 
P r (n r (t)) 

L i 
. 

In the trip-based model ( Arnott, 2013; Fosgerau, 2015; Lamotte and Geroliminis, 2016; Mariotte et al., 2017; Leclercq

et al., 2017; Mariotte and Leclercq, 2018 ), the MFD dynamics is centered on the vehicle trip length L ir : 

L ir = 

∫ t exit 

t entry 

v r (n (s )) ds (5)

where t entry and t exit are the entry and exit times of the vehicle i in region r , respectively; and v r ( n ( s )) is the speed-MFD. The

travel time of vehicle i in region r is t tra v el = t exit − t entry . We assume that all vehicles traveling on the same regional path p

and inside region r have the same travel distance. Moreover, we assume that L ir is time-invariant and that both t travel and

n r ( t ) are continuous functions and differentiable at t , based on Eq. (5) and under fluid conditions, it is possible to gather the

following relation for the outflow Q out,r ( t ) ( Arnott, 2013; Mariotte et al., 2017; Mariotte and Leclercq, 2018 ): 

Q out,r (t) = Q in,r (t − t tra v el ) 
v r (n r (t)) 

v r (n r (t − t tra v el )) 
(6)

The setting of trip lengths for the calibration of an MFD model cannot be neglected. In an MFD framework, the vehicles

speed is assumed to be homogeneous. Thus, the trip lengths dictate the time that vehicles have to spend to complete their

trips inside a region r . Longer trip lengths mean that vehicles spend more time to complete their trips inside the region,

increasing the accumulation n r and thus the modeled traffic states. In the next section, we introduce the methodology to

estimate the distance to be traveled by the vehicles inside each region, that will depend on the level of information that

we consider from the regional network as stated in the introduction. The influence of the trip lengths tuning on the traffic

dynamics modeled by a trip-based MFD model, will be investigated in more detail in Section 4 . 
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Table 1 

Nomenclature used in this paper. 

City and regional networks: 

o Origin node. 

d Destination node. 

O Origin region. 

D Destination region. 

W Set of regional OD pairs. 

p Regional path. 

R Number of regions that define regional path p . 

X Set of regions that define the regional network. 

r Region. 

k Virtual trip in the city network. 

N Set of nodes of the city network. 

A Set of directed links of the city network. 

N nodes Total number of nodes in the city network. 

N links Total number of links in the city network. 

�OD Regional choice set of regional OD pair. 

MFD models: 

t Time instant. 

T Simulation period. 

n r ( t ) Accumulation of vehicles in region r . 

Q in,r ( t ) Inflow function of region r . 

Q out,r ( t ) Outflow function of region r . 

P r ( n r ( t )) Production MFD. 

v r ( n ( s )) Speed-MFD. 

n ij Accumulation of vehicles that travels on region i and goes to j . 

L r Average trip length inside region r . 

i Vehicle. 

t entry Entry time of vehicle i in region r . 

t exit Exit time of vehicle i of region r . 

t travel Travel time of vehicle i in region r . 

L rp Average trip length of regional path p inside region r . 

Set of virtual trips: 

� Set of virtual trips. 

N od Number of virtual trips listed in �. 

N nodes 
used 

(N od ) Total number of nodes visited in the city network. 

N links 
used 

(N od ) Total number of links visited in the city network. 

� Set of regional paths defined by the virtual trips listed in �. 

L 
M x 
p Average trip length of regional path p considering the level x ( M x ) of 

information. 

Z and Z ∗ Regional OD matrices. 

Level 1: 

L r Distribution of trip lengths of region r . 

L r Average trip length of region r . 

l rk Length of trip k in region r . 

δrk Binary variable that equals 1 if trip k travels on region r , or 0 otherwise. 

Level 2: 

j Next adjacent region to r . 

L rj Distribution of trip lengths to go from region r to region j . 

L r j Average trip length to go from region r to j . 

δrjk Binary variable that equals 1 if trip k travels in region r and goes to region j , 

or 0 otherwise. 

� Set of adjacent regions to r . 

γ Binary variable that equals 1 if p is composed of 2 or more regions, or 0 

otherwise. 

Level 3: internal trips 

L r Distribution of trip lengths of region r . 

L r Average trip length of region r . 

ηrk Binary variable that equals 1 if k is an internal trip of region r , or 0 otherwise. 

Level 3: crossing trips 

h Previous origin region. 

L hrj Distribution of trip lengths of region r , for trips coming from region h and 

going to region j . 

L hr j Average trip length to go from region h to j and crossing region r . 

δhrjk Binary variable that equals 1 if trip k comes from region h and goes to j by 

crossing region r , or 0 otherwise. 

γ Binary variable that equals 1 if p is composed 3 or more regions, or 0 

otherwise. 

( continued on next page ) 
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Table 1 ( continued ) 

Level 4: 

L p 
i 

Distribution of trip lengths for p on region r . 

L 
p 

r Average trip length of p on region r . 

δp 

rk 
Binary variable that equals 1 if trip k travels in region r and both define 

regional path p , or 0 otherwise. 

Other variables: 

ρ Relative differences of the average trip lengths calculated for the i −th level of 

information, between the sets of N od = 400 and 5000 and the reference set 

of N od = 10 , 0 0 0 . 

δlr Binary variable that equals 1 if link l lies inside region r . 

δnr Binary variable that equals 1 if node n lies inside region r . 

β ip Relative differences between the average trip lengths calculated by the j−th 

level of information ( j = 1 , 2 , 3 ) and the reference level of information M 4 . 

αOD 
r Scaling factor. 

ˆ L Estimated trip length based on the updated OD matrix. 

θ Relative differences between ˆ L and L . 

ζ s Descent step of the Method of Successive Averages. 

s Descent step iteration of the Method of Successive Averages. 

N max Total number of descent step iterations. 

Gap Relative gap between the regional paths travel time and the travel time at the 

network equilibrium. 

tol Tolerance for the Gap criterion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2. Methodological framework for the estimation of trip length distributions 

The methodology proposed in this paper to estimate the trip length distributions, it utilizes a representative set of trips in

the city network as well as the definition of its partitioning. To partition the city network, we can apply one of the different

methods described in the literature ( Saeedmanesh and Geroliminis, 2016; 2017; Lopez et al., 2017; Casadei et al., 2018 ). To

gather the set of trips, the ideal scenario would be to use real trips in the city network. However, the full set of the latter is

usually unknown and difficult to estimate. To bypass this obstacle, we construct a set of virtual trips in the city network, by

uniformly sampling N od od pairs and calculating a path that connects each of them. In this paper, we consider the shortest-

paths in distance estimated by the Dijkstra algorithm. We further note that other approaches can be used to estimate the

virtual trips. To name a few examples, we can consider the link elimination ( Azevedo et al., 1993 ) or link penalty ( de la

Barra et al., 1993 ) approaches, the branch-and-bound algorithm ( Prato and Bekhor, 2006 ), the doubly stochastic approach

( Nielsen, 20 0 0 ) or the implementation of the Metropolis–Hasting algorithm, as proposed by Flötteröd and Bierlaire (2013) .

Exploring the influence of the local trips calculation on the generation of the virtual trips set is beyond the scope of this

study. 

Once the set of virtual trips � is defined, to estimate the distributions of trip lengths, we differentiate the trips inside

each region r according to four levels of information from the regional network. These levels are: 

• Level 1 (M 1 ): no information on the regional Origin and Destination of the trips. This level follows the original idea of

Daganzo (2007) for MFD-based models applications and consists of a single average trip length ( L r ) for all vehicles trav-

eling in region r . All trips that cross region r are considered, independently of the previous and the next regions that

these trips travel, to estimate an average trip length L r as: 

L r = 

∑ 

k l rk ∑ 

k δrk 

, ∀ k ∈ � (7)

where l rk is the length of the part of the trip k that occurs in region r ; and δrk is a binary variable that equals 1 if trip k

travels on region r , or 0 otherwise. 

The distribution of trip lengths of region r is: 

L r = { δrk l rk } , ∀ k ∈ � (8)

In Fig. 3 (a) we show the application of this aggregation level for the green region. This region is highlighted and four

trips are shown: their origin nodes are represented by black circles and the destination nodes by arrows. Each trip is

identified by an identification number. Three of these trips (i.e., trips 1, 2 and 4) simply cross the green region, while one

has its origin node inside the green region (i.e., trip 3). To estimate the distribution of trip lengths for the green region,

we aggregate the length of the part of these trips that occur inside the green region. These lengths are represented by

the solid black lines in Fig. 3 (a). Note that, although the internal trips (i.e. that have origin and destination nodes inside

the green region) are not shown, they are nonetheless considered. 
• Level 2 (M 2 ): next region to be traveled by the trips. The idea is to consider all the trips that cross region r and that go to

the same next adjacent region, independently of their previous adjacent region. We filter the trips on � that cross region

r and that go to the same next adjacent region j . This estimation is consistent with the dynamics of state accumulations



198 S.F.A. Batista, L. Leclercq and N. Geroliminis / Transportation Research Part B 122 (2019) 192–217 

Fig. 3. Example of application of the methodology to estimate the distributions of trip lengths, considering the four levels of information. Levels 1 to 4 are 

represented in the sub figures (a) to (d), respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

that are utilized in different effort s f or perimeter control of multi-regional networks (see for example Ramezani et al.,

2015 ). For these works it is not important to know from where vehicles started their trips, but only what is the next

region towards the destination. 

