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Abstract9

Our perceptual reality relies on inferences about the causal structure of the
world given by multiple sensory inputs. In ecological settings, multisensory
events that cohere in time and space benefit inferential processes: hear-
ing and seeing a speaker enhances speech comprehension, and the acoustic
changes of flapping wings naturally pace the motion of a flock of birds. Here,
we asked how a few minutes of (multi)sensory training could shape corti-
cal interactions in a subsequent unisensory perceptual task. For this, we
investigated oscillatory activity and functional connectivity as a function of
individuals’ sensory history during training. Human participants performed
a visual motion coherence discrimination task while being recorded with
magnetoencephalography. Three groups of participants performed the same
task with visual stimuli only, while listening to acoustic textures temporally
comodulated with the strength of visual motion coherence, or with auditory
noise uncorrelated with visual motion. The functional connectivity patterns
before and after training were contrasted to resting-state networks to assess
the variability of common task-relevant networks, and the emergence of new
functional interactions as a function of sensory history. One major finding
is the emergence of a large-scale synchronization in the high γ (gamma:
60− 120Hz) and β (beta:15− 30Hz) bands for individuals who underwent
comodulated multisensory training. The post-training network involved pre-
frontal, parietal, and visual cortices. Our results suggest that the integration
of evidence and decision-making strategies become more efficient following
congruent multisensory training through plasticity in network routing and
oscillatory regimes.
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functional connectivity, MEG, audiovisual, learning, confidence, beta,11

gamma12

1. Introduction13

The brain can infer the causal structure of its surroundings by integrat-14

ing multisensory signals originating from the same physical sources, while15

segregating those originating from different causes [1, 2, 3, 4, 5, 6]. The reso-16

lution of this causal inference problem weighs in the reliability and the degree17

of correspondence between multisensory inputs [7, 8, 9]. In ecological set-18

tings, the temporal comodulation of sensory signals helps perceptual scene19

analysis: for instance, an interlocutor’s mouth movements are temporally20

coherent with the envelope of the acoustic speech signals providing the lis-21

tener with strong binding cues for predictive inferences [10, 11, 12, 13, 14, 9].22

Temporally congruent signals enhance the detectability [15, 9] and the iden-23

tification [16, 17] of events, whereas temporally incongruent signals hinder24

their identification [16, 9]. Herein, we explored the cortical mechanisms by25

which the internalized temporal structure of coherent multisensory events26

may subsequently regulate visual (unisensory) processing.27

Using magnetoencephalography (MEG), we first characterized the im-28

pact of uni- and multi-sensory training history on human brain activity29

when participants (N = 36) performed a visual motion coherence task (Fig-30

ure 1.A). The task consisted in reporting the color of the most coherent cloud31

of dots amongst two intermixed red and green clouds of moving dots. After32

initially performing the task with visual stimuli only (PRE), participants33

were split into three experimental groups for short individualized training34

during which participants were tested on four strengths of visual coherence35

centered on each individual’s initial discrimination threshold measured in36

PRE: one group performed the task with visual stimuli only (V), another one37

with acoustic textures spectro-temporally congruent with the most coherent38

visual cloud of the two (AV) and a third one, with distracting auditory noise39

uncorrelated with any of the two visual clouds (CTRL). After performing40

the training for 20 minutes, all participants were again tested with visual41

stimuli only (POST). Behaviorally, all participants improved their percep-42

tual discrimination with the AV group showing the largest benefits and with43

an initial analysis of the MEG evoked activity suggesting the implication of44

a large-scale brain network following training [17].45

With this in mind, we assessed the changes of brain activity between46

PRE and POST blocks, when all participants performed the unisensory47
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task with visual stimuli only (Figure 1.B). We thus did not directly focus48

on the feedforward integration of multisensory features or on selective at-49

tention, both of which could only occur during the AV and CTRL training.50

Here, we thus do not contrast unisensory vs. multisensory processing per51

se but rather focus on the subsequent effects of multisensory integration on52

a visual only task. Nevertheless, our analytical approach builds on semi-53

nal work suggesting the implication of distinct neural oscillatory coupling54

within large-scale networks [18, 19], [20]). The dynamic regimes mediating55

the binding of multisensory information across brain regions have started56

being characterized [21, 18, 19, 22], yet little is known regarding the oscilla-57

tory networks which may actively contribute to supramodal or multisensory58

object representations [14, 17, 23].59

Hence, in the present work, we re-analyzed previously collected data and60

asked how different perceptual histories changed the functional networks hy-61

pothesized in [17]. First, initial results suggested that selective attention in62

this task could not be the primary cause of multisensory benefits considering63

that the contrasts were ran only when visual stimuli were present. Hence,64

we did not expect changes in the alpha (α) band network to be the major65

factor in possible effects of perceptual history in this experimental paradigm.66

Second, all groups showed behavioral improvement in the task irrespective67

of their perceptual training; we thus expected changes in the bottom-up68

(perceptual) analysis of sensory inputs, as captured by high frequency anal-69

ysis (likely gamma activity, γ). Third, as the AV group improved most,70

we also expected a strong top-down drive in the POST compared to the71

PRE for this group. As current research assigns an important role to beta72

(β) activity in the shaping of top-down predictions and decisional values73

[24, 25, 26, 27, 28], beta networks were expected to be a major differential74

driver between the three groups.75

To characterize the different oscillatory networks, we estimated oscilla-76

tory activity within, and across, experimental groups using univariate time-77

frequency analyses (Figure 1.C) and large-scale functional connectivity (FC)78

measures based on the weighted phase lag index (wPLI) [29] (Figure 1.D).79

We investigated a large network including prefrontal, parietal, occipital and80

temporal cortices with regions orthogonally selected for their functional rel-81

evance in the task (cf [17], see Methods). Among regions of interest were82

the ventro-lateral prefrontal cortex (vlPFC), a massive site of convergence83

for visual, auditory and multisensory information processing [30, 31], whose84

neurons selectively respond to the color of visual objects [32] and low-level85

abstraction [33]; the intra-parietal sulcus (IPS), which plays a central role in86

multisensory processing [34, 35, 36] and visual motion area (MT), sensitive87
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Figure 1: Experimental procedure and Methods. (A) Left panel: each trial started
with the presentation of a fixation cross lasting 0.6 to 0.8 s followed by the presentation of
two intermixed clouds of dots moving incoherently. One cloud was red, the other, green.
After a variable delay (0.3−0.6 s) of incoherent motion, one of the clouds (here, red) moved
coherently for 1 s while the other remained fully incoherent (here, green). Seven possible
strength of motion coherence were tested; the direction and color were randomized across
trials. Participants selected which of the red or green cloud was most coherent (videos
S1 and S2 in [17]). Right panel: schematic operationalization of the motion coherence
discrimination task entailing the integration of motion and color for decision-making. (B)
MEG recordings were collected from 36 participants, who performed the task described in
(A) in the PRE and POST blocks. Between the PRE and POST, participants were split
in three experimental training groups who performed the task visually (V), with acoustic
textures congruent with the most coherent cloud of dot (AV), or with auditory noise
uncorrelated with the visual stimuli (CTRL). All new analyses were carried out on the
PRE and POST blocks, when all participants were performing the visual task described
in (A). All participants improved their behavioral scores in POST as compared to PRE
blocks: the AV group showed the largest perceptual benefit followed by the V and the
CTRL group [17]. Following preprocessing and source estimations, (C) univariate time-
frequency analysis and (D) multivariate functional connectivity analyses were performed
to provide (E) complementary insights on the oscillatory mechanisms implicated in the
effect of (multi)sensory training history in unisensory processing.
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to perceptual changes in this task [17]. Both IPS and MT are known to inter-88

act in the β range during perceptual decision-making [37]. We first started89

by exploring the modulation of local oscillatory activity during visual mo-90

tion discrimination [38, 25], and followed up with the exploration of changes91

in functional connectivity as a function of sensory history in training.92

2. Materials and methods93

2.1. Participants94

36 healthy human participants were recruited for the study (age range:95

18 to 28 y.o.; mean age: 22.1 ±2.2 s.d.; 3 groups of 12 participants each: V: 496

