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Introduction

Health information systems are used at a large scale in the healthcare institutions and hospitals for various tasks, such as medical record management, medical prescription, and billing. As a result, increasing large volumes of healthcare data are regularly generated in the form of Electronic Medical Records (EMR). In this regard, textual data has a prominent place. Free text is actually a suitable form to describe a wide range of data related to patient's care including medical history, personal statistics, admission diagnosis, patient-caregiver exchange, etc. However, despite of being an abundant and valuable resource, only low quantities of these data are actually used for specific mining tasks, e.g., [START_REF] Adler Perotte | Diagnosis code assignment: models and evaluation metrics[END_REF][START_REF] Pestian | A Shared Task Involving Multi-label Classification of Clinical Free Text[END_REF].

One major issue that can be approached by capitalizing on the routinely generated textual data is the automation of diagnosis code assignment to medical notes [4, 5, 9-11, 13-15, 17, 21]. The task involves characterizing patient's hospital stay (symptoms, diagnoses, treatments, etc.) by a small number of codes, usually derived from the International Classification of Diseases (ICD). Diagnosis codes provide a fast and easy understanding of patient's state evolution. The same codes are used as billing elements by the health insurance systems. Because of its importance, the task of code assignment is often performed manually by professional coders. However, manual coding is tedious and time-consuming: on average the coders spend about five minutes identifying only single code.

The main goal of this paper is to explore a new approach to automatic code assignment, based on probabilistic topic models. This approach has shown excellent performance in various text mining tasks, such as topic discovery, information retrieval, and sentiment analysis [START_REF] Lin | Weakly Supervised Joint Sentiment-Topic Detection from Text[END_REF][START_REF] Yi | A Comparative Study of Utilizing Topic Models for Information Retrieval[END_REF]. Moreover, topic models provide a natural way to error analysis based on topic description, for example using discriminant words. Though, apart from some sparse work, the application of topic models for medical text mining purposes remains relatively less explored than in the other fields [START_REF] Lin | Weakly Supervised Joint Sentiment-Topic Detection from Text[END_REF][START_REF] Adler Perotte | Hierarchically Supervised Latent Dirichlet Allocation[END_REF][START_REF] Yi | A Comparative Study of Utilizing Topic Models for Information Retrieval[END_REF].

In this work, we experiment some recently-proposed supervised topic models in the task of automatic code assignment to medical discharge summaries. Our contributions can be summarized as follows:

1. New benchmark data: we create two french datasets with discharge summaries and manually associated ICD codes. 2. New learning models: we experiment some recent probabilistic topic models in a supervised fashion [START_REF] Blei | Supervised topic models[END_REF][START_REF] Ramage | Labeled LDA : A supervised topic model for credit attribution in multi-labeled corpora[END_REF].

Our evaluation setup allows a fair comparison of machine learning models in a more refined way than the traditional measures. Both code and data will be available for the community after anonymization.

A brief introduction to the ICD in given in Section 2. Then, an overview of prior work for diagnosis assignment is given in Section 3. Experiments (methods, data, and evaluation framework) are described in Section 4. Results and discussion are given in Section 5. Finally, the paper is concluded in Section 6.

International Classification of Diseases

According to the World Health Organization (WHO), the International Classification of Diseases (ICD) is the "standard diagnostic tool for epidemiology, health management and clinical purposes"6 . This mainly includes diseases, but also symptoms, signs, procedures, and other content related to diseases. There exist a separate classification per language, that is regularly revised by the WHO. Currently, the latest revision for English is ICD10 whereas for French it is called CIM10 (Classification Internationale de Maladies). However, ICD9 is the most widely-used classification for diagnosis coding, in particular ICD9-Clinical Modification (ICD9-CM) as it allows comparability and use of mortality and morbidity data. For this paper, we use ICD9-CM (that we call ICD9) and CIM10 classifications for English and French respectively. In ICD9, diagnosis codes are 3-5 characters. The first character is numeric or alpha while characters 2-5 are numeric. In CIM10, diagnosis codes are far to 6 characters. The first character is always alpha and designs a high-level category, while the remaining are numeric. Table 1 shows some examples from the codes used in this paper. On the other hand, ICD can be structured in a tree hierarchy with edges representing "is-a" relationship between a parent code and its children. More details about ICD can be found on the WHO website 6 .