The average trip length L r j to go from region r to j is estimated as: 

L r j = 

∑ 

k δr jk l rk ∑ 

k δr jk 

, ∀ k ∈ � ∧ (∀ j ∈ � ∨ j = r) (9)

where δrjk is a binary variable that equals 1 if trip k travels in region r and goes to region j ; and � is the set of adjacent

regions to r , or 0 otherwise. Note that j = r represents the case of a destination region of the trips. 

The distribution of trip lengths of region r that go to j is: 

L r j = { δr jk l rk } , ∀ k ∈ � (10) 

In Fig. 3 (b) we show the application of this aggregation level. Five examples of trips are shown for the green region.

All of these trips have the same adjacent destination region (the pink one). Trip 2 has a destination node on the border

between the green and the pink regions. The length of these trips that occur inside the green region are aggregated.

This is represented by the solid black lines. Now let us consider the pink region shown in Fig. 3 (b), which is a common

destination region of the trips represented in it. Trip 6 represents an example of an internal trip. In this case, the lengths

of trips 1 to 6 that occur inside the pink region are aggregated to define the distribution of trip lengths for this region. 
• Level 3 (M 3 ): the previous and the next regions traveled by the trips. The idea is to consider all the trips that cross region

r and that come from the same previous adjacent region h and go to the same next adjacent region j . The reasoning

behind this calculation is that when partitioned, regions have asymmetric and uneven shapes and vehicles that come

from different previous regions might have significantly different trip lengths in the current region of consideration. In

this case, we must consider two distinct types of trips: 

– The first type corresponds to the internal trips of region r , i.e. internal paths. In this case, the average trip length L r 
is: 

L r = 

∑ 

k ηrk l rk ∑ 

k ηrk 

, ∀ k ∈ � (11) 

where l rk is the length of trip k ; and ηrk is a binary variable that equals 1 if trip k is an internal trip of region r , or 0

otherwise. 
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The distribution of trip lengths of region r is: 

L r = { ηrk l rk } , ∀ k ∈ � (12)

– The second type corresponds to trips that cross region r . In this case, all trips traveling in region r , coming from the

same previous adjacent region h and going to the next adjacent region j are aggregated to define the average trip

length L hr j , to go from region h to j and crossing region r : 

L hr j = 

∑ 

k δhr jk l rk ∑ 

k δhr jk 

, ∀ k ∈ � ∧ ∀ (h, j) ∈ � ∧ h � = j (13)

where δhrjk is a binary variable that equals 1 if trip k comes from the previous region h and goes to the next region

j , by crossing region r , or 0 otherwise. 

The distribution of the trip lengths of region r , for trips coming from region h and going to region j is: 

L hi j = { δhi jk l ik } , ∀ k ∈ � (14)

In Fig. 3 (c), we show an example of an application of this case of Level 3 for intermediate regions. To do this, we

consider the two trips that come from the yellow region (the equivalent to region h ), cross the green region (the

equivalent to the region r ), and go to the pink region (the equivalent to region j ). The lengths of the part of these

two trips inside the green region are aggregated together to estimate the distribution of trip lengths L hrj . This is

represented by the solid black lines. 
• Level 4 (M 4 ): the related regional path p defined by each trip. This is the most general case requiring a significant number

of information. That is, we only consider the trips that cross region r , following the same specific sequence hij of regions

and that define the same regional path p . Thus, all the trips that cross region r and define the same regional path p , are

considered to estimate the average trip length of p in region r ( L 
p 

r ): 

L 
p 

r = 

∑ 

k δ
p 

rk 
l rk ∑ 

k δ
p 

rk 

, ∀ k ∈ � (15)

where δp 

rk 
is a binary variable that equals 1 if trip k travels in region r and is associated with the regional path p , or 0

otherwise. 

The distribution of the trip lengths of the regional path p inside region r is: 

L p r = { δp 

rk 
l rk } , ∀ k ∈ � (16)

In Fig. 3 (d), we show the application of this aggregation method. Two examples of trips that define the same regional

path, defined by the sequence of the blue-yellow-green-pink regions, are shown. To determine L 
p 
r for the green region,

we aggregate the length of the part of these trips inside this region. This is represented by the solid black lines. 

Level 1 is the more generic one, where all the trips that cross the same region are considered for the aggregation. Level

4 is the most refined in terms of the level of information considered. It allows defining a specific distribution of trip lengths

for a regional path that crosses a given region, based on the specific sub-set of trips that define this regional path. Thus, we

consider Level 4 as the reference throughout this paper, even if it might be the most challenging to compute with real data.

We reinforce the idea that our goal is to assess the influence of the trip lengths tuning for MFD-based model applications. In

the latter case, it is M 1 which is usually considered in the absence of more information on a proper calibration framework.

The purpose of this paper is to set up this framework and to investigate the influence on the traffic dynamics in the regions,

when the trip lengths are estimated between M 1 , M 2 and M 3 and the reference M 4 . 

The average trip length of regional path p can be directly estimated considering any of the previously discussed methods

as follows: 

1. Level 1 ( M 1 ): 

L 
M 1 

p = 

R ∑ 

m =1 

L p m (17)

2. Level 2 ( M 2 ): 

L 
M 2 

p = γ
R −1 ∑ 

m =1 

R ∑ 

l= m +1 

L p m p l + L p R p R (18)

where γ is a binary variable that equals 1 if R ≥ 2, or 0 otherwise. 

3. Level 3 ( M 3 ): 

L 
M 3 

p = 

{
L p R if R = 1 

L p 1 p 2 + γ
∑ R −1 

m =2 L p m −1 p m p m +1 
+ L p R −1 p R if R ≥ 2 

(19)

where γ is a binary variable that equals 1 if R ≥ 3, or 0 otherwise. Note that: L p R is estimated according to Eq. (11) ; L p 1 p 2
and L p R −1 p R are estimated according to Eq. (9) ; and L p m −1 p m p m +1 

is estimated according to Eq. (13) . 
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4. Level 4 ( M 4 ): 

L 
M 4 

p = 

p R ∑ 

m = p 1 
L 

p 

m 

(20) 

Although the four levels of information might give similar estimations of L p ( Eqs. (17) –(20) ) for the mean value when

the shape of the regions is symmetrical and the distribution of demand and congestion is homogeneous, this might

not be the case with the variance. For accumulation-based MFD models only the average trip lengths matter. How-

ever, for the trip-based MFD models, the variance of the trip length distributions plays a significant role in the outflow.

Lamotte et al. (2018) shows that trip length distributions can easily be implemented in this framework. 

The trip lengths depend on factors such as the definition of N od , the regional OD matrix ( Leclercq et al., 2015 ) and the

traffic conditions (i.e. congestion patterns). In the next sections, we investigate the influence of the first two factors on the

trip lengths. The influence of congestion together with a methodology to estimate time-varying trip length distributions will

be investigated in future research. 

3. Analysis of the trip length distributions obtained by the four levels of information 

In this section, we analyze the differences between the trip lengths estimated through the four levels of information

( M 1 to M 4). The test network is the 6 th district of the Lyon network (France), divided into eight regions. The test network

and respective MFD functions are introduced in Section 3.1 . In Section 3.2 , we investigate the importance of calibrating

N od well to obtain the set of virtual trips and estimate the trip length distributions. Based on this analysis, we choose an

appropriate set of virtual trips and in Section 3.3 we analyze the regional trip length distributions estimated by the four

levels of information. In Section 3.4 , we investigate the influence of the regional OD matrix on the trip lengths. We propose

a procedure that allows updating the regional trip lengths when the number of trips between the different OD pairs change,

without the need to re-sample the set of virtual trips �. This is very useful to run different MFD-based model applications

for different demand scenarios. 

3.1. Network definition 

The city network considered for testing the methodology proposed in Section 2.2 is the 6 th district of the Lyon network

(France) shown in Fig. 4 . It is composed of 757 links and 431 nodes. The city network is partitioned into eight regions, for

which we fitted the MFD functions ( Fig. 4 ) considering the dimensions of each one. We assume a bi-parabolic shape for the

MFD (one parabola for the increasing and one for the decreasing part of the MFD, with a first derivative equal to zero for

the critical accumulation that maximizes production). 

3.2. Definition of N od for the calculation of trip lengths 

In this section, we analyze the importance of properly setting the value of N od to calibrate the set of virtual trips �. We

also investigate its influence on the calculation of the trip lengths, considering the four levels of information (i.e. M 1 to M 4 ).

The proper setting of N od is essential to ensure that the full city network has been covered by the set �. A low value

of N od does not guarantee that all the links and nodes of the city network have been visited. To better elucidate this, we

execute 100 trials of � for different values of N od : 200; 400; 600; 800; 1000; 5000; and 10,000. The od pairs are uniformly

sampled in the city network for all N od trials. For these 100 trials and for each N od value, we estimate the fraction of links

and nodes that have been visited by the sets of virtual trips. We define two criteria that estimate the percentage of the city

network nodes ( N 

nodes 
cov (N od ) ) and links ( N 

links 
cov (N od ) ) visited: 

N 

nodes 
cov (N od ) = 

N nodes ∑ 

i =1 

N 

nodes 
used 

(N od ) 

N nodes 

(21) 

N 

links 
cov (N od ) = 

N links ∑ 

i =1 

N 

links 
used 

(N od ) 

N links 

(22) 

where N 

nodes 
used 

(N od ) and N 

links 
used 

(N od ) are the total number of nodes and links covered in the city network for one trial of a

fixed N od , respectively; and N nodes and N links represent the total number of nodes and links of the city network, respectively.

In this case, N nodes = 431 and N links = 757 . 