females; AV: 6 females; AVr: 6 females ). All participants were right-handed,97

had normal hearing and normal or corrected-to-normal vision. Before the ex-98

periment, all participants provided a written informed consent in accordance99

with the Declaration of Helsinki (2008) and the local Ethics Committee on100

Human Research at NeuroSpin (Gif-sur-Yvette, France). Prior to the MEG101

acquisition, participants were randomly split into 3 experimental groups (V,102

AV, and CTRL) as detailed below.103

2.2. Task104

The MEG experiment consisted of interleaved MEG blocks alternating105

between rest and task. The first resting block occurred prior to any task106

or training and will be thereafter referred to as REST. REST was used as107

baseline for functional connectivity analysis. The six task blocks included:108

a 12 minutes pre-training block (PRE) consisting of the visual coherence109

discrimination task; a 20 minutes training (4 successive blocks of 5 minutes110

each) on the same task using purely visual stimuli (V group), congruent111

audiovisual stimuli (AV group) or incongruent audiovisual stimuli (CTRL112

group); a 12 minutes post-training block (POST) consisting of the same113

visual coherence discrimination task as in PRE. Thus, the PRE and POST114

blocks consisted of the same visual only coherence discrimination task for115

all three experimental groups and using the exact set of visual stimuli. Only116

the training was either visual or audiovisual. The task requirements in PRE,117

training, and in POST were otherwise identical in all runs: two clouds of118

colored dots were intermixed on the screen and participants had to tell119

which of the red or green cloud of dots was the most coherent. In PRE and120

POST, participants also rated their confidence on a scale of 1 to 5 after they121

provided their main response regarding the color of the most coherent cloud122

of dots.123
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In PRE and POST, the initial and final motion coherence discrimination124

threshold of each participant was assessed by testing seven strength of visual125

motion coherence (15%, 25%, 35%, 45%, 55%, 75% and 95%). 28 trials for126

each strength of visual motion coherence were collected in PRE and in POST127

for a total of 196 trials in each block. In the training (4 blocks, 5 min each),128

four visual coherence levels were tested corresponding to ± 10% and ±20%129

of an individuals discrimination threshold computed in PRE (see [17] for130

more details). 28 trials for each strength of visual motion coherence were131

presented for a total of 112 trials in a given training block. These data were132

not considered as our main question focused on contrasting brain activity to133

identical experimental conditions given a different training history. Further134

experimental details can be found in [17].135

To localize the visual motion area, we used a passive MEG localizer (120 tri-136

als) after POST. Participants were presented with a fully incoherent visual137

cloud lasting 0.5 s and followed by either a highly coherent (95% of coher-138

ence) or an incoherent (0% of coherence) interval of 1 s (60 trials each).139

During the localizer, participants were asked to passively view the visual140

motion stimuli.141

2.3. Stimuli142

Visual stimuli consisted of intermixed red and green clouds of dots (Fig-143

ure 1.A) calibrated to isoluminance using heterochromatic flicker photom-144

etry on a per individual basis prior to MEG data acquisition. A white145

fixation cross was at the center of a 4◦ gray mask disk and dots were pre-146

sented within an annulus of 4◦ to 15◦ of visual angle. Dots had a radius147

of 0.2◦. The motion flow was 16.7 dots per deg2× s with a speed of 10◦/s148

and its direction confined within an angle of 45◦ − 90◦ around the azimuth.149

50% of the trials were upward coherent motion and the remaining 50% of150

the trials were downward coherent motion. The color and the direction of151

the most coherent cloud o dots were thus pseudo-randomized across trials152

and both color and direction were orthogonal to the task goal.153

The V group underwent training using visual only stimuli. The AV group un-154

derwent training using temporal comodulated audiovisual associations com-155

parable to those used in sensory substitution devices such as the vOICe [39]156

and the EyeMusic [40], with intuitive perceptual associations between sen-157

sory modalities [41, 42]. Here, we used parametric sounds or acoustic tex-158

tures (cf [43] with sampling frequency = 44.1 kHz, frequency range: 0.2159

to 5 kHz) which enabled to pair each visual dot with a linear frequency-160

modulated acoustic sweep whose slope depended on the direction taken by161
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the visual dot (see [17] for more details). The maximal slope was 16 oc-162

taves/s corresponding to motion directions of 82.9◦ − 90◦. A visual dot163

moving upwards was associated with an upward acoustic ramp, whereas a164

downward moving dot was associated with a descending acoustic ramp. The165

duration of a ramp was also identical to the life-time of a visual dot. The166

CTRL group underwent training with acoustic noise of the same duration167

and amplitude as the acoustic textures used for the AV group. Unlike acous-168

tic textures in which the dynamical properties of the fine spectral acoustics169

were matched with the dynamical properties of the visual dot motion, the170

acoustic noise used for the CTRL group was fully uncorrelated with the vi-171

sual coherent motion. This served as a control so that participants trained172

with audiovisual signals could either hear a sound designed to be temporally173

predictive of visual coherence (under the temporal comodulation hypothesis,174

automatic mapping between the spectral coherence in acoustics and visual175

motion coherence; AV group) or a random acoustic noise (the lack of spec-176

tral coherence in the acoustics could not map on visual motion coherence177

and may act as a distractor). In sum, the CTRL group was included to178

test the specificity of audiovisual associations in this task and the benefit of179

temporal comodulation in audiovisual training.180

In the task and for all experimental groups, a given trial started with a181

variable duration (0.3 to 0.6s) mixing both red and green clouds of dots182

being fully incoherent (0% of coherent motion). Then, one cloud of dots183

became more coherent than the other for a duration of one second. In PRE184

and POST, the coherence level taken by the most coherent cloud was one185

of seven possible values described in the Task section. During training, the186

coherence level taken by the most coherent cloud took one of four values187

described in the Task section. Inter-trials intervals (ITI) varied from 0.6 to188

0.8s. Samples of the video trials can be experienced (Movies S1 and S2 in189

[17]).190

2.4. MEG and MRI data acquisition191

Electromagnetic brain activity was recorded in a magnetically shielded192

room using a 306 MEG system (Neuromag Elekta LTD, Helsinki). MEG193

signals were sampled at 2 kHz and band-pass filtered between 0.03-600 Hz.194

Four head position coils (HPI) were used to measure the head position of par-195

ticipants before each block; three fiducial markers (nasion and pre-auricular196

points) were used during digitization as a reference for coregistration of197

anatomical MRI (aMRI) immediately following MEG acquisition. Elec-198

trooculograms (EOG) and electrocardiogram (ECG) were recorded simulta-199

neously with MEG. Five minutes of empty room recordings were acquired200
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before each block for the computation of the noise covariance matrix.201

The T1 weighted aMRI was recorded using a 3-T Siemens Trio MRI scanner.202

Parameters of the sequence were: field-of-view: 256×256×176 mm3 (transver-203

sal orientation), voxel size: 1.0 × 1.0 × 1.1 mm; acquisition time: 466 s;204

echo time TE = 2.98 ms, inversion time TI = 900 ms, repetition time205

TR = 2300 ms and flip angle (FA): 9◦. For each participant, cortical recon-206

struction and volumetric segmentation of T1 weighted aMRI was performed207

using FreeSurfer1. Once cortical models were complete, deformable proce-208

dures were executed using the MNE software [44] to register source estimates209

of each individual onto the FreeSurfer average brain for group analysis.210

2.5. MEG preprocessing211

The analysis of the MEG data was carried out using the MNE-python212

toolbox [45]. After applying an anti-aliasing FIR filter (low-pass cutoff fre-213

quency at 130 Hz), MEG data were down-sampled to 400 Hz, and prepro-214

cessed (Figure 1.B) to remove external and internal interferences, in ac-215

cordance with accepted guidelines for MEG research [46]. Signal Space216

Separation (SSS) was applied with MaxFilter to remove exogenous artifacts217

and noisy sensors [47]. Ocular and cardiac artifacts (eye blinks and heart218

beats) were removed using Independent Component Analysis (ICA) on raw219

signals. ICA were fitted to raw MEG signals, and sources matching the220

ECG and EOG were automatically found and removed before signals re-221

construction following the procedure described in [44]2. On average, and222

over the 36 participants: 39.149.91 components were extracted and 3.250.86223

components were zeroed out for the REST conditions; 418.79 components224

were extracted and 4.301.39 components were zeroed out for TASK.225

2.6. Univariate time-frequency analysis in sensor space226

Briefly, to identify significant changes in oscillatory activity associated227

with task performance and task improvements, we performed non-parametric228

cluster-level 1 sample t-tests for each frequency band. Second, in PRE,229

we performed non-parametric cluster-level paired t-test on time-frequency230

epochs (single-trial analysis), contrasting high and low motion coherence as231

well as correct and incorrect trials. Third, we performed non-parametric232

1http://surfer.nmr.mgh.harvard.edu/
2 https://github.com/mne-tools/mne-python/blob/master/tutorials/plot_