Related Work

The problem of diagnosis code assignment has been studied from both perspectives of machine learning and computational linguistics, leading to a number of significant works. A bulk of these works have been published with the Computational Medicine Center's 2007 medical NLP challenge involving ICD code assignment to radiology reports [START_REF] Pestian | A Shared Task Involving Multi-label Classification of Clinical Free Text[END_REF]. With 45 distinct codes, the best F-score from the challenge was 89% while the average F-score was 77%. Note that all these works used multi-label classification: a document is assigned to one or more diagnoses (which is outside the scope of this paper). Some of them focused on using the ICD hierarchy to improve classification accuracy [START_REF] Adler Perotte | Diagnosis code assignment: models and evaluation metrics[END_REF][START_REF] Zhang | A hierarchical approach to encoding medical concepts for clinical notes[END_REF].

In [START_REF] Goldstein | Three approaches to automatic assignment of ICD-9-CM codes to radiology reports[END_REF][START_REF] Zhang | A hierarchical approach to encoding medical concepts for clinical notes[END_REF], statistical classifiers were learnt based on a bag-of-words representation. The works in [START_REF] Goldstein | Three approaches to automatic assignment of ICD-9-CM codes to radiology reports[END_REF] used BoosTexter, a boosting-like technique based on a weak classifier, to learn a set of classification rules. The best achieved F-scores were around 84%. In [START_REF] Zhang | A hierarchical approach to encoding medical concepts for clinical notes[END_REF], a simple classifier was learnt based on the presence/absence of UMLS terms 7 . The achieved scores were around 86%.

Besides this challenge, there also were some significant work such as [START_REF] Vlad | Large Scale Diagnostic Code Classification for Medical Patient Records[END_REF][START_REF] Adler Perotte | Hierarchically Supervised Latent Dirichlet Allocation[END_REF][START_REF] Adler Perotte | Diagnosis code assignment: models and evaluation metrics[END_REF][START_REF] Ruch | From episodes of care to diagnosis codes: automatic text categorization for medicoeconomic encoding[END_REF]. In [START_REF] Vlad | Large Scale Diagnostic Code Classification for Medical Patient Records[END_REF], both SVM and Ridge Regression classifiers have achieved a score of 68% on a dataset with 2,618 distinct codes and a large number of learning documents (nearly 100,000). In [START_REF] Adler Perotte | Diagnosis code assignment: models and evaluation metrics[END_REF], SVM classifier has been tested under a flat and a hierarchical setting. On a dataset with 5,030 distinct codes, the achieved F-scores were around 27% under flat setting and 39% under hierarchical setting. In [START_REF] Ruch | From episodes of care to diagnosis codes: automatic text categorization for medicoeconomic encoding[END_REF], the k-NN classifier has been tested on a French corpus of medical documents with more 10,000 distinct codes. The algorithm achieved about 74% precision score but very low recall levels.

The closest work to ours is by Perotte et al. [START_REF] Adler Perotte | Hierarchically Supervised Latent Dirichlet Allocation[END_REF]. The authors proposed a hierarchically-supervised topic model (HSLDA) combining LDA model [START_REF] Blei | Latent Dirichlet Allocation[END_REF] with the knowledge from ICD structure. The hierarchical structure of ICD codes was taken into account during the topic learning step. For this to happen, the final predicted code was constrained to derive from one branch of the tree (a code could not be assigned to a document if its parent were not). HSLDA have been tested on a dataset with 7,298 distinct codes, where it performed about 5% better than the non-hierarchical sLDA model [START_REF] Blei | Supervised topic models[END_REF]. Unfortunately, HSLDA source code is not publicly available which prevents us from including it in this study.