For each value of N od previously stated and based on the 100 trials, we estimate the average and standard deviations for

N 

nodes 
used 

(N od ) ( Eq. (21) ) and N 

links 
used 

(N od ) ( Eq. (22) ). These results are shown in Fig. 5 . When N od = 200 , we cover around 90%

of the nodes and 78% of the links of the city network. As N od increases, both N 

nodes 
used 

(N od ) → 1 and N 

links 
used 

(N od ) → 1 with low

standard deviations, showing that the fraction of nodes and links traveled by the virtual trips listed in � are very close to

the total number of nodes and links in the city network. Moreover, the standard deviation is close to 0 for N od ≥ 50 0 0. This

highlights that the fraction of nodes and links visited by the 100 trials for a fixed N value are equal. Nevertheless, what
od 
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Fig. 4. Top: Lyon 6th district network divided into 8 regions. Bottom: MFD function of each region. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

is the influence of good city network coverage for the calculation of the trip length distributions? To answer this question,

we analyze the relative differences ρ between average trip lengths estimated through all four levels of information ( M 1

to M 4 ). We choose three sets of N od = 40 0 , 50 0 0 and 10,0 0 0. The last value of N od is considered as the reference since

all nodes ( N 

nodes 
used 

(N od ) = 1 ) have been visited by the virtual set of trips (see Fig. 5 ). We also consider N od = 400 where

N 

nodes 
used 

(N od ) ∼ 0 . 95 and N od = 50 0 0 where N 

nodes 
used 

(N od ) → 1 . These values guarantee that we compare a case with a situation

similar to the reference (i.e. N od = 50 0 0 ) and another that is not (i.e. N od = 400 ). This analysis provides better understand of

the link between the results shown in Fig. 5 and the calculation of the trip lengths. We estimate the relative differences ρ ,

between the average trip lengths estimated from the sets of N od = 400 and 50 0 0 and the reference set of N od = 10 , 0 0 0 , as:

ρ = 

L 
x 

M i 
− L 

re f 

M i 

L 
re f 

M i 

, ∀ i = 1 , . . . , 4 ∧ x = 40 0 , 50 0 0 (23)

where M i refers to ith level of information (i.e. M 1 to M 4 ) and x refers to the N od = 40 0 , 50 0 0 . 

The distributions of the relative differences ρ for all four levels of information are summarized in the boxplots shown in

Fig. 6 (a) for N od = 400 and in Fig. 6 (b) for N od = 50 0 0 . The horizontal red lines represent the average of the ρ distributions

while the red crosses represent the outliers. Levels 3 ( M 3 ) and 4 ( M 4 ) are split into the four possible cases discussed in

Section 2.2 , i.e. for the calculation of the trip length distributions for the Origin (O), Intermediate (I) and Destination (D)

regions of the regional paths as well as for the internal paths (referred to as int. in Fig. 6 ). We observe that the variances

of the ρ distributions are lower for N od = 50 0 0 compared to N od = 400 . The average of the ρ distributions are also basically
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Fig. 5. Average and standard deviation for N nodes 
used 

(N od ) (a) and N links 
used 

(N od ) (b) estimated based on the 100 trials and for each N od value considered. The blue 

dots represent the average values and the vertical bars represent the standard deviations. (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.) 

Fig. 6. Distributions of the relative differences ρ for the four levels of information ( M 1 to M 4 ) and both N od = 40 0 , 50 0 0 compared to the reference 

N od = 10 , 0 0 0 . Levels M 3 and M 4 have been divided into the cases for Origin (O), intermediate (I) and destination (D) of the regional paths as well as the 

internal paths (int.). 

 

 

 

 

 

 

 

 

 

0 for N od = 50 0 0 . This means that the average trip lengths are very similar for sets of virtual trips associated with distinct

values of N od , when N 

nodes 
used 

(N od ) = 1 . This means that a node has been visited by the virtual trips at least one time. For this

specific case, this occurs for N od ≥ 50 0 0. We now analyze the results shown in Fig. 6 in more detail. Level 1 ( M 1 ) is the most

robust regarding the definition of N od , i.e. where the relative differences of the average trip lengths for both N od = 40 0 , 50 0 0

and the reference value N od = 10 , 0 0 0 are the lowest. Indeed, for M 1 , we consider all the virtual trips that travel in each

region to estimate the trip length distributions. It is thus more probable to obtain a statistical number of virtual trips to

estimate the distributions of trip lengths for M 1 than with the other three levels of information M 2 to M 4 . For N od = 400

compared to the reference N od = 10 , 0 0 0 , the largest relative differences are ∼10 m for regions 4 and 5, meaning that ρ ∼ 4%.

The numbers of virtual trips used to define the distributions of trip lengths for regions 4 and 5 are 95 and 162, respectively.
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Table 2 

Average trip lengths [in meters] for the outliers of the ρ distributions 

shown in Fig. 6 , for M 2 and the three N od = 40 0 , 50 0 0 , 10 , 0 0 0 values. 

The number of trips that define the associated trip length distributions 

are also listed. 

Region N od = 400 N od = 50 0 0 N od = 10 , 0 0 0 

r j L r j �k ∈ �δrjk L r j �k ∈ �δrjk L r j �k ∈ �δrjk 

3 7 259 8 ∼ ∼ 341 233 

5 4 19 1 232 14 161 19 

7 6 220 36 ∼ ∼ 180 1010 

8 6 171 1 443 1 327 8 

Table 3 

Average trip lengths [in meters] for the outliers of the ρ distribu- 

tions shown in Fig. 6 , for M 3 . The number of trips that define the 

associated trip length distributions are also listed. 

Region N od = 400 N od = 10 , 0 0 0 ρ

h r j L hr j �k ∈ �δhrjk L hr j �k ∈ �δhrjk 

1 2 3 103 1 339 95 −0.70 

4 5 6 144 1 321 50 −0.55 

4 6 5 185 1 344 42 −0.46 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

These numbers are higher than the number of links and nodes of the city network that lie inside these two regions. Let δkr

be a binary variable equal to 1 if virtual trip k travels on region r , or 0 otherwise; and δlr and δnr be binary variables that

equal 1 if link l or node k lie inside region r , respectively, or 0 otherwise. Thus 
∑ 

k ∈ � δkr ∑ 

n ∈ N δnr 
∼ 1 . 2 and 

∑ 

k ∈ � δkr ∑ 

l∈ A δlr 
∼ 1 . 7 for region

r = 4 ; and 

∑ 

k ∈ � δkr ∑ 

n ∈ N δnr 
∼ 2 . 5 and 

∑ 

k ∈ � δkr ∑ 

l∈ A δlr 
∼ 3 . 9 for region r = 5 . 

The other three levels of information M 2 to M 4 require a larger virtual trip set size, N od for a good estimation of the trip

lengths due to their nature. For level M 2 , we observe the presence of outliers in Fig. 6 for both N od = 40 0 , 50 0 0 values. Let

us first analyze the case of N od = 400 to understand the presence of these four outliers. These outliers occur for the average

trip lengths L 37 (i.e. for the average trip length to go from region r = 3 to the adjacent region j = 7 - see Eq. (9) ), L 54 , L 86 and

L 76 . These average trip lengths are listed in Table 2 for the three N od values, as well as the number of virtual trips associated

with these trip length distributions. Note that, as defined in Section 2.2 for M 2 , �k ∈ �δrjk defines the total number of trips

that travel in region r and go the same adjacent region j . As can be seen, to define the trip length distribution when going

from region r = 3 to j = 7 there are only 8 virtual trips for N od = 400 , while there are 233 virtual trips for the reference

N od = 10 , 0 0 0 . The average trip length L 76 represents the lowest outlier in Fig. 6 , where ρ ∼ 0.2. In this case, the number

of associated virtual trips is 36, which is statistically more significant. For the other two trip length distributions (i.e. to

go from regions r = 5 and r = 8 to j = 4 and j = 6 , respectively) the number of associated virtual trips is low, despite

its increase verified for the three N od values. Indeed, the entry and exit links of the nodes located on the borders of the

city network partitioning might not allow traveling in both directions between two adjacent regions. This is because of

the presence of one-way links, which occurs in most of the 6th district of the Lyon network. Fig. 4 shows that there are

5 nodes located on the border between regions 4 and 5, while 4 nodes located on the border between regions 8 and 6.

Nevertheless, only two nodes allow traveling from regions 5 to 4 and only one node allows traveling from region 8 to 6.

With the increase of N od , we increase the probability of having a larger number of longer virtual trips that cross the borders

of the city network partitioning at these nodes. Thus, for very specific trip length distributions, the number of connection

nodes between adjacent regions also plays a role. This becomes more significant as we increase the level of information for

M 3 and M 4 . This might further reduce the total number of virtual trips used to define the trip length distributions. 

We now focus our analysis on M 3 and M 4 . As can be seen in the boxplots shown in Fig. 6 , the distributions of ρ are

narrower for N od = 50 0 0 compared to N od = 400 . The increase of N od , increases the probability that a larger number of

virtual trips are considered to estimate the distributions of trip lengths. However, several outliers can be seen, especially for

the intermediate and destination regions. Let us first analyze the outliers of the ρ distributions for M 3 and N od = 400 . The

average trip lengths L hr j (see Eq. (13) ) for these three outliers are listed in Table 3 . Note that as defined in Section 2.2 for M 3 ,

�k ∈ �δhrjk defines the total number of virtual trips k associated with the trip length distribution L hrj . As shown in Table 3 ,

these outliers occur because for N od = 400 there is only one virtual trip to define the trip length distribution. However, the

number of virtual trips become much more significant for the reference N od = 10 , 0 0 0 . We also analyze the largest outlier of

the ρ distribution for the intermediate regions and for N od = 50 0 0 . This outlier occurs for the trip length distribution L 645 ,

for virtual trips traveling on region r = 4 , coming from region h = 6 and going to region j = 5 . This sequence of regions

is not covered by the virtual trip for N od = 400 . The average trip lengths L 645 are 179 m for N od = 50 0 0 and 105 m for

N od = 10 , 0 0 0 . These values are estimated from a set of 3 virtual trips for N od = 50 0 0 and 2 virtual trips for N od = 10 , 0 0 0 .