artifacts_correction_ica.py
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cluster-level paired t-tests on time-frequency epochs, contrasting brain ac-233

tivity to the same stimuli in PRE and POST blocks. The details of each234

statistical test is provided below.235

The oscillatory activity in α, β and γ ranges was established using a236

univariate time-frequency analytical approach in sensor space(Figure 1.C).237

Oscillatory activity in the post-stimulus period was contrasted with the pre-238

stimulus period. Both the duration of the initial incoherent portion of stim-239

uli (300 to 600 ms) (Figure 1.A) and the decision time reflected in reaction240

times (RTs) were variable. As such, we locked the epochs according to three241

different events in the sequence of stimuli, each relevant for our ad-hoc work-242

ing hypotheses and inherent to our experimental design. A first epoching243

ranged from −600 ms to +900 ms post-incoherent motion onset thus fully244

capturing the incoherent portion of the stimuli. The second epoching fo-245

cused on the brain activity following the onset of motion coherence per se246

and ranged from 0 ms to +1500 ms post-coherent motion onset. The third247

epoching focused on the decision-making analysis and was anchored on RTs248

from −1000 to +500 ms around the button press (RT). For all three sets249

of epochs, the 600 ms interval preceding the incoherence onset served as250

baseline activity.251

For each set of epochs, a group-level non-parametric spatio-temporal cluster252

analysis was computed on single-trial time-frequency transforms obtained253

with Morlet complex-valued wavelets and averaged in each frequency band254

of interest. The number of cycles in the Morlet wavelet was defined for each255

frequency (f) as f/2. To assess the statistical significance of the obtained256

clusters we randomly flipped r = 104 times the sign of the time-frequency257

transformed data, and our cluster-level correction for multiple comparisons258

was based on the maximum statistic method [48]. The spatio-temporal259

clustering was used to identify the sensors showing significant event-related260

activity in PRE and in POST. One of these sensors was used for subse-261

quent univariate analyses to ensure that any inference made on a particular262

frequency band was first determined independently of our ad-hoc working263

hypothesis motivating the subsequent contrasts. Specifically, time-frequency264

cluster analyses were used in PRE to perform group-level statistics (N = 36,265

low vs. high MC, and correct vs. incorrect trials). Moreover, a statistical266

contrast was performed between POST and PRE blocks, pooling all par-267

ticipants together (N = 36) as well as considering each group separately268

(N = 12). Statistical significance for all these contrasts was assessed using269

random permutations as discussed above.270

To evaluate the extent to which oscillatory activity could significantly con-271

tribute to the observed behavioral measures (performance, RTs, confidence)272
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and stimulus parameters (strength in visual motion coherence), we used a273

post-hoc general linear model (GLM) on single trials over the time intervals274

found to be significant in our cluster analyses. The non-parametric approach275

to GLM based on random permutations was employed to obtain a robust276

and unbiased linear regression [49, 50]. The GLM to test the linear regres-277

sion between oscillatory power and the strength of visual motion coherence278

and different behavioral parameters followed the equation y = wTx + ε.279

Here, y ∈ IR was the MEG mean power in a significant cluster of sensors; x280

was the vector [1, x1, x2, · · · , xp−1]
T ∈ IRp containing p regressor variables.281

To find the best fitting model, we tested different combinations of regressors282

including motion coherence, reaction times, correctness, confidence ratings283

and their interactions. Each regressor was first tested in an independent lin-284

ear model, and significant explanatory variables were subsequently tested in285

the same model, together with their interactions in order to identify possible286

driving effects.287

w contained the p regression coefficients including the constant term, and288

ε was the error term. Iteratively reweighted least squares were used to obtain289

an estimate of w and a value of the Wald statistic wref . A non-parametric290

approach based on random permutations was used to obtain robust and291

unbiased significance levels and confidence intervals. Specifically, to test292

the significance of each estimated regression coefficient wi, r = 10, 000 ran-293

dom permutations of the corresponding regressor variable xi were generated,294

yielding a distribution of Wald statistics w∗ for each partial regression coef-295

ficient under the null hypothesis H0 : wi = 0. For each estimated coefficient,296

the p-value was calculated as the proportion of w∗ grater then or equal to297

wref , in absolute value. Permutation inference for the GLM in common neu-298

roimaging applications has been proposed as a non-parametric test to relax299

assumptions on data distributions [51]. The 36 participants were pooled300

together in PRE (N = 36) whereas group-specific analyses (n = 12) were301

performed on POST data to study the effects of (multi)sensory training.302

This analysis was carried out for the three sets of epochs locked to the three303

different events (incoherence onset, coherence onset, response).304

2.7. MRI-MEG coregistration and source reconstruction305

The coregistration of MEG data with the individual anatomical MRIs306

(aMRI) was carried out by realigning the digitized fiducial points with the307

markers in MRI slices, using MRILAB (Neuromag-Elekta LTD, Helsinki)308

and mne analyze tools within MNE ([44]). Individual forward solutions for309

all source reconstructions located on the cortical sheet were computed us-310

ing a 3-layers boundary element model constrained by the individual aMRI.311
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Cortical surfaces were extracted with FreeSurfer and decimated to about312

5,120 vertices per hemisphere with 4.9 mm spacing. The forward solu-313

tion, noise and source covariance matrices were used to calculate the noise-314

normalized dynamic statistical parametric mapping (dSPM) ([52]) inverse315

operator (depth = 0.8). The inverse solution was obtained using a loose316

orientation constraint on the transverse component of the source covariance317

matrix (loose = 0.4). The estimates of the reconstructed dSPM time series318

were interpolated onto the FreeSurfer average brain for group-level source319

space analysis. Only the radial components of the estimated currents were320

considered for further analysis.321

After source estimation, we proceeded by summarizing the results into re-322

gions of interest (ROIs). When selecting the ROIs, we encountered the323

well-known trade-off between computational tractability and signal-to-noise324

ratio: Too small ROIs (e.g., voxel-wise analysis) may increase the noise and325

at the same time exacerbate the multiple comparisons problem, while too326

large ROIs may suffer from signal cancellation, especially if multiple sources327

are captured in one ROI. In MEG and EEG source localization, additional328

peculiarities have to be considered. First, source reconstructed spatial maps329

are coarser and more blurred than in fMRI, hence potentially arguing in330

favor of using coarser parcellations. Second, the sign of the reconstructed331

signals follows the curvature of the cortex which may induce cancellation332

during averaging. This may distort resulting time-courses even if only one333

single source is captured by the ROI. In practice, ROIs are therefore often334

selected according to specific data analysis goals [53, 54, 55] as is generally335

recommended for many elements of MEG and EEG analysis [56]. In light336

of these considerations, we chose the rather coarse Desikan-Killiany parcel-337

lation [57] from FreeSurfer that covers both hemispheres on each individual338

cortex with 28 ROIs 3. This set of ROIs has already been established as339

sufficiently sensitive in previous work from our group. For example, it has340

been shown to capture multisensory processing, perceptual decision mak-341

ing and motion discrimination [17]. To mitigate the risk of potential signal342

cancellation, we used a weighted averaging approach, which explicitly took343

into account the cortical curvature through the surface normals. The re-344

sulting ROIs covered the frontopolar regions (FP), frontal eye field (FEF),345

ventro-lateral prefrontal cortex (vlPFC), premotor cortex and supplemen-346

tary motor region (BA6), primary motor cortex (PMC), intra-parietal sulcus347

(IPS), inferior temporal cortex (ITC), auditory cortex (AUD), superior tem-348

3https://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation
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poral sulcus (aSTS, mSTS and pSTS), middle temporal visual area (MT),349

visual area V4, and primary and secondary visual cortices (V1-V2). The350

average activities over all the vertices within each of these cortical regions351

(labels) were used for the subsequent functional connectivity analysis.352

2.8. Functional connectivity analysis353

2.8.1. Adjacency matrices354

Functional interaction between brain regions was assessed by evaluating355

the similarity of brain activity across remote brain areas, namely functional356

connectivity (FC) (Figure 1.D). Several studies have compared a subset of357

FC methods with respect to their ability to correctly detect the presence of358

simulated connectivity schemes in a multivariate data set [58]. The outcomes359

showed that the performance of the measures depended both on the char-360

acteristics of the dataset and the methods. No single method outperformed361

the others in all cases. A practical and reasonable approach thus consisted362

in predetermining the FC method according to the plausible ad-hoc working363

hypotheses of the experimental study under scrutiny. To characterize FC364

in the absence of a priori knowledge about its nature and the generating365

model, non-parametric measures could first be used.366

The notion of phase coupling derives from the study of oscillatory nonlinear
dynamical systems. Based on this notion, Phase Lag Index (PLI) [59] aims
at quantifying in a statistical sense the phase delay between such systems
from experimental data [60] according to the following formula:

PLIij = |E{sign[∆Φij(tk)]}|,∈ [0, 1] (1)

where ∆ijΦ(tk) = Φi(tk)− Φj(tk) quantifies the instantaneous phase differ-367

ence between two source reconstructed time series si(t) and sj(t) at time368

point t = tk. In Eq. (1), the expectation is typically replaced by the em-369

pirical mean over consecutive time points. PLI was shown to be robust370

with respect to instantaneous linear mixing effects which may lead to the371

detection of spurious functional couplings not caused by brain interactions372

(instantaneous linear mixing effects) [59].373

Moreover, PLI has the advantage of not being influenced by the magnitude
of phase delays. Weighted PLI (wPLI) also solves the problem of disconti-
nuity around zero [29], by using the magnitude of the imaginary part of the
cross-spectrum as weights. To measure pairwise interactions between the
extracted cortical labels, we used the definition of wPLI in the frequency
domain, exploiting the phase of the Fourier-based cross-spectrum Si,j(f) of
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two time series si(t) and sj(t):

wPLIij(f) =
|E{|={Sij(f)}|sign(={Sij(f)})}|

E{|={Sij(f)}|}
,∈ [0, 1] (2)

where = stands for the imaginary part, and the expectations were replaced374

by their empirical estimates averaged over epochs. Here, f usually spans a375

specific frequency band such as oscillatory regimes (α, β or γ). Therefore,376

each FC observation consisted of a symmetric adjacency matrix of size 28×377

28. 10 instances of FC were obtained for each participant and each block378

performing a partition of epochs into 10 non-overlapping subsets. In order to379

ensure the balance of the number of epochs used to obtain each FC instance380

for the different participants, the total number of epochs was set to the381

minimum observed across participants.382

2.8.2. Statistical analysis of FC383

A widely employed approach to extract the FC network of interest from384

an adjacency matrix consists in applying a threshold to the strength of the385

estimated connections (Figure 4.A). The threshold is obtained according386

to a suitable criterion [61]. The resulting FC patterns correspond to the387

strongest connections, which do not necessarily reflect the most significant388

differences between experimental conditions. Additionally, while such ap-389

proach is particularly suitable for graph-theoretic network analysis, it does390

not allow direct quantitative comparisons, owing to the variability of signif-391

icant connections.392

Here, our goal was to separately investigate the FC changes that were task-393

dependent (i.e. significant changes in the contrast PRE or POST vs. REST)394

and the cortical interactions subsequent to (multi)sensory training in each395

group. Hence, the comparison between FC estimates obtained for the three396

experimental groups (V, AV, CTRL) was addressed using a different ap-397

proach. First, adjacency matrices were separately averaged over each fre-398

quency band of interest, each block (REST, PRE and POST) and each399

participant (Figure 4.A). Second, for each frequency band and each experi-400

mental group (V, AV and CTRL), the task-relevant networks were extracted401

by performing a group-level permutation t-test between FC estimated in402

REST and FC estimated in task blocks (PRE, POST) (Figure 4.B). Third,403

considering only the subset of task-related connections common to PRE and404

POST blocks (i.e. the connections significantly changing both in PRE and405

POST as compared to REST), the variability driven by the perceptual his-406

tory training (POST vs. PRE) was evaluated using a permutation t-test407

(Figure 4.C, top).408
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All statistical tests were corrected for multiple comparisons using the max-409

imum statistic method [48]. Finally, the reorganization of FC in POST was410

addressed by highlighting the emergence of new task-relevant FC in POST,411

which were not observed in PRE (Figure 4.C, bottom). Importantly, this412

approach considered the FC at REST as the baseline for all other FC anal-413

yses. This allowed to better disentangle the different FC patterns and their414

changes between PRE and POST. Hence, a linear correlation analysis based415

on Pearson’s correlation coefficient was performed between the average in-416

crease of post-specific interactions from PRE to POST, and the correspond-417

ing increase of confidence ratings, for each frequency band and each training418

group separately.419

2.8.3. Topological analysis of FC420

A complementary and conventional topological analysis of FC networks
was also carried out [62] to investigate the degree of interaction between each
brain region per oscillatory regime. Specifically, the networks with density
threshold given by 3/Nrois, where Nrois is the number of regions [63], were
first extracted for each participant, each block and each frequency band.
The weighted node degree Di, a topological property which is a conceptually
simple measure of centrality of a node i within a network, was then computed
for each label in the extracted networks, according to the formula:

Di =

K∑
k=1

ri,k (3)

where K is the number of nodes in the network (cortical labels), and ri,k421

is the estimated FC value between nodes i and k. Permutation t-test were422

performed to evaluate the differences of node degree values between REST423

and task blocks (i.e. PRE or POST) as well as between PRE and POST.424

Again, the maximum statistic method was used to correct the statistical425

tests for multiple comparisons [48].426

3. Results427

We first assessed the broad-band oscillatory activity following the pre-428

sentation of visual motion stimuli. For this, we combined single-trials in429

PRE, which were evoked by all motion coherence levels in all three exper-430

imental groups (N = 36), and performed a time-frequency analysis of the431

MEG responses. A spatio-temporal clustering permutation test corrected432

for multiple comparisons (see Experimental Procedures) on post-stimulus433
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time-frequency activity (Figure 2.A, left panel) revealed a significant de-434

crease of α (alpha: 7−14Hz) and β (15−30Hz) power (p < 0.001, starting435

0.09 s post-incoherence onset to 0.31 s post-response; 38 sensors) with a sig-436

nificant increase in the power of broadband high γ (60− 120Hz, p < 0.001,437

starting 0.04 s post-incoherence onset to 0.62 s post-response; 24 sensors)438

as compared to baseline. The significant clusters observed for both the sus-439

tained decrease in α power and the increase in high-frequency γ power were440

mostly localized in the occipital sensors (Figure 2.A, middle panel). This441

pattern lasted throughout the presentation of visual motion coherence. Con-442

sistent with the topographical pattern at the scalp level, source estimations443

of the α and the high γ responses suggested generators located in bilateral444

visual cortices (Figure 2.A, right panel). This time-frequency pattern during445

unisensory visual motion coherence was consistent with previously reported446

time-frequency responses induced by visual motion stimuli [64, 38]. The447

significant increase in γ band during visual motion coherence was also con-448

sistent with a previous report of visual motion eliciting a stronger γ response449

than stationary visual stimuli [65]. We then asked whether the post-stimulus450

power changes in α, γ, and β were linked to the strength of visual motion451

coherence in PRE (for all participants) and in POST (as a function of the452

experimental group), and then proceeded with the exploration of the β band.453

3.1. α suppression is independent of sensory evidence and training history454

In PRE, i.e., prior to any training, we used the grand average data (N =455

36) and assessed changes in α power from the onset of motion coherence456

(Figure 2.A, left panel, white demarcation lines) as a function of the strength457

in motion coherence (Figure 2.B) using non-parametric statistics and a458

GLM. We found no significant relationships between α power and motion459

coherence. The same regression analysis was performed in the POST data,460

independently for each experimental group (N = 12) in order to preserve461

the distinct training history of each group. Again, we found no significant462

relationships between α power and motion coherence, and no significant dif-463

ferences in α power between PRE and POST experimental blocks. Overall,464

we found no substantial evidence that α power varied as a function of vi-465

sual motion coherence strength or perceptual history. While the absence of466

systematic α modulation limits the functional specificity of α in this task,467

the general decrease of α power notably seen in posterior sensors during the468

presentation of visual stimuli was generally consistent with the inhibitory469

gating of visual information [66, 67] thereby a decrease in α power could be470

taken as an index of selective attention [68].471
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Figure 2: Occipital low-frequency suppression and motion strength (and POST-
accuracy) dependent broadband γ increase. (A) Significant occipital time-frequency
clusters of low-frequency (< 45 Hz) power suppression and γ (45− 120 Hz) band increase
were found during the presentation of motion coherence (left panel). The time-frequency
analysis was locked to the onset of incoherent motion (first black vertical line) and to the
coherence motion onset (first white vertical line; the second white vertical is the offset)
as well as response-locked (second black vertical line). The three separate analyses were
stacked together to provide the full unfolding of oscillatory activity during the trial. The
group average (N = 36) time-frequency response of the PRE trials showed a sustained
decrease of low-frequency power with an increase in broadband γ power: this is illustrated
for one occipital sensor in the obtained spatial clusters (highlighted yellow sensor in the
central panel; see also Inline Supp. Mat.A). Source estimates of α (7− 14 Hz) power and
broadband γ revealed the implication of visual and parietal cortices (right panel). (B) In
occipital sensors, we found no significant modulations of α power as a function of motion
coherence in PRE (top panel) or in POST (bottom panel). Bars are 1 s.e.m. (C) High
γ activity increased with motion coherence in PRE (left top panel) and in POST (left
bottom). High γ activity also increased with accuracy but only in POST (right bottom).
Bars are 1 s.e.m. (D) Source estimates showed a significant linear relationship between
high γ and motion coherence in occipital cortices.
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3.2. Broadband high-γ power increases with the strength in visual motion472

