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Abstract. Mining medical data has significantly gained interest in the
recent years thanks to the advances in data mining and machine learning
fields. In this work, we focus on a challenging issue in medical data min-
ing: automatic diagnosis code assignment to discharge summaries, i.e.,
characterizing patient’s hospital stay (diseases, symptoms, treatments,
etc.) with a set of codes usually derived from the International Classi-
fication of Diseases (ICD). We cast the problem as a machine learning
task and we experiment some recent approaches based on the probabilis-
tic topic models. We demonstrate the efficiency of these models in terms
of high predictive scores and ease of result interpretation. As such, we
show how topic models enable gaining insights into this field and provide
new research opportunities for possible improvements.

Keywords: ICD code assignment, topic models, machine learning, nat-
ural language processing, text categorization, text mining

1 Introduction

Health information systems are used at a large scale in the healthcare institutions
and hospitals for various tasks, such as medical record management, medical
prescription, and billing. As a result, increasing large volumes of healthcare data
are regularly generated in the form of Electronic Medical Records (EMR). In
this regard, textual data has a prominent place. Free text is actually a suitable
form to describe a wide range of data related to patient’s care including medical
history, personal statistics, admission diagnosis, patient-caregiver exchange, etc.
However, despite of being an abundant and valuable resource, only low quantities
of these data are actually used for specific mining tasks, e.g., [14, 15].

One major issue that can be approached by capitalizing on the routinely
generated textual data is the automation of diagnosis code assignment to medical



notes [4, 5, 9–11, 13–15, 17, 21]. The task involves characterizing patient’s hospital
stay (symptoms, diagnoses, treatments, etc.) by a small number of codes, usually
derived from the International Classification of Diseases (ICD). Diagnosis codes
provide a fast and easy understanding of patient’s state evolution. The same
codes are used as billing elements by the health insurance systems. Because
of its importance, the task of code assignment is often performed manually by
professional coders. However, manual coding is tedious and time-consuming: on
average the coders spend about five minutes identifying only single code.

The main goal of this paper is to explore a new approach to automatic
code assignment, based on probabilistic topic models. This approach has shown
excellent performance in various text mining tasks, such as topic discovery, infor-
mation retrieval, and sentiment analysis [8, 20]. Moreover, topic models provide
a natural way to error analysis based on topic description, for example using
discriminant words. Though, apart from some sparse work, the application of
topic models for medical text mining purposes remains relatively less explored
than in the other fields [8, 13, 20].

In this work, we experiment some recently-proposed supervised topic models
in the task of automatic code assignment to medical discharge summaries. Our
contributions can be summarized as follows:

1. New benchmark data: we create two french datasets with discharge sum-
maries and manually associated ICD codes.

2. New learning models: we experiment some recent probabilistic topic models
in a supervised fashion [1, 16].

Our evaluation setup allows a fair comparison of machine learning models in
a more refined way than the traditional measures. Both code and data will be
available for the community after anonymization.

A brief introduction to the ICD in given in Section 2. Then, an overview of
prior work for diagnosis assignment is given in Section 3. Experiments (meth-
ods, data, and evaluation framework) are described in Section 4. Results and
discussion are given in Section 5. Finally, the paper is concluded in Section 6.

2 International Classification of Diseases

According to the World Health Organization (WHO), the International Clas-
sification of Diseases (ICD) is the “standard diagnostic tool for epidemiology,
health management and clinical purposes”6. This mainly includes diseases, but
also symptoms, signs, procedures, and other content related to diseases. There
exist a separate classification per language, that is regularly revised by the WHO.
Currently, the latest revision for English is ICD10 whereas for French it is called
CIM10 (Classification Internationale de Maladies). However, ICD9 is the most
widely-used classification for diagnosis coding, in particular ICD9-Clinical Mod-
ification (ICD9-CM) as it allows comparability and use of mortality and mor-
bidity data.

6 http://www.who.int/classifications/icd/



Table 1. ICD code examples from CIM10 (top) and ICD9 (bottom).