The lower number of virtual trips associated with these sets of trip lengths for larger N values is related with the topology
od 
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Table 4 

Number of virtual trips between each regional OD pair, for the 6th 

Lyon district network. 

Destination region 

1 2 3 4 5 6 7 8 

O
ri

g
in
 
re

g
io

n
 

1 165 258 135 153 96 133 125 171 

2 215 298 164 176 147 202 184 282 

3 160 188 114 135 97 103 128 185 

4 156 247 105 104 96 106 155 175 

5 108 139 69 93 43 99 86 138 

6 140 159 102 67 85 65 89 162 

7 147 227 115 81 75 79 135 152 

8 199 272 141 132 103 149 151 175 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of the city network as well as the definition of its partitioning. These five virtual trips have an Origin in region 8 and

Destination in region 5, defining the regional path p = { 87645 } . In the set of N od = 50 0 0 there are a total of 42 virtual trips

connecting this regional OD pair, while in the set of N od = 10 , 0 0 0 there are 94 virtual trips. Out of the total numbers of

virtual trips mentioned previously, there are ∼ 90% that define the regional path p = { 875 } . Travel is therefore more likely

on the regional path p = { 875 } rather than on p = { 87645 } , for the regional OD pair 8-5 (see also Fig. 4 ). 

Fig. 6 shows that the most refined level of information M 4 is that most sensitive to the calibration of the virtual trip

sets �. It also shows several outliers in the ρ distributions that come from the calculation of trip lengths based on regional

paths that are not statistically significant. When the regional paths are not statistically significant, the bias induced from

the sampling of origin and destination nodes plays an important role in the calculation of the trip length distributions for

the Origin and Destination regions. Nevertheless, this bias is considerably reduced for distributions of trip lengths estimated

on the basis of statistically significant regional paths. To better elucidate the latter, we analyze several examples. We first

consider the regional path p = { 357 } which is not statistically significant. This regional path is defined by 3 virtual trips

for N od = 50 0 0 and by 4 virtual trips for N od = 10 , 0 0 0 . We estimate the relative differences ρ for the three regions. The

ρ values are −0 . 41 for the Origin region, 0.73 for the intermediate region and −0 . 35 for the Destination region. We now

analyze the regional path p = { 578 } which is statistically significant. This regional path is defined by 37 virtual trips for

N od = 50 0 0 and by 66 virtual trips for N od = 10 , 0 0 0 . The ρ values are 0.02 for the Origin region, −0 . 03 for the intermediate

region and −0 . 05 for the Destination region. We observe that for the regional path p = { 578 } , the average trip lengths are

very close for the three regions. However, this does not occur for the regional path p = { 357 } . 
In this section, we show that the criterion N 

nodes 
cov (N od ) provides good guidance for ensuring a proper definition of the

virtual trip sets � for the calculation of the trip length distributions. We also carried out a detailed analysis of the influence

of the N od setting on the calculation of the trip lengths and identified that the presence of outliers in the ρ distributions,

especially for the more detailed levels of information (i.e. M 3 and M 4 ), originate from trip length sets that are not statistically

significant. As mentioned previously, these outliers originate from the scaling of the virtual trips to the aggregated level,

taking into account the definition of the city network partitioning. One solution to avoid this problem is to first analyze the

set of regional paths defined by the virtual trips set �. Let � be this set of regional paths. First, it is possible to filter the

non-statistically significant regional paths of this set � , i.e. filter the virtual trips from the set � that define these regional

paths. Then, based on these virtual trips, the distributions of trip lengths can be reestimated according to the four levels of

information M 1 to M 4 . By applying this procedure, we reduce the number of outliers on the ρ distributions to 2 for M 

I 
3 and

M 

I 
4 and to 3 for M 

D 
4 . 

Based on the analysis done in this section, we select the N od = 10 , 0 0 0 set of virtual trips � as the reference for the next

two Sections 3.3 and 3.4 . The latter yields 
N od 

N l inks 
∼ 13 . 2 . The virtual trips are uniformly sampled in the city network and

define the regional OD matrix listed in Table 4 . Let Z be this regional OD matrix. These virtual trips define a total of 205

regional paths. 

3.3. Analysis of the trip length distributions 

In this section, we start by analyzing the differences between the averages of the trip length distributions estimated by

the different levels of information M 1 to M 4 . We consider M 4 as the reference distribution as stated in Section 2.2 . The

average of the trip length distributions of the other three levels of information, M 1 to M 3 , are analyzed against the reference

level M 4 . We then analyze the differences of the trip length distributions estimated by the four levels of information for a

representative regional path p = { 124 } . 
We investigate the differences between the average trip lengths estimated by the levels of information M 1 to M 3 com-

pared to the reference level M 4 . We do this analysis at the region level. First, we focus our analysis at the region level.

Fig. 7 depicts the average trip lengths estimated by the four levels of aggregation for the eight regions of the 6th district

Lyon network (see Fig. 4 ). The blue dots represent the average trip lengths estimated for each region by M 1 (see Eq. (7) ).

The green triangles represent the average trip lengths estimated for M (see Eq. (9) ) and for the full set of � as well as the
2 



S.F.A. Batista, L. Leclercq and N. Geroliminis / Transportation Research Part B 122 (2019) 192–217 205 

Fig. 7. Average regional trip lengths L [in meters] estimated through the four levels of information M 1 to M 4 , for the eight regions. The blue dots refer to 

M 1 (see Eq. (7) ). The green triangles refer to M 2 (see Eq. (9) ). The black crosses refer to M 3 (see Eqs. (11) and 13 ). The red dots refer to M 4 (see Eq. (15) ). 

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

internal trips of each specific region. The black crosses represent the average trip lengths estimated for M 3 . This includes

the average trip lengths for the Origin, intermediate and Destination (see Eq. (11) ) regions of the regional paths as well as

the internal paths (see Eq. (13) ). The red dots represent the average trip lengths estimated for M 4 (see Eq. (15) ). Each of the

red dots represented in Fig. 7 for each region corresponds to a different regional path that crosses this specific region. The

results shown in Fig. 7 show that considering only one average trip length for each region (i.e. M 1 ) is not representative of

all the possible average trip lengths of the regional paths that cross each region (i.e. M 4 ). The level of information increases

the diversity of the possible average trip lengths in each region. 

We discuss these differences in more detail for region 5, which has 4 adjacent regions � = { 2 , 4 , 6 , 7 } . As can be seen in

Fig. 4 , there are five regions adjacent to region 5. However, the city network node that lies on the border between regions 3

and 5 only allows traveling from region 5 to 3. Note that similar conclusions can be made for the other regions as well. The

first level of information M 1 provides an average trip length L = 273 meters (see Eq. (7) ). For M 2 , we have five average trip

lengths that correspond to the adjacent regions to region 5 and to the internal path p = { 5 } . The estimated trip lengths range

from L = 203 meters to L = 321 meters. As can be seen M already provides a heterogeneity of average trip lengths that
54 57 2 
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Fig. 8. Distribution of the relative differences β , between method l = 1 , 2 , 3 , 4 (from the left to the right) and the reference method 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M 1 is unable to deliver. In the case of M 3 , we observe a total of 20 black crosses. They correspond to the origin, intermediate

and destination regions of the regional paths as well as the internal path p = { 5 } . The set of 20 trip lengths given by M 3 

has an average of 296 m and standard deviation 111 m. As shown, by increasing the level of information, we increase the

range of possible average trip lengths compared to M 2 and, in particular, to M 1 . This is because we consider in more detail

all the possible trips that might occur inside a region. When we consider the level of information M 4 , the range of possible

average trip lengths increases even more. A total of 124 regional paths out of 205 cross region 5. The average trip lengths of

these 124 regional paths are represented by the red dots in Fig. 7 . The average of these regional paths inside region 5 can

range from a few meters up to ∼ 600 m. For example, the regional paths p = { 5687 } and p = { 645 } are among the shortest.

Whilst, the regional paths p = { 45768 } and p = { 245768 } are longest ones that cross region 5. As can be seen, the more

detailed level of information M 4 allows distinguishing between regional paths that just cross a region by a few meters from

others that have much longer trip lengths. 

These four levels of information M 1 to M 4 provide regional trip lengths for each regional path crossing each region of the

regional network. Therefore, it is relevant to estimate the relative differences between the regional trip lengths estimated

through the levels of information M 1 to M 3 and the reference level M 4 , when assigning regional trip lengths to regional

paths ( p ) inside the regions i . This enhances a more aggregated comparison between the different levels of information than

in Fig. 7 . The relative differences β ip are estimated as: 

βip = 

L 
M j 

i − L 
M 4 

i 

L 
M 4 

i 

δp 
i 
, ∀ j = 1 , 2 , 3 ∧ ∀ p ∈ � (24)

where δp 
i 

is a binary variable that equals 1 if regional path p crosses region i , or 0 otherwise. L 
M 4 
i is the average regional trip

length estimated through Eq. (15) (i.e. level of information M 4 ). For level of information M 1 , L 
M j 

i 
is estimated through Eq. (7) .

For M 2 , L 
M j 

i 
is estimated through Eq. (9) , where i = p m 

is the current region and j = p m +1 is the next region adjacent to i

on the sequence of regional path p . For M 3 , L 
M j 

i 
is estimated through Eq. (13) , where i = p m 

is the current region, h = p m −1 

is the previous region and j = p m +1 is the next region adjacent to i on the sequence of regional path p . 