coherence and post-training performance473

Before training (PRE, N = 36), the occipital broadband high γ follow-474

ing the presentation of visual motion coherence showed a significant increase475

with the strength of visual motion coherence (wMC = 0.0053, p < 0.05; Fig-476

ure 2.C, left top panel). A similar analysis performed on POST data sepa-477

rately for each experimental group (N = 12) revealed a significant linear478

relationship between the post-stimulus γ power increase and the increase in479

stimulus motion coherence. This effect was seen in all three groups irrespec-480

tive of training history (wMC = 0.0058 , p < 0.05; Figure 2.C, left bottom481

panel). This observation was consistent with the important role of high γ482

power during motion discrimination and its modulation by the strength in483

visual motion ([38]. In PRE, no other effects or interactions were found484

when adding participants’ behavioral correctness (C), reaction times (RT),485

or confidence ratings (CR) to the GLM (see Experimental Procedures; ad-486

ditional information regarding behavioral outcomes provided in (Figure ??487

and [17]). To the contrary, in POST, a positive interaction between correct-488

ness and motion coherence drove the regression analysis on its own (N = 36,489

wMC−C = 0.0055, p < 0.005). In fact, irrespective of training history, the490

interaction between the strength of motion coherence and participants’ per-491

formance explained the linear relationship between participants’ correctness492

and occipital broadband high γ power (wCtot = wC:MC = 0.0055 ×MC,493

p < 0.005; see Figure 2.C, right panels). Subsequent source estimations494

(see Experimental Procedures) suggested that the increased modulation of495

high γ band activity likely originated in visual cortices (Figure 2.D). This496

observation was in general agreement with previous findings linking local γ497

band activity to the encoding of sensory evidence [69] during a visual mo-498

tion discrimination task [38, 25], and suggested that irrespective of sensory499

history in training, the reliability of visual sensory evidence contributed to500

successful task performance.501

In addition to the post-stimulus α and γ effects found in PRE (N = 36),502

we also observed two significant β clusters (15−30Hz) partially overlapping503

over the frontal sensors during the presentation of coherent motion: a bilat-504

eral early increase in β band power (p < 0.005, from 0.26 s pres-coherence505

onset to 0.65 s post-coherence onset, 40 sensors) was subsequently followed506

by a significant decrease (p < 0.005, 21 sensors) over the left hemispheric507

sensors. The decrease in β band power started around 0.57 s following the508

onset of visual motion coherence (Figure 3.A). The same analysis performed509

on POST data (N = 36) showed, overall, that the decrease in β power was510

left-lateralized and occurred more strongly over left frontal sensors. In what511
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Figure 3: The modulations of β power activity indicate a gain in efficiency. (A)
Group average (N = 36) time-frequency maps during the PRE block. The analysis was
separately performed on trials locked to the incoherent stimulus onset (white vertical line),
locked to the coherent motion (first black vertical line) and locked to the response (second
black vertical line). All three analyses were stacked for illustration and provided for a
left hemispheric sensor (red dot on left topographic map). Time-frequency permutation
clustering statistics revealed two β (15 − 30 Hz) components partially overlapping over
frontal sensors (topography and represented sensor reported on the bottom right corner)
during the presentation of the coherent dot motion: a significant bilateral early increase of
β power (red) was followed by a significant decrease solely over the left hemispheric sensors.
(B) Statistical contrasts tested the changes in β power between correct vs. incorrect trials
(top panel), high vs. low motion coherence trials (middle panel) and POST vs. PRE
trials (lower panel). All three contrasts revealed a stronger decrease of β power. See also
Inline Supp. Mat.B (C) Consistent with contrasts in (B), β power linearly decreased with
increasing motion coherence in PRE and in POST (left top and bottom, respectively) but
linearly increased with RT in PRE and POST (right top and bottom, respectively). (D)
The AV group showed the strongest β power decrease from PRE (gray) to POST (red)
for all strengths of visual motion coherence (left panel). Bars are 1 s.e.m. Thus, during
motion coherence stimuli the strongest overall β power decrease from PRE to POST was
observed for the AV group (histogram on the right). Source estimates of β power showed
a significant decrease in POST as compared to PRE over (E) the motor and parietal
cortices. This effect was strongest for the AV group.
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follows, we thus further investigate changes in β power.512

513

3.3. Distinct β power effects514

In a first working hypothesis, we considered prior work showing that changes515

in β power contribute to perceptual decision-making [37, 70], also that motor516

β power can be modulated by attention when anticipating motion coherence517

onset [71] and may index functional inhibition during perceptual discrimi-518

nation tasks engaging different sensory modalities [72, 73]. To test whether519

these affected the observed the significant β power suppression in our study,520

we performed cluster permutations on time-frequency data locked to the521

onset of motion coherence, and devised three contrasts of interest (Figure522

3.B): correct vs. incorrect trials in PRE as in [37] (top panel), high vs. low523

motion coherence in PRE (middle panel) and PRE vs. POST trials (bottom524

panel). In all three contrasts, we found a significant decrease of β power so525

that the a priori easiest trials yielded a larger suppression of β power com-526

pared to the more difficult trials. Specifically, we found a systematic late527

decrease of β power in the correct vs. incorrect trials (p < 0.05, starting 0.28528

s post-coherence onset; Figure 3.B, top) and in the high vs. low motion co-529

herence contrast (p < 0.01, starting 0.22 s post-coherence onset; Figure 3.B,530

middle). A similar, yet longer-lasting, left-lateralized frontal β effect was531

found in the POST vs. PRE contrasts (p < 0.01, 0.08 s pre-stimulus onset;532

Figure 3.B, bottom).533

As the decrease in β power was found locked to the coherence onset but534

late in the trial – i.e. just before participants’ responses –, it may have re-535

flected the seminal β suppression preceding movement onset [74] seen when536

locking epochs to the individuals’ reaction times (RT) (Figure 3.A, second537

black line). To test for the possibility that the observed β suppression re-538

flected β event-related desynchronization shaped by motor readiness and539

action execution [75, 76], we thus locked the trials to participants’ RT and540

tested the same contrasts as those performed previously on the trials locked541

to the onset of motion coherence (i.e., correct vs. incorrect in PRE data,542

high vs. low motion coherence in PRE data and PRE vs. POST). The cor-543

rect vs. incorrect, and the high vs. low motion coherence response-locked544

contrasts did not reveal a decrease but, instead, a small but significant in-545

crease (p < 0.05 starting around 0.6 s before movement onset) of β power546

before movement preparation. This pattern was only detected when lock-547

ing the data to the RT (Figure 3.B first two rows on the right) and was548

distributed over the posterior and frontal sensors. This effect appeared to549

converge with previous observations [25], in which β power was suggested to550
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mediate stages of decision-making linking sensory evidence encoding with551

choice-related action execution. We did not observe significant differences552

when contrasting the PRE and POST activity for this effect (Figure 3.B553

third row on the right), and thus did not pursue the analysis of this specific554

