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NIP, AND NTP2 DIVISION RINGS OF PRIME CHARACTERISTIC

CÉDRIC MILLIET

Abstract. Combining a characterisation by Bélair, Kaplan, Scanlon and Wagner of certain NIP
valued fields of characteristic p with Dickson’s construction of cyclic algebras, we provide examples
of noncommutative NIP division ring of characteristic p and show that an NIP division ring of
characteristic p has finite dimension over its centre, in the spirit of Kaplan and Scanlon’s proof that
infinite NIP fields have no Artin-Schreier extension. The result extends to NTP2 division rings of
characteristic p, using Chernikov, Kaplan and Simon’s [13]. We also highlight consequences of our
proofs that concern NIP or simple difference fields.

1. Introduction

Macintyre proved any ω-stable field to be either finite or algebraically closed [35, Theorem 1].

This was generalised by Cherlin and Shelah to superstable fields [10, Theorem 1]. It follows that a

superstable division ring is a field [9]. It was observed around 1991 that a division ring interpretable

in a bounded PAC field K (e.g. a pseudo-finite field) is definably isomorphic to a finite field extension

of K, and in particular commutative [27, Theorem 9.1]. Later on, it was shown in [44, Theorem 5.1]

that any supersimple division ring is a field. In another direction, Pillay proved that an infinite field

definable in an o-minimal structure is either real-closed or algebraically closed [42, Theorem 3.9],

and such a field has characteristic 0. It is shown in [40, Theorem 1.1] that a division ring definable

in an o-minimal expansion of a real closed field R is definably isomorphic to either R, R
√

−1 or

the quaternions over R. This was generalised to division rings definable in any o-minimal structure

in [41, Theorem 4.1]. A context that includes (almost) all the abovementioned structures is the

one of superrosy structure, endowed with an abstract notion of ordinal valued rank on definable

sets, preserved under definable bijections and satisfying Lascar’s inequalities. It is shown in [24,

Theorem 2.9] that a superrosy division ring has finite dimension over its centre.

More can be said in characteristic p, even in the absence of a well-behaved global rank. It

is known that a stable division ring of characteristic p is a finite dimensional algebra over its

centre [36, Theorem 2.1]. Whereas the only known stable division rings are commutative fields (the

conjecture that stable fields are separably closed implies that stable division rings of characteristic p

are commutative), Hamilton’s Quaternions over the real or 2-adic numbers are noncommutative

examples of NIP division rings of characteristic 0. The paper exhibits noncommutative examples

of NIP division rings of characteristic p (Theorem 2.1), provides another simple proof that a stable

division ring of characteristic p has finite dimension over its centre (Fact 5.3) and shows that the

same conclusion holds for an NIP division ring of characteristic p (Theorem 6.1).

The proof of Theorem 6.1 closely follows ideas of Kaplan and Scanlon’s [29, Theorem 4.3] stating

that an infinite NIP field of characteristic p does not have any proper Artin-Schreier extension. Our

guiding line is the reminiscence from superstability that a well-behaved definable group morphism
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with a “small” kernel should have a “large” image. To achieve that, a Zariski dimension theory

is developed in [37] for subgroups of (Dn, +) defined over a division ring D by linear equations

involving a ring morphism σ. This dimension on a class of quantifier-free definable sets replaces the

absence of a well-behaved model-theoretic rank. Sets of dimension zero include finite sets, but also

Fix(σ) and right affine spaces of finite Fix(σ)-dimension.

Eventually, Using Chernikov, Kaplan and Simon’s descending chain condition for NTP2 groups

[13, Theorem 2.4], as well as the same authors’ generalisation of the definable case of Wagner’s [29,

Theorem 3.2], stating that an NTP2 field has only finitely many proper Artin-Schreier extensions

[13, Theorem 3.1], we extend Theorem 6.1 to the case of NTP2 division rings of characteristic p

(Theorem 7.4), which has the unexpected consequence that the centre of an infinite NTP2 division

ring is infinite. Examples of strictly NTP2 fields of characteristic 0 are given in [13], [12] and [38],

and corresponding examples in characteristic p seem to be unknown.