Experiments

Methods

We choose three traditional machine learning models: an example-based model (Decision Tree), a probabilistic model (Naive Bayes), and a kernel-based model (Support Vector Machines). We put these models against two others from the topic model family: sLDA [START_REF] Blei | Supervised topic models[END_REF] and labeledLDA [START_REF] Ramage | Labeled LDA : A supervised topic model for credit attribution in multi-labeled corpora[END_REF]. To carry out the experiments, we rely on R rpart package that implements an efficient Decision Tree (DT) algorithm based on information-gain ratio as a splitting criterion [START_REF] Therneau | rpart: Recursive Partitioning and Regression Trees[END_REF]. Similarly, we use e1071 package to perform Naive Bayes (NB) and Support Vector Machines (SVM) classifiers [START_REF] Meyer | Misc Functions of the Department of Statistics, Probability Theory Group[END_REF]. For the latter one, the best performance is obtained with a linear kernel while all the remaining parameters are left to their default values. sLDA and labeledLDA are both based of the well-known LDA topic model [START_REF] Blei | Latent Dirichlet Allocation[END_REF]. Both models implement supervised learning based on the hidden topic structures (latent variables). In fact, the topic modeling process can be assimilated to a fuzzy word clustering where the goal is to build semantically coherent clusters [START_REF] Blei | Latent Dirichlet Allocation[END_REF]. sLDA and labeledLDA rely on slightly different structures (see Fig. 1). In both cases, the supervised part is implemented through a response variable, depicted by the letter c, that gives the predicted class modality (here the ICD codes).

Despite their apparent similarities, sLDA and labeledLDA differ mainly on two key points:

-Response formulation: in sLDA the response variable is derived from a Gaussian, while it follows a multinomial in labeledLDA. As such, labeledLDA would be more flexible and better fit with a multi-label classification, which is outside the scope of this paper. -Topic supervision: in sLDA the response is calculated from empirical (learnt) topic distributions. For this, sLDA relies on a generalized linear model that maps the multinomial topic-document associations into a categorical response. In contrast, labeledLDA allows the knowledge from document's classes influencing topic construction. Thus, documents from the same classes are more likely to be linked with the same topics.

The parameters of sLDA and labeledLDA are fixed empirically in such a way to maximize the predictive scores on a held-out (test) sample 8 . For both models, the number of topics K is set to the number of codes. For sLDA: α = 0.01. For labeledLDA, α = 0.005, β = 0.07. The remaining hyperparameters are learnt from data. In addition, to maintain low running time, the number of iterations is set to 10,000 for sLDA and 50,000 for labeledLDA.

Datasets

As a response to the need for benchmark datasets pointed out in the literature [START_REF] Adler Perotte | Diagnosis code assignment: models and evaluation metrics[END_REF], we created two datasets by gathering discharge summaries from Saint-Louis university teaching hospital9 : URO-FR and HEMATO-FR. These datasets were built by taking all the discharge summaries collected within urology and hematology services respectively, between 2009 and 2014. Apart from filtering out rare codes (with less than 10 documents), we did not make any restriction regarding data quality, such as the presence of noise and typos. The point was to create real-life issued data with more challenging analysis problems for the algorithms. In this work, we only focus on the primary diagnosis (the reason the patient came to therapy) to deal with a single-label classification problem. We leave secondary codes, including aftercare codes, to a future work that will rely on multi-label classification.

The three datasets are highly imbalanced: about 70% of documents are assigned to 20% of codes. Once again, our goal is to experiment the models within the challenging real-world setup. Therefore, we choose to maintain the original imbalanced document distribution.

The third dataset MIMIC-EN is a subset of MIMIC-II Physiology database [18] using the following PostgreSQL query: The exact dataset used in this paper was obtained when discarding rare codes (a minimum of 15 documents has been chosen to make a trade-off between the total number of codes and the number of documents per code).