ICD Language Code Label

C83.7 Lymphome de Burkitt (Burkitt’s lymphoma)
CIM10 French C88.0 Macroglobulinmie de Waldenström (Waldenström’s macroglobulinemia)

D30.0 Tumeur bénigne du rein (benign kidney tumor)

198.3 Secondary malignant neoplasm of brain and spinal cord
ICD9 English 414.01 Coronary atherosclerosis of native coronary artery

V34.01 Other multiple birth (three or more), mates all liveborn, delivered by cesarean section

For this paper, we use ICD9-CM (that we call ICD9) and CIM10 classifi-
cations for English and French respectively. In ICD9, diagnosis codes are 3-5
characters. The first character is numeric or alpha while characters 2-5 are nu-
meric. In CIM10, diagnosis codes are far to 6 characters. The first character is
always alpha and designs a high-level category, while the remaining are numeric.
Table 1 shows some examples from the codes used in this paper. On the other
hand, ICD can be structured in a tree hierarchy with edges representing “is-a”
relationship between a parent code and its children. More details about ICD can
be found on the WHO website6.

3 Related Work

The problem of diagnosis code assignment has been studied from both perspec-
tives of machine learning and computational linguistics, leading to a number
of significant works. A bulk of these works have been published with the Com-
putational Medicine Center’s 2007 medical NLP challenge involving ICD code
assignment to radiology reports [15]. With 45 distinct codes, the best F-score
from the challenge was 89% while the average F-score was 77%. Note that all
these works used multi-label classification: a document is assigned to one or more
diagnoses (which is outside the scope of this paper). Some of them focused on
using the ICD hierarchy to improve classification accuracy [14, 21].

In [5, 21], statistical classifiers were learnt based on a bag-of-words repre-
sentation. The works in [5] used BoosTexter, a boosting-like technique based
on a weak classifier, to learn a set of classification rules. The best achieved
F-scores were around 84%. In [21], a simple classifier was learnt based on the
presence/absence of UMLS terms7. The achieved scores were around 86%.

Besides this challenge, there also were some significant work such as [9, 13,
14, 17]. In [9], both SVM and Ridge Regression classifiers have achieved a score
of 68% on a dataset with 2,618 distinct codes and a large number of learning
documents (nearly 100,000). In [14], SVM classifier has been tested under a flat
and a hierarchical setting. On a dataset with 5,030 distinct codes, the achieved
F-scores were around 27% under flat setting and 39% under hierarchical set-
ting. In [17], the k-NN classifier has been tested on a French corpus of medical

7 https://www.nlm.nih.gov/research/umls/



documents with more 10,000 distinct codes. The algorithm achieved about 74%
precision score but very low recall levels.

The closest work to ours is by Perotte et al. [13]. The authors proposed a
hierarchically-supervised topic model (HSLDA) combining LDA model [2] with
the knowledge from ICD structure. The hierarchical structure of ICD codes was
taken into account during the topic learning step. For this to happen, the final
predicted code was constrained to derive from one branch of the tree (a code
could not be assigned to a document if its parent were not). HSLDA have been
tested on a dataset with 7,298 distinct codes, where it performed about 5%
better than the non-hierarchical sLDA model [1]. Unfortunately, HSLDA source
code is not publicly available which prevents us from including it in this study.

4 Experiments

4.1 Methods

We choose three traditional machine learning models: an example-based model
(Decision Tree), a probabilistic model (Naive Bayes), and a kernel-based model
(Support Vector Machines). We put these models against two others from the
topic model family: sLDA [1] and labeledLDA [16]. To carry out the experiments,
we rely on R rpart package that implements an efficient Decision Tree (DT)
algorithm based on information-gain ratio as a splitting criterion [19]. Similarly,
we use e1071 package to perform Naive Bayes (NB) and Support Vector Machines
(SVM) classifiers [12]. For the latter one, the best performance is obtained with
a linear kernel while all the remaining parameters are left to their default values.

Fig. 1. Plate notation of (a) sLDA and (b) labeledLDA topic models. In labeledLDA,
the topics (variable θ) are directly influenced by document’s classes (variable c).

sLDA and labeledLDA are both based of the well-known LDA topic model [2].
Both models implement supervised learning based on the hidden topic structures
(latent variables). In fact, the topic modeling process can be assimilated to a
fuzzy word clustering where the goal is to build semantically coherent clusters [2].
sLDA and labeledLDA rely on slightly different structures (see Fig. 1). In both
cases, the supervised part is implemented through a response variable, depicted
by the letter c, that gives the predicted class modality (here the ICD codes).