effect which had been previously investigated in details [25]. Importantly555

however, this response-locked β activity did not seem to be shaped by sen-556

sory history in training, and the changes in β power locked to the onset of557

visual motion coherence (Figure 3.A and Figure 3.B) were thus considered558

distinct from the seminal response-locked effect.559

3.4. β power is sensitive to integrated evidence during decision-making560

Considering that the modulations of β power suppression were not specific561

to the presentation of visual motion coherence, but rather also sensitive to562

the correctness and the type of training participants underwent, we tested563

whether, in the absence of a task, the same β power decrease could be seen.564

For this, we used the localizer data during which participants passively at-565

tended the coherent motion stimuli in the absence of a task. We contrasted566

brain responses elicited by the presentation of coherent motion with those567

obtained in response to the incoherent motion. We found no significant β568

power changes in this contrast, suggesting that being engaged in the dis-569

crimination task was necessary to observe the β suppression effects.570

We then performed a separate regression analysis (GLM) on the PRE (N =571

36) and the POST data (independently for each experimental group, N =572

12) (Figure 3.C, top and bottom panels, respectively). We used the strength573

of motion coherence and three behavioral variables (correctness, RT, confi-574

dence ratings) as regressors. With this approach, we assessed which of the575

stimulus motion coherence or of the three behavioral outcomes, contributed576

most to the variance of the observed modulation in β power. We found that577

β power significantly decreased with increasing strength in motion coher-578

ence in PRE (N = 36, w = −0.08, p < 0.001), (Figure 3.C, left top panel).579

We also found a significant positive interaction between motion coherence580

and RT (N = 36, w = 0.02, p < 0.001; (Figure 3.C, right top panel)): in581

other words, for a given strength of visual motion coherence, we observed a582

decrease of β power with faster RT. Altogether, we thus observed that the583

strongest visual motion coherence and the fastest RT showed the lowest β584

power.585

We then applied the same regression analysis on POST data separately for586

the three experimental groups (N = 12). To make the group-specific re-587

sults comparable, β power from PRE data were separately subtracted from588

each individual group’s POST data. This analysis revealed a decrease in589
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the slope of the regression between β power and the strength of visual mo-590

tion coherence in all three experimental groups (Figure 3.C, bottom left).591

This was consistent with the fact that all participants improved their perfor-592

mance after training with increased accuracy, decreased RT, and increased593

confidence rating [17]. Similar to the PRE effects, we found a positive in-594

teraction between the strength of visual motion coherence and RT with β595

power (Figure 3.C, bottom right). Crucially, an overall decrease of β power596

from PRE to POST was consistently observed for all levels of visual motion597

coherence in the AV group as compared to the V and the CTRL groups (Fig-598

ure 3.D). That motion coherence and RT were the main contributors to the599

β power variability was consistent with the observation that all experimen-600

tal groups were faster in POST as compared to PRE. Interestingly however,601

that the AV group displayed the largest decrease of β power overall after602

training was also consistent with its overall better performance compared603

to the other groups (and not with a faster response as the RT were com-604

parable across groups, [17]). In other words, each group showed an overall605

decrease of β power as a function of the strength of visual motion coherence,606

which may indicate an overall gain in stimulus processing efficiency as the607

regression slopes across groups were comparable (Figure 3.D, left panel).608

Additionally, this decrease was shifted down for the AV group as indicated609

by the histogram in Figure 3.D, which shows the overall difference (mean610

and s.e.m. over subjects) of β power between POST and PRE for each611

group, separately. Finally, the performance on the task showed a significant612

correlation with β power but only when using an independent linear regres-613

sion model, suggesting that motion coherence and RT contributed most to614

the β power effects, which in turn affected performance.615

To sum up our observations on β power locked to the onset of visual motion616

coherence: the task-related decrease in β power over the frontal sensors got617

generally stronger with integrated evidence to perform the task. Addition-618

ally, congruent multisensory training (AV) induced a larger (POST-PRE)619

decrease of β power than other unisensory (V) or conflicting audiovisual620

(CTRL) trainings. Consistent with the sensor data, the POST vs. PRE sta-621

tistical contrasts of source estimates showed a strong β power decrease over622

parieto-central regions especially for the AV group; this decrease was also623

observed in the V and in the CTRL groups to a smaller extent (Figure 3.E).624

The observed β power suppression during motion coherence discrimination625

converges with previous literature reporting a central role of β power during626

perceptual decision making tasks [77, 37, 70].627

As interim summary for the univariate oscillatory analysis, we observed628

that α and broadband γ responses during the presentation of visual coher-629
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Figure 4: Overview of statistical contrasts performed to extract functional oscil-
latory networks. (A) Functional connectivity (FC) estimates during the presentation of
coherent motion, in PRE and in POST, contrasted with resting-state FC patterns (REST).
For illustration, we report the full and thresholded α oscillatory networks separately for
PRE, REST and POST (top to bottom panels, respectively). Statistical contrasts were
based on non-parametric permutation t-tests and performed on the 28 cortical regions. (B)
Pairwise phase couplings were contrasted to show significant differences of weighted Phase
Lag Index (wPLI) values characterizing the task-related FC network (PRE vs. REST and
POST vs. REST). (C) The FC patterns computed in (B) were compared to assess the
variability of the task-related FC in PRE and in POST, as well as to characterize the
appearance of new connectivity patterns in POST. FP: frontopolar; FEF: frontal eye
field; vLPFC: ventro-lateral prefrontal cortex; PMC: primary motor cortex; BA6: sup-
plementary motor cortex; IPS: intra-parietal sulcus; ITC: inferior temporal cortex; AUD:
auditory cortex; aSTS: anterior superior temporal sulcus; mSTS: middle STS; pSTS: pos-
terior STS; MT: middle temporal visual motion area; V4: visual area 4; V1-V2:primary
and secondary visual cortices.

ent motion were not significantly affected by training history, in contrast to630

β oscillatory activity seemingly affected by the degree of integrated evidence631

during training. β oscillations may play an important role in (multi)sensory632

perceptual discrimination consistent with its role in mediating interactions633

across distant structures during perceptual decision-making [25]. To disen-634

tangle the possible networks mediating these effects, we turned to multivari-635

ate functional connectivity (FC) analysis and investigated whether medium-636

and long-range interactions between cortical regions could provide comple-637

mentary insights on the specificity of oscillatory regimes as a function of638

sensory history in training (Figure 1.E).639
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3.5. Task-related network synchronization during visual coherent motion dis-640

crimination641

To characterize the functional connectivity (FC) induced by (multi)sen-642

sory training in the different oscillatory regimes, we estimated the PRE643

and POST activity during the presentation of motion coherence (i.e., ex-644

cluding the initial incoherence interval of the stimuli) using 28 cortical re-645

gions (ROIs; Figure 4.A). Hence, the bivariate FC was estimated using the646

weighted phase-lag index (wPLI) (Figure 4.A) in three main synchroniza-647

tion regimes (α, β and high γ). ROIs were selected in a manner orthogonal648

to the contrasts of interest, mainly by performing a source estimation of649

the grand average data across all experimental conditions ([17], see Meth-650

ods). All statistical contrasts (Figure 4.B) were based on non-parametric651

permutation t-tests. Only phase coupling values showing significant differ-652

ences (p < 0.01) were retained in the resulting functional networks herein653

reported.654

First, we estimated the functional connectivity pattern during PRE and655

POST (i.e. during task), which significantly differed from resting-state656

(PRE vs. REST and POST vs. REST; Figure 4.B). The subtraction of657

the resting-state FC from PRE and POST was used as an equivalent of658

baseline in univariate analyses, and thus was performed to ensure that we659

characterized the task-relevant FC in both POST and PRE relative to the660

resting-state network. A direct comparison of POST vs. PRE FC without661

consideration of the initial resting-state FC would be a confounding factor in662

the interpretation of the results, and could falsely assign significant changes663

of FC to training effects, when they may in fact simply result from transi-664

tioning from REST to task. We then considered the task-relevant networks665

common to PRE and POST (Figure 4.C, top) and explored the effects of666

training on the changes of cortical interactions and oscillatory couplings.667

Consistent with the occipital decrease in α band power observed in the uni-668

variate time-frequency analysis, we found a significant uncoupling of the α669

oscillatory network in task (both in PRE and in POST) as compared to670

REST (Figure 5.A, bottom left panel). A relative increase in synchro-671

nization modulated by sensory history (Figure 5.A, left column) was also672

found from PRE to POST, involving a large network comprising occipital,673

temporal and parietal regions. This relative significant increase in α syn-674

chronization was observed in the V and in the AV groups, but not in the675

CTRL group. A similar analysis was performed for the β and the γ oscil-676

latory regimes. Contrary to the α desynchronization from REST to task677

(PRE, POST), the β and γ activiy showed a strengthening of large-scale678
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coupling between REST and task (PRE, POST) (Figure 5.A, bottom pan-679