The estimated relative differences β ip are illustrated in Fig. 8 . As shown, the relative differences β ip decrease as we

increase the level of information, i.e. from M 1 to M 3 . This clearly shows how far the average trip lengths provided by

the level of information M 1 are from all the possible trip lengths of the regional paths crossing the different regions. The

setting of the trip lengths is crucial for the MFD-based models. Indeed, as shown by Leclercq et al. (2015) , the hypothesis of

considering an average trip length for all the vehicles traveling inside the same region for MFD-based models applications

is a strong limitation. Disaggregating the definition of trip lengths by the different regional paths that cross each region is

clearly a better approach. This is because it allows gathering short trip lengths for certain regional paths that just cross a

given region. However, one can also assign longer trip lengths for other regional paths. This has a non-negligible influence

on the modeled traffic states, a point that will be discussed in Section 4 . 

We now analyze the differences between the trip length distributions estimated by the four levels of information M 1 to

M 4 for the regional path p = { 124 } . The distributions of trip lengths for each region of this regional path and for each of the

four levels of information are presented in Fig. 9 . The black horizontal dashed lines represent the average of each trip length

distribution inside each region. As can be observed, the variance of the trip length distributions decreases as we increase

the level of information considered. The diversity of virtual trips, i.e. the number of virtual trips that is considered to gather

the distributions of trip lengths decreases from M 1 to M 4 . In particular, this clearly influences the shape of the trip length

distribution for the intermediate region 2, as observed in Fig. 9 for M and M . Increasing the level of information to define
3 4 
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Fig. 9. Regional trip length distributions estimated through the four levels of information M 1 to M 4 for each region of the regional path p = { 124 } . The 

total number of trips considered for each distribution is identified at the top of each subplot. Each row of the subplots represents the results for each level 

of information, while each column of subplots represents each region of the regional path. The horizontal dashed lines represent the average of the trip 

length distributions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the trip length distributions for intermediate regions gives priority to the virtual trips that specifically travel this interme-

diate sequence. This explains the peak observed for the trip length distributions for the intermediate region 2 gathered by

M 3 and M 4 . Indeed, the fraction of the city network that lies inside region 2 is similar to a grid network (see Fig. 4 ). The

links of the city network that lie inside region 2 are mostly one directional. This increases the probability that the virtual

trips traveling on this specific sequence of intermediate regions, use a specific sequence of links of the directional links of

the city network more often. Whereas the trip length distributions for region 2 gathered from M 3 and M 4 are similar, this

might not be the case for all intermediate regions. Note that, for M 3 we consider all virtual trips that cross the specific

sequence of regions 4-2-1. For M 4 , we only consider the virtual trips that define the same regional path p . The trip length

distributions for the intermediate regions are estimated based on the length of each trip inside these regions. As shown in

Fig. 9 , there are 122 virtual trips that define the regional path p = { 124 } and that are then used to estimate the trip length

distribution for region 2. For M 3 there are 12 additional virtual trips that define other regional paths that are considered to

define the trip length distribution for region 2. 

We also elucidate that sequence p = { 124 } defines a regional path different from the sequence p = { 421 } . In Table 5 , we

list the average trip lengths for each region of these two regional paths, estimated through the four levels of information.

M 1 attributes similar average trip lengths for the three regions of these two regional paths. Due to its nature, we consider

all the virtual trips that cross each of these regions to define the trip length distributions. Nevertheless, as we increase the

level of information M to M , we assign different average trip lengths for the three regions of each regional path. This
2 4 
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Table 5 

Average trip lengths for the regional paths p = { 124 } (left) and p = { 421 } (right) 

estimated by the four levels of information for each region. 

Region 

Level of information 

Region 

Level of information 

M 1 M 2 M 3 M 4 M 1 M 2 M 3 M 4 

1 312 277 253 314 4 311 362 419 439 

2 364 353 390 393 2 365 396 355 355 

4 311 268 243 296 1 312 345 247 285 

Table 6 

Regional OD matrix Z ∗ . 

Destination region 

1 2 3 4 5 6 7 8 

O
ri

g
in
 
re

g
io

n
 

1 135 231 81 933 173 881 142 838 

2 153 198 140 208 119 285 137 377 

3 137 153 75 95 65 91 90 133 

4 102 156 83 84 77 72 94 106 

5 76 119 64 58 38 61 65 99 

6 96 112 68 46 42 37 77 104 

7 105 137 78 72 53 43 80 102 

8 147 157 107 81 73 106 114 142 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

has a clear influence on the traffic states modeled by an MFD-based model. A longer average trip length inside a region

means that a vehicle has to spend more time to complete its trip inside the region. Consider two vehicles departing at the

same time, but traveling on different regional paths p = { 124 } and p = { 421 } . Furthermore, assume that we have fluid traffic

conditions in the network. According to the average trip lengths assigned by M 1 , these vehicles will complete their trips at

the same time. M 2 to M 4 assign different average trip lengths for these vehicles to travel inside the same region, leading to

different travel times for vehicles traveling in the same region and along different regional paths. 

In this section, we emphasize the importance of considering higher levels of information from the regional network to

define the trip length distributions. First, we highlight that considering an average trip length for all vehicles traveling inside

the same region and on different regional paths (i.e. M 1 ) is not representative of all the possible average trip lengths of all

the regional paths that cross this region (i.e. M 4 ). Second, we show that the level of information considered also plays a

role in the shape of the trip length distributions. Moreover, we show another limitation of M 1 compared to the other three

levels of information. We show that for two regional paths that are defined by the same regions, but in reverse order, the

assigned average trip lengths for each region is similar. However, the other three levels of information M 2 to M 4 assign

different average trip lengths. Because of their nature, they are able to capture important information from the possible

directions of the city network links. In Section 4 , we discuss the importance of trip lengths setting for MFD-based models. 

3.4. Influence of the OD matrix on the trip lengths 

The trip length distributions are clearly influenced by the regional OD matrix ( Leclercq et al., 2015 ). In fact, the regional

OD matrix defines the distribution of od pairs in the city network, which may lead to very different sets of virtual trips. This

happens mostly when considering the relative quantities that go from one region to another. In this section, we introduce

a methodology to update the trip lengths for when the number of trips between OD pairs is modified. This methodology

is only applicable for changes of the OD matrix caused by differences in the trip patterns and not for updating trip length

distributions influenced by the spatial distribution of the city network od pairs. As discussed previously, this is the case of

the trip length distributions for the Origin and Destination regions estimated by the level of information M 3 . Nevertheless,

we introduce an estimation procedure for these two cases, to cover all three possibilities for M 3 dissected in Section 2.2 . We

consider an updated regional OD matrix Z ∗, also composed of N od = 10 , 0 0 0 virtual trips. Out of these 10,0 0 0 virtual trips, a

total of 10 0 0 vehicles travel specifically on each of the following regional OD pairs: 1-4; 1-6; and 1-8. The remaining 70 0 0

virtual trips are uniformly distributed over the city network. For the updated OD matrix, we re-estimate the set of virtual

trips � and the distributions of trip lengths according to the four levels of information M 1 to M 4 . The updated OD matrix

Z ∗ is listed in Table 6 . 

The methodology applied to update the regional trip lengths is based on the regional OD matrix ( Z ) defined by the set

of virtual trips � as well as the trip lengths that are estimated and the updated regional OD matrix Z ∗. One solution is

to estimate a new set of virtual trips based on Z ∗ and update the trip length distributions accordingly. Nevertheless, the

computational cost to do so largely increases for large city networks. We propose an alternative methodology to circumvent

the computational power required to update the trip length distributions. The general idea is to balance the weight of virtual

trips to adjust their frequency to the updated regional OD matrix. This procedure is very useful as it updates the regional

trip lengths considering the current set of trips � when the regional OD matrices change over time, or when another trip-
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based MFD model application has to be run considering a regional OD matrix different from the original one. This procedure

is described below. 

The trip lengths for the i −th region and for the first level of information M 1 , are estimated as: 

ˆ L i = 

∑ 

r 

∑ 

k l 
OD 
ik 

αOD 
r ∑ 

O 

∑ 

D 

∑ 

r 

∑ 

k δik α
OD 
r 

, ∀ k ∈ � (25)

where ˆ L i is the estimated average regional trip length for region i ; l OD 
ik 

is the length of virtual trip k on region i that has

the regional OD pair; δik is a binary variable that equals 1 if virtual trip k crosses region i , or 0 otherwise. αOD 
r is a scaling

factor that depends on the demand of regional OD pair of Z weighted by the demand of the same regional OD pair of Z ∗,

that crosses region i : 

αOD 
r = 

{
n OD 

n OD ∗
, if n 

OD 
∗ ≥ 1 

1 , if n 

OD 
∗ = 0 

(26)

where n OD is the demand going from regional origin O to regional destination D of matrix Z ; and n OD ∗ is similar but for

the updated regional OD matrix Z ∗. Such calculations are simple and allow updating trip lengths as a function of dynamic

variations of the regional OD matrix. 

For the level of information M 2 , the trip length from region i to the next adjacent region j is estimated as: 

ˆ L i j = 

∑ 

O 

∑ 

D 

∑ 

r 

∑ 

k δi jk l 
OD 
ik 

αOD 
r ∑ 

O 

∑ 

D 

∑ 

r 

∑ 

k δi jk α
OD 
r 

, ∀ k ∈ � (27)

where ˆ L i j is the estimated regional trip length from the current region i to the adjacent region j; δijk is a binary variable

that equals 1 if virtual trip k , crosses region i and goes to the adjacent j , or 0 otherwise. 