Despite their apparent similarities, sLDA and labeledLDA differ mainly on
two key points:

– Response formulation: in sLDA the response variable is derived from a Gaus-
sian, while it follows a multinomial in labeledLDA. As such, labeledLDA
would be more flexible and better fit with a multi-label classification, which
is outside the scope of this paper.

– Topic supervision: in sLDA the response is calculated from empirical (learnt)
topic distributions. For this, sLDA relies on a generalized linear model that
maps the multinomial topic-document associations into a categorical re-
sponse. In contrast, labeledLDA allows the knowledge from document’s classes
influencing topic construction. Thus, documents from the same classes are
more likely to be linked with the same topics.

The parameters of sLDA and labeledLDA are fixed empirically in such a way
to maximize the predictive scores on a held-out (test) sample8. For both models,
the number of topics K is set to the number of codes. For sLDA: α = 0.01. For
labeledLDA, α = 0.005, β = 0.07. The remaining hyperparameters are learnt
from data. In addition, to maintain low running time, the number of iterations
is set to 10,000 for sLDA and 50,000 for labeledLDA.

4.2 Datasets

As a response to the need for benchmark datasets pointed out in the litera-
ture [14], we created two datasets by gathering discharge summaries from Saint-
Louis university teaching hospital9: URO-FR and HEMATO-FR. These datasets
were built by taking all the discharge summaries collected within urology and
hematology services respectively, between 2009 and 2014. Apart from filtering
out rare codes (with less than 10 documents), we did not make any restriction
regarding data quality, such as the presence of noise and typos. The point was
to create real-life issued data with more challenging analysis problems for the
algorithms. In this work, we only focus on the primary diagnosis (the reason the
patient came to therapy) to deal with a single-label classification problem. We
leave secondary codes, including aftercare codes, to a future work that will rely
on multi-label classification.

The three datasets are highly imbalanced: about 70% of documents are as-
signed to 20% of codes. Once again, our goal is to experiment the models within
the challenging real-world setup. Therefore, we choose to maintain the original
imbalanced document distribution.

The third dataset MIMIC-EN is a subset of MIMIC-II Physiology database [18]
using the following PostgreSQL query:

8 Source codes from: http://www.cs.cmu.edu/∼chongw/slda/ (sLDA) and
https://github.com/myleott/JGibbLabeledLDA/ (labeledLDA).

9 http://hopital-saintlouis.aphp.fr/



Table 2. Dataset description.

Dataset ICD Lang. #docs. #unique #codes Avg. #words Avg. #docs.
version words /doc. /code

URO-FR CIM10 French 4 690 11 143 60 46 78
HEMATO-FR CIM10 French 3 720 13 371 30 76 124
MIMIC-EN ICD9 English 7 956 12 951 252 59 32

SELECT (subject id, hadm id, code, text) FROM mimic2v26.icd9 JOIN

mimic2v26.noteevents USING (subject id, hadm id) WHERE (sequence=‘1’

AND category=‘DISCHARGE SUMMARY’ AND LENGTH(text) > 50);

The exact dataset used in this paper was obtained when discarding rare codes
(a minimum of 15 documents has been chosen to make a trade-off between the
total number of codes and the number of documents per code).

In order to mitigate the effects of high dimensionality, we systematically make
the following text preprocessing:

1. Stemming
2. Filtering out the words occurring in less than 2 documents (3 for MIMIC-EN

dataset because of its large size) or more than 300 documents
3. Removing stopwords and numerics.

The preprocessed text documents are then mapped into a bag-of-words rep-
resentation where the words (unigrams) are weighted according to their pres-
ence/absence in the document. All the models are based on this representation.
Table 2 gives an overview of the preprocessed datasets.