We begin by recalling the definition of an NIP structure. Given a natural number k ∈ N

and a structure (M, L), an L-formula φ(x, ȳ) has the k-independence property if there are tuples

(a1, . . . , ak) and
(

b̄J : J ⊂ {1, . . . , k}
)

in M such that for any i < k + 1 and J ⊂ {1, . . . , k},

(

M |= φ(ai, b̄J)
)

⇐⇒ i ∈ J.

Definition 1.1 (Shelah). A structure (M, L) is NIP (a shorthand for “not the independence prop-

erty”) if for every L-formula φ(x, ȳ), there is a natural number k ∈ N such that φ does not have

the k-independence property.

Groups which are uniformly definable in an NIP structure satisfy the following Noetherian like

condition (see [46, Lemme 1.3] or [52, Theorem 1.0.5] for a proof), which seems to have appeared

following [2, p. 270].

Fact 1.2 (NIP descending chain condition). In an NIP group, to any formula φ(x, ȳ) is associated

a natural number n ∈ N such that the intersection of any finite family {Gi : i < k} of subgroups

defined respectively by the formulas {φ(x, āi) : i < k} be the intersection of at most n among them.

2. Examples of NIP division rings of prime characteristic

Theorem 2.1. There are noncommutative NIP division rings of every characteristic.

Proof. We recall Dickson’s construction of cyclic algebras as explicated in [33, p. 229]. Let K/F be

a Galois extension with cyclic Galois group Gal(K/F ) generated by an automorphism σ of order

s = dimF K. Fixing a nonzero element α ∈ F and a symbol x, we let

D = K · 1 ⊕ K · x ⊕ · · · ⊕ K · xs−1,

and multiply elements in D by using the distributive law, and the two rules

xs = α, x · a = σ(a)x (for any a ∈ K).

As F ⊂ Z(D), the ring D is an F -algebra, of dimension s2. This algebra is denoted by (K/F, σ, α),

and is called the cyclic algebra associated with (K/F, σ) and α ∈ F \ {0}. Let NK/F : K× → F ×

denote the norm map of the extension K/F defined by

NK/F (a) =
∏

τ∈Gal(K/F )

τ(a).

In general, D = (K/F, σ, α) need not be a division algebra, but one has:
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Fact 2.2 ([33, Corollary 14.8]). Suppose s is a prime number. Then D = (K/F, σ, α) is a division

algebra if and only if α /∈ NK/F (K×).

Now let p be a prime number different from 2, let Γ be the ordered additive subgroup
〈

1/pi : i ∈ N
〉

of R, and consider an NIP perfect field k of characteristic p having an element α ∈ k with no square

root in k. For instance, using the following Fact 2.3 from [29, Theorem 5.9] (and from [3, Corollaire

7.5]), one may consider for k the field Falg
p ((xΓ)) of formal Hahn series

∑

aγxγ having a well ordered

support in Γ and coefficients aγ ∈ Falg
p and take α = x.

Fact 2.3 (Bélair, Kaplan, Scanlon and Wagner). Let (F, v) be an algebraically maximal valued field

of characteristic p whose residue field k is perfect. Then (F, v) is NIP if and only if k is NIP and

infinite and Γ is p-divisible.

With its natural valuation v mapping a series to the minimum of it support, the valued field

(k, v) =
(

Falg
p ((xΓ)), v

)

is maximal, i.e. has no proper valued field extension having both same

residue field and same valuation group (see [32] or [20, Exercise 3.5.6]). Its residue field Falg
p is

algebraically closed, hence NIP. Its valuation group Γ is p-divisible, so the pure field k is NIP by