For the level of information M 3 , we have to distinguish three possible cases for the estimation of the regional trip lengths:

• the case where the regional path is composed of only one region ( R = 1 ). The average regional lengths are estimated as:

ˆ L i = 

∑ 

O 

∑ 

D 

∑ 

r 

∑ 

k δik l 
OD 
ik 

αOD 
r ∑ 

O 

∑ 

D 

∑ 

r 

∑ 

k δik α
OD 
r 

, ∀ k ∈ � (28)

where δik is a binary variable that equals 1 if virtual trip k is an trip internal to region i , or 0 otherwise. 
• the case where the regional path is composed by two or more regions ( R ≥ 2) and for the Origin and Destination regions.

The average regional lengths are estimated as: 

ˆ L i j = 

∑ 

O 

∑ 

D 

∑ 

r 

∑ 

k δi jk l 
OD 
ik 

αOD 
r ∑ 

O 

∑ 

D 

∑ 

r 

∑ 

k δi jk α
OD 
r 

, if ((i = p 1 , j = p 2 ) ∨ (i = p R −1 , j = p R )) ∧ ∀ k ∈ � (29)

where δijk is a binary variable that equals 1 if virtual trip k travels in region i and goes to j (for the Origin regions) or if

virtual trip k travels in region j coming from region i (for the Destination regions), or 0 otherwise. 
• the case where the regional path is composed of three or more regions ( R ≥ 3) and for the intermediate regions. The

average regional lengths are estimated as: 

ˆ L hi j = 

∑ 

O 

∑ 

D 

∑ 

r 

∑ 

k δhi jk l 
OD 
ik 

αOD 
r ∑ 

O 

∑ 

D 

∑ 

r 

∑ 

k δhi jk α
OD 
r 

, if (h = p m −1 , i = p m 

, j = p m +1 ) ∧ ∀ m = 2 , . . . , R − 1 ∀ k ∈ � ∧ ∀ (h, j) ∈ � ∧ h � = j

(30)

where δhijk is a binary variable that equals 1 if virtual trip k , with regional OD pair, crosses the specific sequence of

h − i − j regions, or 0 otherwise. 

Note that the trip lengths for the intermediate regions estimated for M 3 and M 4 are not influenced by changes in the OD

matrix. For this, one needs to ensure that the sample size used to calculate the trip lengths are statistically significant. Nev-

ertheless, changes in the spatial distribution of the city network od pairs have a non-negligible influence on the calculation

of the trip length distributions for the Origin and Destination regions. 

Based on Eqs. (25) and (30) we estimate that: ˆ L ≈ L . We estimate average regional trip length for all eight regions based

on Z and Z ∗ and define θ as the relative difference between 

ˆ L and L as: 

θ = 

ˆ L − L 

L 
(31)

where ˆ L is the estimated average trip length through Eqs. (25) –(30) ; and L is the average trip length estimated based on

the new set of virtual trips of the Z ∗ OD matrix. Fig. 10 shows the distributions of the relative differences θ for the levels of

information M 1 and M 2 as well as for the intermediate regions case of level of information M 3 . As shown, the methodology

proposed to update the trip lengths yields good estimation results. The averages of the θ distributions, represented by

the horizontal red lines are close to 0 and the largest differences are of the order of ∼ 0.1. As discussed previously, the trip
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Fig. 10. Relative differences θ between the estimated trip lengths ˆ L and the average trip lengths L for the levels of information M 1 to M 3 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

lengths for the Origin and Destination regions estimated by M 3 are influenced by the spatial distribution of the city network

od pairs and are not included in Fig. 10 . For these cases, the average of the θ distributions are also close to 0. Nevertheless,

the largest differences are of the order of ∼ 0.3. 

This methodology is simple to implement, provides good estimations of the trip lengths, and is computationally inex-

pensive. 

4. Impacts of trip-lengths estimation methods on dynamic models 

In this section, we investigate the importance of properly tuning the trip lengths for multi-regional MFD-based model

applications. We focus our analysis on the trip-based MFD model and consider two scenarios. We start by introducing these

two scenarios in Section 4.1 . In the first scenario ( Section 4.2 ), we consider that we have the full information on the trip

patterns in the city network, while, in the second scenario ( Section 4.3 ), we do not know the real trip patterns in the city

network and seek the Deterministic User Equilibrium. For both scenarios, we investigate how the tuning of the trip lengths

influences the predicted traffic states. 

4.1. Trip-based MFD model settings 

For the trip-based MFD traffic model application, we consider the network and MFD functions shown in Fig. 4 . The

implementation of the trip-based model follows the procedure described in Mariotte et al. (2017) . For all the tests in this

section, we consider a total simulation period of T = 80 0 0 s. Moreover, we consider three regional OD pairs: 1-6; 3-4; and

8-4. For these OD pairs, we consider a maximum of two regional paths and we define the following regional choice sets:

�16 = { 1256 ; 12576 } ; �34 = { 324 ; 3524 } ; and �84 = { 87524 ; 8764 } . The regional paths are directly gathered from the set of

virtual trips � ( Batista and Leclercq, 2018 ), considering the most significant ones for each OD pair, i.e. the regional paths

associated with the largest number of virtual trips. 

As previously stated, in this section we investigate the influence of trip length calibration in the modeled traffic states

by a trip-based MFD-based model ( Mariotte et al., 2017 ) in two distinct scenarios: 

• Scenario 1 : We assume that the full information on the trip patterns in the city network is known. Consequently, the

regional path assignment is known. Therefore, the total travel distance of all vehicles inside the same region r is the

same for all levels of information M 1 to M 4 . For this test scenario, we consider the demand curves dissected in Fig. 11

(a). We estimate the set of virtual trips such that the total number of vehicles traveling on each OD pair corresponds to

those defined by the demand curves. There are 1980 vehicle trips traveling on regional path p = { 1256 } , 220 on regional

path p = { 12576 } , 1900 on regional path p = { 324 } and 2400 on regional path p = { 8764 } . The trip lengths for these

four regional paths are estimated based on this set of virtual trips and for the four levels of information M 1 to M 4 . The

average trip lengths are listed in Table 7 . The modeled traffic states are analyzed in Section 4.2 . 
• Scenario 2 : We assume that we do not know the full trip patterns in the city network. For this test scenario, we consider

the demand curves as depicted in Fig. 11 (b). For these demand profiles, the corresponding regional network equilibrium

is unknown. Therefore, we assume that vehicle drivers are perfectly rational and seek to minimize their own regional

path travel times. The latter correspond to the first Wardrop principle ( Wardrop, 1952 ) and defines the Deterministic

User Equilibrium (DUE). To solve the DUE of the regional network, we apply of the Method of Successive Averages (MSA)

( Sheffi, 1985; Sbayti et al., 2007 ). This method consists of a descent step iteration procedure to solve a fixed point prob-

lem. The convergence properties of the MSA are guaranteed by the good tuning of the descent step ζ s , where s is the

descent iteration step. In this paper, we assume that αs = 

1 
s . The iterative descent procedure works as follows. At each

descent step s , the vehicles’ drivers choose the regional path with the minimal travel time based on an all-or-nothing

procedure. The trip-based MFD model provides travel times estimations for every given path flow distribution at each

descent step. The regional network equilibrium is achieved when no vehicle driver can decrease their own travel times

by unilaterally changing regional paths. We consider two convergence criteria for the MSA. We consider the relative Gap
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Fig. 11. Demand scenarios 1 and 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( Sbayti et al., 2007 ) and a maximum number of descent iterations N max . The MSA converges when Gap ≤ tol , tol = 10 −2

is a pre-defined tolerance. We also consider N max = 100 . The relative Gap represents the difference between the regional

path travel time and the equilibrium travel time. Under DUE conditions, the relative Gap is 0, showing that all drivers

choose the minimal travel time regional paths. The network equilibrium is estimated every 250 s for the whole simula-

tion period of 80 0 0 s. For the trip-based MFD model, we consider the trip lengths estimated in the previous Section 3 ,

for the regional OD matrix Z . These trip lengths are also updated for the demand profiles illustrated in Fig. 11 (b) fol-

lowing the methodological framework proposed in Section 3.4 . Under DUE conditions, only regional paths p = { 1256 } ,
p = { 324 } and p = { 8764 } are used. The average trip lengths for these three regional paths are listed in Table 7 . The

modeled traffic states are analyzed in Section 4.3 . 

4.2. Influence of trip length tuning when the regional path flow distributions are known 

In this section, we investigate how the trip lengths tuning affect the modeled traffic states using a trip-based MFD

model ( Mariotte et al., 2017 ) and when the full trip patterns in the city network are available. This means that we know the

regional path flow distributions and that the total travel distances for each region is similar for all four levels of information

M 1 to M 4 . Fig. 12 shows the traffic states modeled for Scenario 1 and for the eight regions of the 6 th district of the Lyon

network (see Fig. 4 ). The traffic states are represented by the accumulation n ( t ) inside each region, for the four levels of

information M 1 to M 4 . Note that the average trip lengths to be traveled by the vehicles inside each region and for each of

the four regional paths are listed in Table 7 . 