4.3 Evaluation framework

Previous works in code assignment have mainly relied on automatic evaluation
measures from information retrieval fields, specifically precision, recall, and F-
score. The standard version of these measures, yet widely-used for many predic-
tive tasks, is restrictive in that it only considers a single model response. For this
paper, we suggest to use a more flexible version, called Fk-score, in order to take
into account uncertainty of the predictive models. To this end, the evaluation
of a given result is performed by considering all of the k returned classes rather
than one single class, as in [7, 17]. This choice is motivated by the following
observations:

– All of the models tested here return a set of ranked labels (NB, sLDA, and
labeledLDA) or can easily be adapted to do so (DT and SVM) [3]. Our
evaluation enables retrieving the correct class in case it were not ranked
first. This is particularly useful when some of the returned labels are ranked
equally.
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Fig. 2. Performance scores obtained on URO-FR dataset (60 codes).

m
ic

ro
−

F
k−

sc
or

e 
 

0.
0

0.
4

0.
8

DT NB SVM sLDA labeledLDA

k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10

m
ac

ro
−

F
k−

sc
or

e 
 

0.
0

0.
4

0.
8

Fig. 3. Performance scores obtained on HEMATO-FR dataset (30 codes).

– In practice, it is more prudent to make the task humanly-supervised rather
than fully automatic. In this regard, a set of best ranked codes is returned
by the model, from where the coder selects the appropriate ones.

Fk-score is calculated similarly to the standard F-score except that the cor-
rect class is fetched among the k most probable classes returned by the model.
That is, if the correct class is present within these classes, it is returned instead
of the the most probable class.

5 Results and Analysis

Figures 2, 3, and 4 show the results from the three datasets. These are described
in terms of micro (weighted average) and macro (average) Fk-scores, for k rang-
ing from 1 to 10. The results are obtained based on a 10-fold cross validation.
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Fig. 4. Performance scores obtained on MIMIC-EN dataset (252 codes).

Table 3. Fk-scores for SVM and labeledLDA with k ∈ {1, 5, 10}.

Dataset Model micro- macro- micro- macro- micro- macro-
F1-score F1-score F5-score F5-score F10-score F10-score

URO-FR
SVM 0.52 ±0.02 0.39 ±0.03 0.89 ±0.02 0.75 ±0.03 0.95 ±0.01 0.82 ±0.01
labeledLDA 0.51 ±0.02 0.36 ±0.03 0.81 ±0.02 0.65 ±0.03 0.88 ±0.02 0.71 ±0.01

HEMATO-FR
SVM 0.83 ±0.01 0.49 ±0.03 0.95 ±0.01 0.69 ±0.02 0.99 ±0.01 0.74 ±0.03
labeledLDA 0.78 ±0.01 0.44 ±0.03 0.92 ±0.01 0.64 ±0.02 0.98 ±0.01 0.70 ±0.05

MIMIC-EN
SVM 0.30 ±0.02 0.09 ±0.01 0.61 ±0.01 0.24 ±0.02 0.75 ±0.01 0.35 ±0.02
labeledLDA 0.33 ±0.01 0.12 ±0.02 0.62 ±0.02 0.30 ±0.02 0.74 ±0.02 0.38 ±0.02

Error bars give the standard deviations. In addition, Table 3 offers the exact
scores for SVM and labeledLDA with k ∈ {1, 5, 10}. In the following, we discuss
these results from three perspectives: (i) overall performance, (ii) performance
w.r.t. k, and (iii) a comparison of topic models sLDA and labeledLDA.

Overall performance: as can be seen from these figures, SVM and labeledLDA
always yield the best result compared to the other models. On URO-FR and
HEMATO-FR, SVM has the best scores while on MIMIC-EN labaledLDA comes
first. Based on a t-test throughout all the datasets, no evidence of any statistical
difference could be observed between SVM and labeledLDA (p-value > 0.05). NB
generally arrives third, followed by DT, then sLDA that performs comparably
poor in this task, specifically on MIMIC-EN where the number of codes is large.
The same trend can be observed with both micro and macro averaged F-scores.

Performance w.r.t. k: better results are achieved when the value of k grows up,
giving more chance to the less probable codes to be selected. By averaging over all
models and datasets, the gain in micro-Fk-score is equal to 14% when k increases
from 1 to 2. It is equal to 2% when k increases from 5 to 6, and 1% when it
increases from 9 to 10. To assess the statistical significance, we perform a paired
t-test on the micro-Fk-scores obtained from MIMIC-EN dataset. The p-values
result from comparing the means of micro-Fk+1-scores vs. micro-Fk-scores.