In order to mitigate the effects of high dimensionality, we systematically make the following text preprocessing:

1. Stemming 2. Filtering out the words occurring in less than 2 documents (3 for MIMIC-EN dataset because of its large size) or more than 300 documents 3. Removing stopwords and numerics.

The preprocessed text documents are then mapped into a bag-of-words representation where the words (unigrams) are weighted according to their presence/absence in the document. All the models are based on this representation. Table 2 gives an overview of the preprocessed datasets.

Evaluation framework

Previous works in code assignment have mainly relied on automatic evaluation measures from information retrieval fields, specifically precision, recall, and Fscore. The standard version of these measures, yet widely-used for many predictive tasks, is restrictive in that it only considers a single model response. For this paper, we suggest to use a more flexible version, called F k -score, in order to take into account uncertainty of the predictive models. To this end, the evaluation of a given result is performed by considering all of the k returned classes rather than one single class, as in [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF][START_REF] Ruch | From episodes of care to diagnosis codes: automatic text categorization for medicoeconomic encoding[END_REF]. This choice is motivated by the following observations:

-All of the models tested here return a set of ranked labels (NB, sLDA, and labeledLDA) or can easily be adapted to do so (DT and SVM) [START_REF] Cerri | Adapting non-hierarchical multilabel classification methods for hierarchical multilabel classification[END_REF]. Our evaluation enables retrieving the correct class in case it were not ranked first. This is particularly useful when some of the returned labels are ranked equally. -In practice, it is more prudent to make the task humanly-supervised rather than fully automatic. In this regard, a set of best ranked codes is returned by the model, from where the coder selects the appropriate ones.

F k -score is calculated similarly to the standard F-score except that the correct class is fetched among the k most probable classes returned by the model. That is, if the correct class is present within these classes, it is returned instead of the the most probable class. Error bars give the standard deviations. In addition, Table 3 offers the exact scores for SVM and labeledLDA with k ∈ {1, 5, 10}. In the following, we discuss these results from three perspectives: (i) overall performance, (ii) performance w.r.t. k, and (iii) a comparison of topic models sLDA and labeledLDA.

Results and Analysis

Overall performance: as can be seen from these figures, SVM and labeledLDA always yield the best result compared to the other models. On URO-FR and HEMATO-FR, SVM has the best scores while on MIMIC-EN labaledLDA comes first. Based on a t-test throughout all the datasets, no evidence of any statistical difference could be observed between SVM and labeledLDA (p-value > 0.05). NB generally arrives third, followed by DT, then sLDA that performs comparably poor in this task, specifically on MIMIC-EN where the number of codes is large. The same trend can be observed with both micro and macro averaged F-scores.

Performance w.r.t. k: better results are achieved when the value of k grows up, giving more chance to the less probable codes to be selected. By averaging over all models and datasets, the gain in micro-F k -score is equal to 14% when k increases from 1 to 2. It is equal to 2% when k increases from 5 to 6, and 1% when it increases from 9 to 10. To assess the statistical significance, we perform a paired t-test on the micro-F k -scores obtained from MIMIC-EN dataset. The p-values result from comparing the means of micro-F k+1 -scores vs. micro-F k -scores. The difference is highly significant when k increases from 1 to 2 or from 2 to 3 (p-value < 10 -6 ). In contrast, the difference is comparably much less significant for the greater values of k (p-value > 10 -3 ).

sLDA vs labeledLDA: sLDA clearly achieves lower scores than the other topic model labeledLDA. For k = 1, the difference in micro-F k -score is equal to 20% on URO-FR, 35% on HEMTAO-FR, and 30% on MIMIC-EN (see Table 3). We believe that this great difference in performance is due to the intrinsic difference in model structure. In labeledLDA, the knowledge from document's classes directly influences the topic construction. As such, documents from the same class (diagnosis code) are more likely to link to the same topics, which helps building more "diagnosis-based" topics. This feature, not shared by sLDA, is graphically depicted by the direction of the edge linking the variables c and θ (see Fig. 1).