els). The task-related β network present in all groups implicated vlPFC,680

IPS and MT but showed a significant strengthening from PRE to POST681

solely in the AV group ( 5.A, middle column). The significant relative in-682

crease of task-related FC (POST vs. PRE) was also observed for the AV683

group in the high γ regime implicating the auditory regions and the pSTS.684

In sum, all three groups displayed a characteristic desynchronization of the685

α network when engaged in the task, but a higher relative synchronization686

of the α network in POST as compared to PRE for the AV and V groups.687

Conversely, an increased synchronization of β and γ networks was found in688

all three groups from resting-state to task (PRE, POST), but only in the AV689

group did we see an increase of β and γ synchronization following training.690

3.6. Brain network analysis and topological differences in regional connec-691

tivity692

To investigate the degree of interaction of each brain region, a brain693

network analysis was carried out using a measure of centrality as index (cf694

Eq. (3)). This analysis allowed investigating whether specific regions played695

a central role by assessing the topology of the estimated FC networks based696

on the number of phase coupling values (connections) over a specific thresh-697

old for each ROI (i.e. node degree, see Experimental Procedures). This698

quantification revealed distinct patterns for each oscillatory regime (Figure699

5.B), all corroborating our previous analyses (Figure 5.A). The changes in700

the node degree within the estimated FC networks were assessed with the701

statistical contrasts PRE vs. REST combining all groups, and POST vs.702

PRE on a per group basis.703

First, a general task-related decrease of node degree from REST to PRE704

(Figure 5.B, α blue nodes, top left) was observed in parietal, occipital and705

temporal regions for the α oscillatory network. This observation was consis-706

tent with the global α desynchronization during task as compared to REST.707

The same contrast for the β network (Figure 5.B, β, top middle) showed an708

increase of node degree in PRE in frontal and parietal regions (red nodes),709

but a decrease in occipito-temporal regions (blue nodes) as compared to710

REST networks. This pattern was expected considering that long-range711

cortical interactions in the β band are known to involve fronto-parietal re-712

gions during perceptual decision-making [64, 25]. Motor cortices also showed713

a higher node degree in PRE than in REST, reflecting the information flow714

during task execution mediated by β oscillatory networks. The same con-715

trast for the γ network (Figure 5.B, γ, top right) showed mainly a left-716

lateralized decrease of node degree but an increase in posterior regions.717
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Figure 5: Fluctuations of the task-related networks in PRE- and POST-training.
(A) Source estimation was performed to obtain cortical activity in 28 regions of interest
(see Section 2.7 for details). Pairwise cortical interactions based on wPLI, and averaged
in each frequency band of interest, were estimated for each condition (REST, PRE and
POST). POST vs. PRE contrasts of cortical interactions (lines connecting two regions in
the figure) within the task-related FC network common to PRE and POST were sepa-
rately studied for α (left), β (middle), and γ (right) and for the 3 training groups (AV:top,
V: middle; CTRL: bottom). A qualitative description of FC changes (significant increases
and decreases of interactions) is provided at the bottom, showing that increases from PRE
to POST were relative to REST, with an initial desynchronization of α from REST to task
(POST,PRE), and a relative synchronization of β and γ from REST to task (POST,PRE)
was found in all three groups. The AV and V groups showed a relative increase of α
FC from PRE to POST. Although a significant β phase-coupling in task-related FC net-
work linking IPS, vLPFC and MT was found in all groups, only the AV group showed
a significant strengthening of the β network following training. (B) Topological changes
in FC networks from REST to PRE (top) and from PRE to POST (bottom). POST
vs. PRE contrasts were performed for each training group separately. In the β network,
the node degree in PRE increased in frontal and parietal regions, whereas it decreased in
occipito-temporal regions as compared to REST. The reverse pattern was observed in the
β network from PRE to POST in the AV group. See also Inline Supp. Mat.C
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We then investigated the changes in FC between POST and PRE as718

a function of training (Figure 5.B, bottom rows). For the AV group, the719

analysis of β oscillatory networks revealed a clear reversal of the node de-720

gree pattern in the POST vs. PRE contrast as compared to the PRE vs.721

REST contrast: an increase of node degree from PRE to POST was ob-722

served in occipito-temporal regions (mainly in the right hemisphere), while723

a decrease was found in frontal regions (mainly in the left hemisphere). The724

node degree value of β oscillatory networks implicating motor cortices also725

decreased with training in all three experimental groups. Conversely, the726

right mSTS region, which showed a decreasing node degree from REST to727

PRE, now consistently increased from PRE to POST in all three groups.728

This suggested the implication of the mSTS during actual training, the syn-729

chronization of which got stronger and more extensive (up to visual regions730

V4) following training.731

In the topological analysis of high γ oscillatory networks, frontal regions732

exhibited opposite dynamics as compared to our observation in the β band.733

The node degree of the left frontal BA6 region (pre-motor and supplemen-734

tary motor regions) decreased from REST to PRE, and increased from PRE735

to POST for the three groups. These results were in line with previous lit-736

erature [64] showing that high γ and β choice-predictive activities showed737

opposite changes during perceptual decision-making. In the same study [64],738

oscillatory activities build up gradually during stimulus evidence encoding739

to reflect the integration of high γ activity in MT. Here, on the other hand,740

the node degree in mSTS and MT regions selectively increased after congru-741

ent multisensory training, consistent with the observed selective implication742

of these regions in the task [17].743

3.7. Emergence of β and γ functional networks following training with co-744

herent audiovisual motion745

The potential emergence of new functional coupling of cortical brain746

networks following training (i.e., POST-specific) was addressed on a per747

group basis (Figure 4.C, bottom). In Figure 6.A, we report cortical in-748

teractions that were specific to post-training, i.e., phase couplings among749

brain regions that were not significantly seen in the PRE vs. REST contrast750

but which significantly emerged after training in the POST vs REST con-751

trast (see Methods). The POST-specific couplings between cortical regions752

emerged in a training-selective manner in the β band and only for the AV753

training group (Figure 6.A). This suggested that multisensory training with754

temporally comodulated audiovisual stimuli could subsequently affect the755

organization of cortical interactions during a purely visual discrimination756
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task. The observed reorganization notably encompassed long-range interac-757

tions in POST-specific networks around temporal cortices, consistent with758

the results of the topological analysis shown in Figure 5.B. Additionally, the759

emergence of high γ phase-coupling after training was found mainly in the760

AV and the V training groups, while POST-specific α connectivity emerged761

in the CTRL group. Intriguingly, the sole behavioral variable relevant to762

the emergence of the β connectivity was participants’ confidence ratings: a763

significant linear correlation (N = 12, r = 0.72, p = 0.011) was observed764

so that an increase in POST-specific β band connectivity solely observed765

in the AV group was commensurate with an increase in these participants’766

confidence ratings on the task.767

4. Discussion768

In this study, we asked how internalized content, established on the basis769

of temporally coherent audiovisual signals, subsequently benefit the discrim-770

ination of visual motion coherence. During the presentation of visual motion771

stimuli, the spectral signatures of brain responses included a decrease in oc-772

cipital α and frontal β power, and an increase of occipital γ power. While the773

occipital γ correlated with the strength in visual motion coherence and the774

post-training performance, α activity showed no functional modulation as775

a function of stimulus property, sensory evidence, performance or training.776

Additionally, several contrasts revealed that the local β power captured an777

integrated aspect of evidence based decision-making as a function of train-778

ing history. Second, multivariate functional connectivity analysis based on779

oscillatory phase coupling showed a relative global increase of α (8− 14 Hz)780

phase synchronization post-training in the V and AV groups as compared to781

the CTRL group; this was found in the context of a general decrease of α FC782

as compared to REST. Third, and importantly, we report the emergence of783

long-range β (15−30 Hz) and γ (60−120 Hz) synchronization networks im-784

plicating temporal, prefrontal, parietal and visual cortices. The emergence785

of the β and γ networks was essentially observed following congruent (but786

not incongruent) multisensory training and the β network was indicative787

of participants’ confidence rating in post-training. Despite the limit repre-788

sented by the number of participants in this study (N = 36), altogether, our789

results suggest that sensory history in training can subsequently strengthen790

decision-making networks through the regulation of large-scale oscillatory791

synchronizations. It would thus be beneficial in the future to increase the792

number of participants for robust estimation of network changes and char-793

acterization. It would also be interesting to test whether similar pattern of794
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Figure 6: Emerging oscillatory networks following training. (A) The phase syn-
chronization based on pairwise wPLI between brain regions (lines connecting two regions
in the figure) in α, β, and γ oscillatory regimes was investigated separately as a function of
training group. The central finding was the emergence of novel mid- to long-range cortical
interactions (POST-specific network, not present during PRE) in the β and γ networks
especially in the AV group. The CTRL group trained with incongruent AV stimuli showed
the largest synchronization in α. (B) A linear correlation between the average increase
of the β band POST-specific interactions from PRE to POST and the increase in partici-
pants’ confidence ratings was observed solely for the AV group (top panel). The β band
POST-specific network was mainly characterized by fronto-occipital and temporo-parietal
interactions (bottom panel).
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beta network can be seen in sensory-impaired populations. The patterns795

observed in the present study arose from a selected number of cortical re-796

gions of interest investigated, which represent a second limit to overcome in797

future research.798

4.1. Interplay between top-down α and feedforward γ799

Attending stimuli increases both the local and large-scale synchroniza-800

tion of rhythmic neuronal activity in the γ band [78, 79, 80, 81, 82]. An in-801

crease γ power has been reported during binding ([83, 84]), multisensory in-802

tegration [85, 86] and semantic congruence across sensory modalities [87, 88].803