Table 4. Examples of codes and associated topics from URO-FR (top), HEMATO-FR
(middle), and MIMIC-EN (bottom) datasets extracted with labeledLDA model.

C61: Tumeur maligne de
la prostate (Prostate can-
cer)

N39.3: Incontinence
urinaire d’effort
(Stress urinary
incontinence)

Z52.4: Donneur de rein
(Kidney donor)

N30.0: Cystite aiguë
(Acute cystitis)

S30.2: Contusion des
organes génitaux ex-
ternes (Congestion of
the external genitalia )

prostatectomie5 incontinent prelèvement (sample) pontage (bypass) observer (watch)

radical bandelette (band) faveur (favour) arterielle (arterial) hospitalisé(inpatient)
laparotomie (laparotomy) effort (stress) manuel (hand-operated) Ditropan med (medical)

score trans-obturatrice5 artère (artery) post-mictionnel5 externe (lateral)
lobe (lobus) urodynamique5 assisté (assisted) Kardegic motif (cause)
mini toux (cough) DFG (GFR) diurne (diurnal) chir (surgery)

capsulaire (capsular) bud (urodynam. test) laparoscopique5 surtout (especially) ATCD (med. history)
élevé (high) rééducation5 contre (against) fonctionnel(functional) clinique-uro5

extension urgenturie5 apparenté (related) impériosité (urge) fam (familial)

curatif (curative) position min (minute) hypertension5 suggérer (suggest)

#documents=356 #documents=47 #documents=39 #documents=16 #documents=18
F1-score=0.68 F1-score=0.83 F1-score=0.96 F1-score=0.00 F1-score=0.22

C81.9: Lymphome de
Hodgkin (Hodgkin’s
lymphoma)

C88.0: Macroglob-
ulinmie de Walden-
ström (Walden-
ström’s macroglobu-
linemia)

D46.2: Anémie
réfractaire avec excès
de blastes (refractory
anemia with excess of
blasts)

C83.0: Lymphome
à petites cellules B
(small B-cell lym-
phoma)

E85.3: Amylose
généralisée secondaire
(secondary generalized
amyloidosis)

Hodgkin Waldenström senior critère (criterion) amylose

ABVD IgM multirésistant(resistant) participer(participate) troponine (troponin)
IVOX lymphoplasmocytaire10remise (redelivery) accepter (accept) formule (formula)
classique (classical) macroglobulinémie5 blaste (blast) consentement(consent) proBNP

panoramique(panoramic) monoclonal AREB (RAEB) aborder (approach) VCD

escalade (escalation) béta (beta) leuco attendu (expected) évolution (evolution)
étoposide (etoposide) créatininémie5 Vidaza logistique (logistics) dosage (dose)
BEAM sup (increased) myélodysplasique5 version arriver (reach)
SPI (IPS) stabilité (stability) BHC objectif (goal) immunochimique5

nodulaire (nodular) cérébral (cerebral) mgX (m.g.) contrainte(constraint) physique (physical)

#documents=168 #documents=72 #documents=37 #documents=38 #documents=85
F1-score=0.75 F1-score=0.74 F1-score=0.78 F1-score=0.38 F1-score=0.34

157.0: Malignant neo-
plasm of pancreas

278.01: Morbid obe-
sity

430: Subarachnoid
hemorrhage

038.0: Streptococcal
septicemia

998.12: Hematoma co-
mplicating a procedure

duct morbid coil vegetation FFP

painless roxicet vasospasm biliary tube

biliary elixir nimodipine streptococcus yellow

bile roux-en-y fluent surveillance soften

whipple crush downgoing endocardial layer
CBD laparoscopic cistern enterococcus fiber
ERCP actigall angio ductal etc
endoscopic bloated pronation cellular colitis
duodenum pill sah travel everyday
cholangiopancreatographyprogram EOM medial sleep

#documents=13 #documents=13 #documents=89 #documents=26 #documents=9
F1-score=1.00 F1-score=1.00 F1-score=0.69 F1-score=0.00 F1-score=0.00

5 Term translation: clinique-uro: clinical-urological, créatininémie: creatininemia,
immunochimique: immunochemical, laparoscopique: laparoscopic, lymphoplasmocy-
taire: lymphoplasmocytic, macroglobulinémie: macroglobulinemia, myélodysplasique:
myelodysplastic, post-mictionnel: post-void, prostatectomie: prostatectomy,
rééducation: reeducation, trans-obturatrice: transobturator, urodynamique: uro-
dynamics, urgenterie: urge incontinence.