As shown, the tuning of the trip lengths yields different traffic states inside the eight regions. One important aspect is

that the traffic dynamics predictions of M 3 are as close as those of M 4 . We now analyze the predicted traffic states inside

each region for the four levels of information in more detail. In region 1, we observe an accumulation peak between ∼ 20 0 0

and 3700 s that is the demand peak of the OD pair 1–6 (see Fig. 11 (a)). We observe that the predicted accumulation is

higher for M 1 than for the other three levels of information M 2 to M 4 . In fact, the average trip length for M 1 is 205 m, longer

than for the other three cases M 2 to M 4 and for both regional paths p = { 1256 } and p = { 12576 } . Therefore, since the speed-

MFD is the same for all vehicles traveling in region 1, they need more time to complete their trips for M 1 as the trip distance

is longer, increasing the accumulation. In this region 1, we also observe another interesting accumulation peak between
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Table 7 

Average regional trip lengths (m) for the four levels of information M 1 to M 4 and for the 

regional paths used in both Scenario 1 and 2. 

Scenario 1 

Method Regional path Region 

1 2 3 4 5 6 7 8 

1 1-2-5-6 205 537 ∼ ∼ 318 336 ∼ ∼
2 1-2-5-6 175 465 ∼ ∼ 308 209 ∼ ∼
3 1-2-5-6 175 465 ∼ ∼ 308 216 ∼ ∼
4 1-2-5-6 172 467 ∼ ∼ 308 216 ∼ ∼
1 1-2-5-7-6 205 538 ∼ ∼ 319 337 284 ∼
2 1-2-5-7-6 174 465 ∼ ∼ 366 209 271 ∼
3 1-2-5-7-6 175 465 ∼ ∼ 366 119 104 ∼
4 1-2-5-7-6 197 440 ∼ ∼ 366 119 104 ∼
1 3-2-4 ∼ 538 376 317 ∼ ∼ ∼ ∼
2 3-2-4 ∼ 626 349 304 ∼ ∼ ∼ ∼
3 3-2-4 ∼ 653 349 335 ∼ ∼ ∼ ∼
4 3-2-4 ∼ 653 349 358 ∼ ∼ ∼ ∼
1 8-7-6-4 ∼ ∼ ∼ 316 ∼ 337 284 266 

2 8-7-6-4 ∼ ∼ ∼ 304 ∼ 411 271 252 

3 8-7-6-4 ∼ ∼ ∼ 280 ∼ 411 287 252 

4 8-7-6-4 ∼ ∼ ∼ 280 ∼ 411 287 264 

Scenario 2 

Method Regional path Region 

1 2 3 4 5 6 7 8 

1 1-2-5-6 312 365 ∼ ∼ 284 259 ∼ ∼
2 1-2-5-6 277 373 ∼ ∼ 276 246 ∼ ∼
3 1-2-5-6 253 441 ∼ ∼ 280 258 ∼ ∼
4 1-2-5-6 191 455 ∼ ∼ 285 236 ∼ ∼
1 3-2-4 ∼ 365 346 311 ∼ ∼ ∼ ∼
2 3-2-4 ∼ 387 353 268 ∼ ∼ ∼ ∼
3 3-2-4 ∼ 695 363 243 ∼ ∼ ∼ ∼
4 3-2-4 ∼ 695 370 179 ∼ ∼ ∼ ∼
1 8-7-6-4 ∼ ∼ ∼ 311 ∼ 259 304 299 

2 8-7-6-4 ∼ ∼ ∼ 268 ∼ 304 180 290 

3 8-7-6-4 ∼ ∼ ∼ 266 ∼ 411 276 269 

4 8-7-6-4 ∼ ∼ ∼ 295 ∼ 411 273 267 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

∼ 50 0 0 and 60 0 0 s. Between these time instants, we have vehicles traveling on regional paths p = { 1256 } and p = { 324 } and

that have to cross region 2. The question now is which vehicles cross first this region. The trip-based MFD model is solved

following an event-based scheme ( Mariotte et al., 2017; Mariotte and Leclercq, 2018 ). The latter relies on a vehicles ranking

that is set depending on the remaining travel distances in the region. In free-flow conditions, this vehicles ranking allows to

calculate the next event, i.e. when the vehicle enters or exits the region. In congestion conditions, there are entry capacicity

constraints that are applied. Therefore, how do we handle two vehicles traveling on different regional paths and that want to

enter the same region that is already congested. We adopt classical merging and diverging schemes from Traffic Flow Theory

( Mariotte et al., 2017; Mariotte and Leclercq, 2018 ) to calculate which is the next vehicle that is allowed to enter the region.

In the case of region 2, the first vehicles to enter are traveling on regional path p = { 324 } . On the other hand, vehicles

traveling on regional path p = { 1256 } have to travel at low speed in region 1 before entering region 2. These vehicles

queuing in region 1 increase the accumulation between ∼ 50 0 0 and 60 0 0 s. In region 3, we observe an accumulation peak

between ∼ 40 0 0 and 60 0 0 s originating from the demand peak of OD pair 3-4 (see Fig. 11 (a)). The predicted traffic states

for all four levels of information are similar as the average trip lengths for regional path p = { 324 } inside region 3 are also

close. In region 2, we observe two accumulation peaks between ∼ 1500 and 3700 s and between ∼ 4500 and 6000 s. The

first accumulation peak corresponds to the vehicles traveling on OD pair 1-6. The second accumulation peak corresponds

to the vehicles traveling on regional path p = { 324 } . We can observe that the accumulation is lower for M 1 than for the

other three levels of information M 2 to M 4 . Indeed, the travel distance given by M 1 for region 2 is 538 m, shorter than the

626 m for M 2 and 653 m for both M 3 and M 4 . Since the travel distance is shorter, vehicles complete their travels faster inside

region 2 for the case of M 1 , leading to less accumulation. Region 8 is an origin region for the OD pair 8-4. We observe the

presence of an accumulation peak between ∼ 30 0 0 and 40 0 0 s that represents the demand of vehicles traveling on regional

path p = { 8764 } . 
We now analyze regions 5, 6 and 7 in conjunction. In region 7, we observe an accumulation peak between ∼ 30 0 0 and

4500 s due to the vehicles circulating on regional paths p = { 12576 } and p = { 8764 } . The peaks are much higher for M 1 and

M than for M and M . Moreover, the predicted traffic states are different for M and M . We will now dissect the sources
2 3 4 1 2 
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Fig. 12. Evolution of n(t) during the modeling period for Scenario 1, considering the four methods for calculating the regional trip lengths. 

 

 

 

 

 

 

 

 

 

 

 

 

of these different traffic predictions. We first focus on regional path p = { 8764 } . The average travel distance of this regional

path inside region 7 is ∼ 280 m for all four levels of information M 1 and M 4 . Therefore, all vehicles will have similar travel

times in region 7. The predicted traffic states for all four levels of information are similar and do not explain the observed

differences in the accumulation peaks for region 7. We now focus on regional path p = { 12576 } . The average travel distances

inside region 7 are ∼ 280 m for M 1 and M 2 and ∼ 100 m for M 3 and M 4 . Vehicles need less time to complete their crossing of

region 7 for M 3 and M 4 compared to M 1 and M 2 . This explains why the accumulation peak is lower for M 3 and M 4 than the

other two cases. Nevertheless, this does not explain the differences between the traffic state predictions for M 1 and M 2 in

region 7. In fact, for the case of M 1 , there is competition between both regional paths p = { 12576 } and p = { 8764 } for which

vehicles are allowed to enter first region 7 ( Mariotte et al., 2017; Mariotte and Leclercq, 2018 ). Vehicles traveling on regional

path p = { 8764 } are the first ones to travel on region 7. Thus, the vehicles traveling on the regional path p = { 12576 } queue

inside region 5, waiting to be allowed to enter region 7. This also explains the much larger accumulation of vehicles in region

5 and for M , compared to the other three levels of information. In region 6, we observe an increase in the accumulation of
1 
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vehicles between 20 0 0 and 30 0 0 s. This is due to the arrival of vehicles at their destination, that are traveling on OD pair

1–6. Table 7 shows that for both regional paths p = { 1256 } and p = { 12576 } , the average travel distance inside region 6 is

higher for M 1 compared to the other three levels of information. As the average travel distance is longer for M 1 , vehicles

need more time to complete their trips. Consequently, the accumulation increases as observed in Fig. 12 , compared to the

other three levels of information. Between 30 0 0 and 40 0 0 s, there is an interaction between the vehicles traveling on OD

pair 1-6 that are arriving at their destination and those traveling on regional path p = { 8764 } . The accumulation of vehicles

in region 6 and between 30 0 0 and 40 0 0 s, increases due to two reasons. First, the demand peak of OD pair 8-4 crosses

region 6 between these instants. Second, the average travel distance for the regional path p = { 8764 } inside region 6 is

much longer than for the other two regional paths p = { 1256 } and p = { 12576 } (see Table 7 ). Therefore, vehicles need more

time to complete their trips and the accumulation increases. We also observe a similar evolution trend of the predicted

traffic states for M 1 and M 2 , between 30 0 0 and 40 0 0 s. Despite the fact that the average travel distance for M 2 is longer

than for M 1 for the regional path p = { 8764 } , this is compensated by the opposite trend of both regional paths p = { 1256 }
and p = { 12576 } (see Table 7 ). This effect leads to very close predictions of the traffic states for M 1 and M 2 . Region 4 is a

destination region for both OD pairs 3-4 and 8-4. We observe the presence of two accumulation peaks between ∼ 30 0 0 and

40 0 0 s and ∼ 4500 and 6000 s, that represent the arrivals of vehicles from regions 8 and 3, respectively. 

We observe that the tuning of the trip lengths has a non-negligible influence on the predicted traffic states by a trip-

based MFD model. In fact, we have access to the full information on the city network trip patterns. Therefore we know the

regional path flows distributions and the total travel distance for each region is identical for all four levels of information

M 1 to M 4 . Nevertheless, the traffic dynamics inside the regions is different, especially during more congested states or when

capacity restrictions at the regions entries arise. 