Here, we observed an increase in occipital high γ band during the presen-804

tation of visual motion which, consistent with previous work [89, 38, 25],805

increased with increasing strength in visual motion coherence. This effect806

was seen in visual cortices for all three experimental groups, both before and807

after their respective training. This pattern converged with the notion that808

γ power provides a spectral index of sensory evidence encoding [38, 25], and809

here, may further be a significant indicator of participants’ correct percep-810

tual discrimination following training. As expected [79, 90, 91, 66], we also811

observed a concomitant decrease in occipital α power. Seminal work has812

suggested that α suppression was stronger for the detection of meaningful813

objects than for scrambled ones [92], and associated with visuo-spatial [93]814

and object-based [68] selective attention. An increase in pre-stimulus α815

power is also known to impair detection [94, 95, 96, 97, 98, 99, 100] and,816

conversely, an increase in α power is often observed in unattended modal-817

ities [101, 102, 103]. α oscillations are deemed instrumental for selective818

attention and the top-down control of information ([104]). The modulation819

of occipital α was previously shown to correlate with behavioral improve-820

ments of visual motion discrimination in presence of congruently moving821

sounds [105]. Here, no systematic changes in the occipital α were found as822

a function of experimental or behavioral variables, and this was likely due823

to differences in paradigmatic and methodological approaches: the most824

notable one being that we did not directly contrast unisensory vs multi-825

sensory stimulations per se. Rather, the stable level of occipital α power826

over experimental conditions parsimoniously indicated that all participants827

were effectively attentive to the stimuli irrespective of the strength of mo-828

tion coherence or training history. Recent work has also suggested that γ829

and α (and β) activity were markers of feedforward and feedback propaga-830

tion, respectively [106, 81, 107, 108, 109, 110, 111, 112]. Given the pattern831

of stable α suppression and increased γ power as a function of motion co-832

herence (and post-training correctness), one possible working hypothesis is833
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that, given a stable and sustained endogenous attentional control exerted in834

the α range, perceptual training may improve the efficiency with which γ835

activity propagates sensory evidence up the hierarchy.836

4.2. The effect of sensory history in training on α and γ network phase-837

synchronization838

In line with the notion that α oscillations actively contribute to the839

selection of cortical regions during task [113, 114], a decrease of global840

α phase synchronization was observed from resting-state (REST) to task841

(PRE, POST) in all groups. Yet, and perhaps more importantly, a relative842

global increase in α synchronization engaging a parieto-occipital network843

was observed in post-training as compared to pre-training in both the AV844

and V groups. This pattern was interestingly not observed in the CTRL845

group, who was trained with distracting uncorrelated sounds. Rather, the846

CTRL group (and to some extent, the V group) showed a fronto-parietal α847

synchronization post-training. The presence of large-scale α synchronization848

in the CTRL group could be primarily explained by the selective function849

of α networks, which may help decouple brain regions during conflicting850

inputs (CTRL). Specifically, at the same time we observed these patterns851

in the α FC, we also observed a global strengthening of the post-training γ852

synchronization network. γ-band synchronization in brain networks is fun-853

damental in cortical communication as phase-coupling across brain regions854

may promote the transmission of information across large-scale neuronal855

networks [90, 82, 109]. Global γ synchronization is notably considered to856

denote “effective, precise and selective” communication [82]). In this study,857

training may have improved long-range γ synchronization with a possible858

gain in communication efficiency consistent with the general improvement on859

the task observed in all groups [17]. Sensory history in training affected the860

general increase of γ phase synchronization so that the group with the largest861

behavioral improvement, i.e. the AV group, also showed the strongest in-862

crease followed by the V and the CTRL group. Altogether, theses results863

suggest that the type of sensory inputs during a very short training (here a864

total of 20 minutes) can selectivity affect the coordination of brain regions865

implicated in the endogenous control of information processing.866

4.3. β oscillations as integrated evidence867

Very recently, β oscillations have been proposed to be markers of inter-868

nal content [26] and supramodal processing [27]: following learning, rhythms869
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such as β oscillations may regulate the feedback processing of sensory anal-870

ysis [115] based on abstract categorical representations. These internal net-871

work dynamics were observed in prefrontal cortices, and operated in the872

α/β bands [115]. An important finding in our study is the fundamental role873

of β oscillations, both as local power decrease during sensory encoding and874

decision-making in all groups, and as an emergent large-scale network fol-875

lowing congruent multisensory AV training. Several studies have reported876

an increased coherence or synchronization in the β band associated with877

multisensory stimulation [116, 117] and, consistent with the implication of878

the β band in sensorimotor processing [24], β activity was related to par-879

ticipants response speed in multisensory context. Gleiss and Kayser [118]880

reported early differences in β band activity but did not find any correlation881

with behavior. Consistent with another study [117], we found that local882

modulations of β power were observed when participants were engaged in883

the task but not during passive viewing, and that RT was the main contrib-884

utor for this effect: the decrease in local β power was found for contrasts885

in which evidence-based decisions were most successful (i.e., for strongest886

as compared to weakest visual motion coherence, for correct as compared887

to incorrect trials and for post- compared to pre-training trials). Under the888

working hypothesis that abstract internal content [115, 33] has been learned889

to drive the processing of incoming sensory information, the strengthening of890

the large-scale β coupling in the group that has received congruent AV train-891

ing would further suggest that performing the task with temporally coherent892

audiovisual events strengthened the ability to predict motion coherence in893

vision. In other words, the changes in β power and network synchronization894

may capture endogenous top-down activations of task-relevant (supramodal)895

cortical representations, which facilitate communication between brain re-896

gions [119, 25, 26, 27, 28].897

In this context, recent predictive coding models drawing from audiovisual898

speech processing [11, 14, 120] and neurophysiological work [112, 28] have899

pushed forward the notion that prediction errors from one sensory modal-900

ity to another may be communicated in the γ range, whereas top-down901

predictions may be mediated by β oscillations [120]. As the emergent β902

network was solely seen for the AV group in which it was linearly related903

to confidence rating, we speculate that the hypothesized combined effects of904

increased communication efficiency in a feedfoward γ network, the endoge-905

nous selective routing in the α network, and the predictive β propagation906

in the AV group may all contribute to the local selective changes previously907

reported in the human motion area MT as a change in the neurometric908

threshold [17]. The notion that internal content (as supramodal or abstract909
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representations) may constrain sensory analysis early on provides additional910

evidence for the implication of large-scale neural oscillations in integrative911

and predictive brain functions.912

4.4. Limitations913

It is perhaps noteworthy that our γ-band results do not necessarily im-914

ply nor preclude the presence of underlying oscillatory sources. Several915

studies have cast doubt on the idea that task-related changes or ongoing916

background activity in γ-band dynamics are consistently due to oscilla-917

tions [121, 122, 123]. Accordingly, the power spectrum does not always918

show a distinct peak that could unequivocally index oscillations. Instead919

broad-band power changes are often observed that may exhibit 1/f scale-free920

behavior [124] and may be accounted for in terms of short-lived stochastic921

spiking [125]. We want to emphasize that our study does not possess the922

requisite statistical power or experimental paradigm to tell apart these con-923

current interpretations. We, therefore, carefully suggest to view our γ–band924

findings as neuronal activity in the wider sense, leaving open the precise925

physiological generative mechanism. Our phase-based analysis in the γ-band926

may therefore suffer from specificity, and has to be regarded as pragmatic927

approximation that may get revised in the future upon the availability of928

more precise computational tools and an extended study-design.929

4.5. Conclusion930

Taken together, our results support the notion that cortical computa-931

tions encompass sensory-based processing and that, consistent with the role932

of prefrontal cortices shifting activity from feedforward inputs to internal933

dynamics [115], the internal content shaped by multisensory inputs during934

short training can strengthen the selectivity of large-scale oscillatory net-935

works for later adaptive purposes.936
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