The difference is highly significant when k increases from 1 to 2 or from 2 to 3
(p-value < 10−6). In contrast, the difference is comparably much less significant
for the greater values of k (p-value > 10−3).

sLDA vs labeledLDA: sLDA clearly achieves lower scores than the other topic
model labeledLDA. For k = 1, the difference in micro-Fk-score is equal to 20%
on URO-FR, 35% on HEMTAO-FR, and 30% on MIMIC-EN (see Table 3). We
believe that this great difference in performance is due to the intrinsic difference
in model structure. In labeledLDA, the knowledge from document’s classes di-
rectly influences the topic construction. As such, documents from the same class
(diagnosis code) are more likely to link to the same topics, which helps building
more “diagnosis-based” topics. This feature, not shared by sLDA, is graphically
depicted by the direction of the edge linking the variables c and θ (see Fig. 1).

In addition to these quantitative results, we show the top 10 words character-
izing the topics obtained with labeledLDA in Table 4. Each code is associated
with the most likely topic based on empirical distributions [16]. We choose three
examples from the best predicted scores and two examples with poorly predicted
ones. The underlined words are manually annotated by medical experts as be-
ing semantically and clearly related to the associated diagnosis. Medical experts
agree that these results are very informative. Most of the diagnoses are easily
recognizable from their characterizing words. Moreover, a post hoc analysis of
these results leads to the following observations:

– Topic’s coherence is generally correlated to good predictive scores, as with
the codes C81.9, C88.0, C91.1, N20.0 from the French data. Conversely, the
codes with less coherent and/or mixed topics have poor predictive scores,
such as C81.9, C83.0, N15.1, N20.1, N30.0. This observation may help ex-
plaining why certain codes are so easily-predicted by the model whereas
others are not. In this regard, it is legitimate to believe that improving the
topic’s quality would lead to improve the predictive scores.

– A large number of codes can be characterized with medical concepts (n-
grams, phrases) rather than single words, for example “arterial tension”,
“urinary tract infection”, “blood test”, etc. This observation should motivate
the inclusion of medical concepts, either extracted statistically or based on
medical ontology, into the vocabulary.

6 Conclusion

The work described in this paper is an example application of machine learning
models to a real-world problem: diagnosis code assignment to discharge sum-
maries. The models that we have chosen for experiments are issued from both
classical machine learning research (DT, NB, and SVM) and modern NLP ap-
proaches (sLDA and labeledLDA). Despite the achieved results that are quite
encouraging, the task would not allow a fully automatic coding because of the
significant error rates. For example, based on labeledLDA model, 22% documents



from hematology service would be miscoded. The rate rises to 51% on urology
and 65% on intensive care medicine. A thorough analysis of prediction errors
suggests that data quality (such as size, coverage, and specificity) is crucial for
the success of the task. The code distribution is also an important factor as the
codes with small sample sizes are generally hard to predict.

After a thorough discussion with medical experts, we believe that the auto-
matic part of the coding process is very useful but cannot dispense with human
supervision to make the conclusive choice. Nevertheless, as it has been shown
in Table 3, the error rates are dramatically reduced when allowing larger values
of k. For example, with k=10, the error rates are reduced by 25–45 percentage
points. In this way, the human coder can seek for the appropriate codes in a
reduced space, which makes the coding task faster and easier.

Finally, in a semi-automatic approach the coder also has the ability to pro-
duce and express feedback for the learning algorithms. This can be done either
by using the coder’s choice among the proposed codes, or in a more specific way
by asking the user to express a prior (e.g., “word-code” relation). Beyond the
natural extension of this work to a multi-label task (including both primary and
secondary codes), a challenging future work would be how to efficiently include
user feedback, and more generally any type of prior knowledge. Conveniently,
topic models are highly flexible for such purposes (see seededLDA model in [6]).
Convinced by the utility of using prior knowledge and motivated by the promis-
ing results achieved with labeledLDA model, we consider extending our work to
the embedding of this knowledge into labeledLDA model.
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