In addition to these quantitative results, we show the top 10 words characterizing the topics obtained with labeledLDA in Table 4. Each code is associated with the most likely topic based on empirical distributions [START_REF] Ramage | Labeled LDA : A supervised topic model for credit attribution in multi-labeled corpora[END_REF]. We choose three examples from the best predicted scores and two examples with poorly predicted ones. The underlined words are manually annotated by medical experts as being semantically and clearly related to the associated diagnosis. Medical experts agree that these results are very informative. Most of the diagnoses are easily recognizable from their characterizing words. Moreover, a post hoc analysis of these results leads to the following observations: -Topic's coherence is generally correlated to good predictive scores, as with the codes C81.9, C88.0, C91.1, N20.0 from the French data. Conversely, the codes with less coherent and/or mixed topics have poor predictive scores, such as C81.9, C83.0, N15.1, N20.1, N30.0. This observation may help explaining why certain codes are so easily-predicted by the model whereas others are not. In this regard, it is legitimate to believe that improving the topic's quality would lead to improve the predictive scores. -A large number of codes can be characterized with medical concepts (ngrams, phrases) rather than single words, for example "arterial tension", "urinary tract infection", "blood test", etc. This observation should motivate the inclusion of medical concepts, either extracted statistically or based on medical ontology, into the vocabulary.

Conclusion

The work described in this paper is an example application of machine learning models to a real-world problem: diagnosis code assignment to discharge summaries. The models that we have chosen for experiments are issued from both classical machine learning research (DT, NB, and SVM) and modern NLP approaches (sLDA and labeledLDA). Despite the achieved results that are quite encouraging, the task would not allow a fully automatic coding because of the significant error rates. For example, based on labeledLDA model, 22% documents from hematology service would be miscoded. The rate rises to 51% on urology and 65% on intensive care medicine. A thorough analysis of prediction errors suggests that data quality (such as size, coverage, and specificity) is crucial for the success of the task. The code distribution is also an important factor as the codes with small sample sizes are generally hard to predict. After a thorough discussion with medical experts, we believe that the automatic part of the coding process is very useful but cannot dispense with human supervision to make the conclusive choice. Nevertheless, as it has been shown in Table 3, the error rates are dramatically reduced when allowing larger values of k. For example, with k=10, the error rates are reduced by 25-45 percentage points. In this way, the human coder can seek for the appropriate codes in a reduced space, which makes the coding task faster and easier.

Finally, in a semi-automatic approach the coder also has the ability to produce and express feedback for the learning algorithms. This can be done either by using the coder's choice among the proposed codes, or in a more specific way by asking the user to express a prior (e.g., "word-code" relation). Beyond the natural extension of this work to a multi-label task (including both primary and secondary codes), a challenging future work would be how to efficiently include user feedback, and more generally any type of prior knowledge. Conveniently, topic models are highly flexible for such purposes (see seededLDA model in [START_REF] Jagarlamudi | Incorporating Lexical Priors into Topic Models[END_REF]). Convinced by the utility of using prior knowledge and motivated by the promising results achieved with labeledLDA model, we consider extending our work to the embedding of this knowledge into labeledLDA model.

Fig. 1 .

 1 Fig. 1. Plate notation of (a) sLDA and (b) labeledLDA topic models. In labeledLDA, the topics (variable θ) are directly influenced by document's classes (variable c).

Fig. 2 .Fig. 3 .

 23 Fig. 2. Performance scores obtained on URO-FR dataset (60 codes).

Figures 2 , 3 ,Fig. 4 .

 234 Figures 2,[START_REF] Cerri | Adapting non-hierarchical multilabel classification methods for hierarchical multilabel classification[END_REF][START_REF] Farkas | Automatic construction of rule-based ICD-9-CM coding systems[END_REF] show the results from the three datasets. These are described in terms of micro (weighted average) and macro (average) F k -scores, for k ranging from 1 to 10. The results are obtained based on a 10-fold cross validation.