4.3. Influence of trip length tuning under the regional network DUE 

In this section, we investigate the effect of the trip length setting on the predicted traffic states under the regional

network Deterministic User Equilibrium. Fig. 13 depicts the predicted traffic states for Scenario 2 for the eight regions of the

6 th district Lyon network (see Fig. 4 ). As in the previous section, the traffic states are represented by the temporal evolution 

of vehicle accumulation n ( t ) inside each region for the four levels of information M 1 to M 4 . The average trip lengths for the

three regional paths used by drivers, are listed in Table 7 . 

It can be seen that the traffic dynamics is clearly influenced by the tuning of the trip lengths inside the regions. Moreover,

M 3 gives traffic state predictions similar to M 4 , which are very different from those for M 1 and M 2 . We now dissect the

traffic dynamics inside each region in more detail. We first focus our attention on the predicted traffic states for origin

regions 1 and 3 of regional paths p = { 1256 } and p = { 324 } , respectively. In region 1, we observe an accumulation peak

between ∼ 20 0 0 and 40 0 0 s, whereas in region 3, we observe an accumulation peak between ∼ 3500 and 60 0 0 s. These

peaks are caused by the increase of demand on OD pairs 1-6 and 3-4 (see Fig. 11 (b)) between these instants. Nevertheless,

we observe that these peaks are much higher for M 3 and M 4 than for M 1 and M 2 for both regions 1 and 3. This might be

due to longer trip lengths assigned by M 3 and M 4 , leading to the existence of a potential bottleneck (i.e., a reduction of the

inflow capacity for this region and specific regional path) of the regional paths. However, this is not the case, as observed by

the average trip lengths for regional paths p = { 1256 } and p = { 324 } inside regions 1 and 3, respectively, listed in Table 7 for

M 3 and M 4 . To investigate the source of the higher accumulation peaks for M 3 and M 4 in regions 1 and 3, we now focus on

the predicted traffic states for region 2. We observe the presence of two accumulation peaks. The first accumulation peaks

appear between ∼ 10 0 0 and 30 0 0 s for M 1 and M 2 and between ∼ 10 0 0 and 40 0 0 s for M 3 and M 4 . This first accumulation

peak is generated by the vehicles traveling on regional path p = { 1256 } . The average trip lengths for M 3 and M 4 are longer

than for M 1 and M 2 , for both regional paths p = { 1256 } and p = { 324 } inside region 2 (see Table 7 ). Therefore, vehicles need

more time to cross region 2 and the accumulation peak lasts longer for M 3 and M 4 . For these two cases, region 2 becomes

a bottleneck of regional path p = { 1256 } . Vehicles will be blocked at the entry of region 2 and queue in region 1, increasing

the accumulation as observed. On the other hand, the second accumulation peak is due to the inflow of vehicles traveling

on regional path p = { 324 } . This second accumulation peak appears between ∼ 3500 and 4000 s for M 1 and M 2 , whereas

for M 3 and M 4 , this second accumulation peak appears between ∼ 4500 and 60 0 0 s. This is because, vehicles traveling

on regional path p = { 1256 } are the first to cross region 2. Vehicles traveling on regional path p = { 324 } queue in region

3, while waiting to be allowed to enter region 2. This increases the accumulation in region 3 for M 3 and M 4 . The traffic

dynamics in region 2 strongly influences the traffic states on the other regions. One example is region 5. For this region, all

four levels of information yield similar average trip lengths (see Table 7 ) for regional path p = { 1256 } . However, the traffic

dynamics is very different. The first accumulation peak observed in region 2 for M 1 and M 2 is then observed in region 5

between ∼ 10 0 0 and 30 0 0 s. The inflow of vehicles in region 5 for M 3 and M 4 will be lower thanks to the bottleneck in

region 2. Consequently, the accumulation peak is lower and lasts longer (between ∼ 1500 and 4000 s). 

We now focus our attention on the traffic dynamics in region 6. This region is crossed by regional path p = { 8764 } and is

the destination region for regional path p = { 1256 } . The average trip lengths for all four levels of information are similar for

regional path p = { 1256 } in region 6 (see Table 7 ). However, region 6 is a potential bottleneck for regional path p = { 8764 }
and for M 3 and M 4 . These trip lengths are longer for the latter two cases than for M 1 and M 2 . A longer trip length means

that vehicles need more time to complete their trips and therefore the accumulation peak lasts longer for M 3 and M 4 than

for M and M . Vehicles traveling on regional path p = { 1256 } are the first to cross region 6. Therefore, several vehicles
1 2 
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Fig. 13. Same as Fig. 12 , but for Scenario 2. 

 

 

 

 

 

 

 

 

 

 

traveling on regional path p = { 8764 } are waiting in region 7 to be allowed to enter region 6, before ∼ 40 0 0 s. After this

instant, most of the vehicles traveling on regional path p = { 1256 } have already completed their trips and the accumulation

drops. This allows the vehicles queuing in regions 7 and 8 to pursue their trips in region 6 and the accumulation increases

again until ∼ 4500 s. In the case of M 1 , the largest fraction of vehicles finishes its trips earlier, around ∼ 30 0 0 s. This

allows vehicles traveling on regional path p = { 8764 } to cross this region, without queuing in region 7. In the case of M 2 ,

the regional path p = { 8764 } has a longer trip length in region 6 than in 7 (see Table 7 ). Therefore, region 6 is a potential

bottleneck and vehicles queue inside region 7. This is evidenced by the accumulation peak verified in region 7 between

∼ 2500 and 3500 s. Moreover vehicles traveling on regional path p = { 1256 } are allowed to complete their trips first inside

region 6. After ∼ 30 0 0 s most of the vehicles traveling on the latter regional path have completed their trips and the

accumulation peak drops. Vehicles traveling on regional path p = { 8764 } and queuing in region 7 are then allowed to enter

region 6, again increasing the accumulation peak until ∼ 3500 s. 
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The traffic dynamics in both regions 2 and 6 clearly influence the traffic states in region 4, which is a destination region

for both regional paths p = { 324 } and p = { 8764 } . The accumulation peak for M 2 , between ∼ 3500 and 40 0 0 s, represents

the arrivals of vehicles traveling on regional path p = { 8764 } to their destination region. The accumulation peak for M 1 ,

between ∼ 350 0 and 450 0 s represents the arrival of vehicles traveling on regional path p = { 324 } . The increase of the

accumulation between ∼ 30 0 0 and 60 0 0 s for M 3 and M 4 represents the arrival of vehicles traveling on regional path

p = { 324 } , whereas the sudden increase of the accumulation verified for M 3 and M 4 , between ∼ 40 0 0 and 4500 s, is due to

the arrival of vehicles traveling on regional path p = { 8764 } . 
We observed that the definition of the trip lengths at the regional level clearly modifies the traffic dynamics. The four

levels of information proved to be of crucial importance for the tuning of trip lengths for multi-regional MFD-based appli-

cations. In particular, M 3 and M 4 give similar predictions of the traffic states inside the regions. 

5. Conclusions 

To our knowledge, in this paper we proposed for the first time in the literature, a methodological framework to explicitly

tune trip lengths for multi-regional MFD-based model applications and to investigate the effect on MFD dynamics. This

framework is based on a set of virtual trips on the city network as well as its partitioning. It differentiates the definition

of the trip lengths into four levels of information of the regional network. We analyzed the proposed framework on the 6 th 

district of the Lyon network, which is divided into eight regions. 

Initially, we investigated how to properly define the set of virtual trips. We showed that the criterion N 

nodes 
cov (N od ) gives

good prior guidance for the calibration of the virtual trips set �. We performed an in-depth analysis of the influence of the

N od setting on the calculation of the trip lengths through the four levels of information. M 3 and M 4 were the most sensitive

to the N od value, for which we identified several outliers in the ρ distributions. These outliers came from distributions that

were not statistically significant. One way to circumvent this is to filter the non-significant regional paths from the set � . 

Secondly, we highlighted the importance of considering more detailed levels of information such as M 3 and M 4 . We

showed that the average trip length estimated by M 1 is not representative of all the possible average trip lengths estimated

by M 4 for one region. We also discussed another important limitation of M 1 . We showed that two regional paths defined

by the same regions, but in a reverse order, are assigned similar average trip lengths by M 1 . Nevertheless, this was not the

case of M 4 which captured important information from the directed links of the city network. 

Thirdly, we proposed a methodology to quickly update the trip lengths for M 1 to M 3 , for updated regional OD matrices

and without the need to reestimate the set of virtual trips. The methodology provided good estimation results at a low

computational cost. 

Lastly, we analyzed the importance of properly tuning the trip lengths for multi-regional trip-based MFD model applica-

tions. We considered two different model scenarios. In one scenario, we knew the full information on the trip patterns in

the city network. Therefore, the regional path flow distributions are known and the total travel distances in each region is

the same independent of the level of information M 1 to M 4 . In the other scenario, we did not know the real trip patterns

in the city network and reached a solution for the regional network Deterministic User Equilibrium. We showed that the

tuning of the trip lengths changes the traffic dynamics in the region for both scenarios. For the first scenario, the differences

in the traffic dynamics particularly appear during more congested states or when capacity restrictions at the regions entries

arise. We also showed that the predicted traffic states for M 3 and M 4 were similar and in several regions different from

those predicted for M 1 and M 2 . 

We conclude that M 3 and M 4 should be the preferred levels of information for calculating trip length distributions for

multi-regional MFD-models applications. 

In future research, we plan to investigate the time-dependence of trip lengths and propose robust and computationally

light methodologies for updating them according to the traffic dynamics in the regional network. 
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