Table 1 .

 1 ICD code examples from CIM10 (top) and ICD9 (bottom).

	ICD Language Code Label
		C83.7 Lymphome de Burkitt (Burkitt's lymphoma)
	CIM10 French	C88.0 Macroglobulinmie de Waldenström (Waldenström's macroglobulinemia)
		D30.0 Tumeur bénigne du rein (benign kidney tumor)
		198.3 Secondary malignant neoplasm of brain and spinal cord
	ICD9 English 414.01 Coronary atherosclerosis of native coronary artery
		V34.01 Other multiple birth (three or more), mates all liveborn, delivered by cesarean section

Table 2 .

 2 Dataset description.

	Dataset	ICD	Lang. #docs. #unique #codes Avg. #words Avg. #docs.
		version	words		/doc.	/code
	URO-FR	CIM10 French 4 690 11 143	60	46	78
	HEMATO-FR CIM10 French 3 720 13 371	30	76	124
	MIMIC-EN	ICD9 English 7 956 12 951	252	59	32
	SELECT (subject id, hadm id, code, text) FROM mimic2v26.icd9 JOIN
	mimic2v26.noteevents USING (subject id, hadm id) WHERE (sequence='1'
	AND category='DISCHARGE SUMMARY' AND LENGTH(text) > 50);

Table 3 .

 3 F k -scores for SVM and labeledLDA with k ∈ {1, 5, 10}.

	Dataset	Model	micro-	macro-	micro-	macro-	micro-	macro-
			F1-score	F1-score	F5-score	F5-score	F10-score	F10-score
	URO-FR	SVM labeledLDA 0.51 ±0.02 0.36 ±0.03 0.81 ±0.02 0.65 ±0.03 0.88 ±0.02 0.71 ±0.01 0.52 ±0.02 0.39 ±0.03 0.89 ±0.02 0.75 ±0.03 0.95 ±0.01 0.82 ±0.01
	HEMATO-FR	SVM labeledLDA 0.78 ±0.01 0.44 ±0.03 0.92 ±0.01 0.64 ±0.02 0.98 ±0.01 0.70 ±0.05 0.83 ±0.01 0.49 ±0.03 0.95 ±0.01 0.69 ±0.02 0.99 ±0.01 0.74 ±0.03
	MIMIC-EN	SVM labeledLDA 0.33 ±0.01 0.12 ±0.02 0.62 ±0.02 0.30 ±0.02 0.74 ±0.02 0.38 ±0.02 0.30 ±0.02 0.09 ±0.01 0.61 ±0.01 0.24 ±0.02 0.75 ±0.01 0.35 ±0.02

Table 4 .

 4 Examples of codes and associated topics from URO-FR (top), HEMATO-FR (middle), and MIMIC-EN (bottom) datasets extracted with labeledLDA model.

	C61: Tumeur maligne de	N39.3: Incontinence	Z52.4: Donneur de rein	N30.0: Cystite aiguë	S30.2: Contusion des
	la prostate (Prostate can-	urinaire	d'effort	(Kidney donor)	(Acute cystitis)	organes génitaux ex-
	cer)		(Stress	urinary					ternes (Congestion of
			incontinence)					the external genitalia )
	prostatectomie 5	incontinent		prelèvement (sample)	pontage (bypass)	observer (watch)
	radical		bandelette (band)	faveur (favour)	arterielle (arterial)	hospitalisé(inpatient)
	laparotomie (laparotomy) effort (stress)	manuel (hand-operated) Ditropan		med (medical)
	score		trans-obturatrice 5	artère (artery)	post-mictionnel 5	externe (lateral)
	lobe (lobus)		urodynamique 5	assisté (assisted)	Kardegic		motif (cause)
	mini		toux (cough)	DFG (GFR)	diurne (diurnal)	chir (surgery)
	capsulaire (capsular)	bud (urodynam. test) laparoscopique 5	surtout (especially)	ATCD (med. history)
	élevé (high)		rééducation 5	contre (against)	fonctionnel(functional) clinique-uro 5
	extension		urgenturie 5		apparenté (related)	impériosité (urge)	fam (familial)
	curatif (curative)	position		min (minute)	hypertension 5	suggérer (suggest)
	#documents=356	#documents=47	#documents=39	#documents=16	#documents=18
	F1-score=0.68		F1-score=0.83	F1-score=0.96	F1-score=0.00	F1-score=0.22
	C81.9: Lymphome de	C88.0: Macroglob-	D46.2:	Anémie	C83.0:	Lymphome	E85.3:	Amylose
	Hodgkin	(Hodgkin's	ulinmie de Walden-	réfractaire avec excès	à petites cellules B	généralisée secondaire
	lymphoma)		ström	(Walden-	de blastes (refractory	(small B-cell lym-	(secondary generalized
			ström's macroglobu-	anemia with excess of	phoma)		amyloidosis)
			linemia)		blasts)			
	Hodgkin		Waldenström	senior		critère (criterion)	amylose
	ABVD		IgM		multirésistant(resistant) participer(participate) troponine (troponin)
	IVOX		lymphoplasmocytaire 10 remise (redelivery)	accepter (accept)	formule (formula)
	classique (classical)	macroglobulinémie 5 blaste (blast)	consentement(consent) proBNP
	panoramique(panoramic) monoclonal		AREB (RAEB)	aborder (approach)	VCD
	escalade (escalation)	béta (beta)		leuco		attendu (expected)	évolution (evolution)
	étoposide (etoposide)	créatininémie 5	Vidaza		logistique (logistics)	dosage (dose)
	BEAM		sup (increased)	myélodysplasique 5	version		arriver (reach)
	SPI (IPS)		stabilité (stability)	BHC		objectif (goal)	immunochimique 5
	nodulaire (nodular)	cérébral (cerebral)	mgX (m.g.)	contrainte(constraint) physique (physical)
	#documents=168	#documents=72	#documents=37	#documents=38	#documents=85
	F1-score=0.75		F1-score=0.74	F1-score=0.78	F1-score=0.38	F1-score=0.34
	157.0: Malignant neo-	278.01: Morbid obe-	430:	Subarachnoid	038.0: Streptococcal	998.12: Hematoma co-
	plasm of pancreas	sity		hemorrhage	septicemia		mplicating a procedure
	duct		morbid		coil		vegetation		FFP
	painless		roxicet		vasospasm	biliary		tube
	biliary		elixir		nimodipine	streptococcus	yellow
	bile		roux-en-y		fluent		surveillance		soften
	whipple		crush		downgoing	endocardial		layer
	CBD		laparoscopic	cistern		enterococcus	fiber
	ERCP		actigall		angio		ductal		etc
	endoscopic		bloated		pronation		cellular		colitis
	duodenum		pill		sah		travel		everyday
	cholangiopancreatographyprogram		EOM		medial		sleep
	#documents=13	#documents=13	#documents=89	#documents=26	#documents=9
	F1-score=1.00		F1-score=1.00	F1-score=0.69	F1-score=0.00	F1-score=0.00

http://www.who.int/classifications/icd/

https://www.nlm.nih.gov/research/umls/

Source codes from: http://www.cs.cmu.edu/∼chongw/slda/ (sLDA) and https://github.com/myleott/JGibbLabeledLDA/ (labeledLDA).

http://hopital-saintlouis.aphp.fr/

Term translation: clinique-uro: clinical-urological, créatininémie: creatininemia, immunochimique: immunochemical, laparoscopique: laparoscopic, lymphoplasmocytaire: lymphoplasmocytic, macroglobulinémie: macroglobulinemia, myélodysplasique: myelodysplastic, post-mictionnel: post-void, prostatectomie: prostatectomy, rééducation: reeducation, trans-obturatrice: transobturator, urodynamique: urodynamics, urgenterie: urge incontinence.