Fact 2.3, and α = x does not have a square root in k. Note that k is perfect since a series
∑

aγxγ

has a pth-root
∑

a1/p
γ xγ/p. Let us consider the field F = k((tΓ)). Again, by Fact 2.3, the pure

field F is NIP. The extension F (
√

t)/F has a cyclic Galois group generated by the automorphism

σ switching
√

t and −
√

t. The cyclic algebra D = (F (
√

t)/F, σ, α) is an F -algebra of centre F

and dimension 4, definable in F (as σ is definable in F (
√

t)), so the ring D does not have the

independence property. Since the norm map NF (
√

t)/F is defined by

NF (
√

t)/F (a + b
√

t) = (a + b
√

t)(a − b
√

t) = a2 − b2t,

we claim that α does not belong to NF (
√

t)/F (F (
√

t)×). Assume for a contradiction that a2 −b2t = α

holds for some (a, b) in F . Let aγtγ and bδtδ be the monomials of smallest valuation appearing in

a and b respectively (where aγ and bδ are elements of k, possibly zero if a or b are zero). The

monomials of smallest valuation appearing in a2 and b2t are a2
γt2γ and b2

δt2δ+1 respectively. Since

2Γ and 2Γ+1 are disjoint, one has either a2
γt2γ = α, or −b2

δt2δ+1 = α. The first case leads to a2
γ = α,

a contradiction since α was chosen with no square root in k, and the second case to 2δ + 1 = 0, a

contradiction as well. We conclude by Fact 2.2 that D is an NIP division ring.

Note that what is needed for the present purpose is:

• that F be NIP, so that D = (K/F, σ, α) be NIP as well,

• that α belong to F × \ NK/F (K×), so that D be a division ring.

If p = 2, we let Γ = 〈1/2i : i ∈ N〉 and chose similarly a perfect NIP field k of characteristic 2 having

an element α ∈ k with no third-root in k, and having a primitive third-root ω of 1. For instance,

we may take k = F
alg
2 ((xΓ)) and α = x. We then consider the NIP field F = k((tΓ)) and do a

similar construction as above with the cyclic F -algebra D = (F ( 3
√

t)/F, σ, α) of dimension 9 where

σ ∈ Gal(F ( 3
√

t/F )) is the automorphism mapping a + b 3
√

t + c 3
√

t
2

to a + ωb 3
√

t + ω2c 3
√

t
2
. Using the

identity 1 + ω + ω2 = 0, one shows that the norm map NF ( 3
√

t)/F is defined by

NF ( 3
√

t)/F (a + b
3
√

t + c
3
√

t
2
) = (a + b

3
√

t + c
3
√

t
2
)(a + ωb

3
√

t + ω2c
3
√

t
2
)(a + ω2b

3
√

t + ωc
3
√

t
2
)

= a3 + b3t + c3t2 + 3abc(ω2t + ωt)

= a3 + b3t + c3t2 − abct.
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We claim that α does not belong to NF ( 3
√

t)/F (F ( 3
√

t)×). Assume for a contradiction that a3 +

b3t + c3t2 − abct = α holds for some a, b, c in F , and let aγtγ , bδtδ and cεtε be the monomials

of smallest valuation appearing in a, b and c respectively (where aγ , bδ and cε are elements of k,

possibly zero). The monomials of smallest valuation appearing in a3, b3t, c3t2 and abct are a3
γt3γ ,

b3
δt3δ+1, c3

εt3ε+2 and aγbδcεtγ+δ+ε+1 respectively. Since 3Γ, 3Γ + 1 and 3Γ + 2 are pairwise disjoint,

and since γ + δ + ε + 1 is the arithmetic mean of 3γ, 3δ + 1 and 3ε + 2, one has

min{3γ, 3δ + 1, 3ε + 2} < γ + δ + ε + 1.

It follows that either a3
γt3γ , or b3

δt3δ+1 or c3
εt3ε+2 equals α, but either case leads to a contradiction. �

The pure division rings constructed above are not stable since their centres are Henselian (see

[18, Corollary 18.4.2]) and have a nontrivial definable valuation (see for example [31, Theorem 5.2]

or [30, Theorem 3.10]).

3. Preliminaries on NIP division rings of prime characteristic

3.1. NIP Fields. It is believed that an NIP field is either finite, separably closed, real closed

or admits a nontrivial henselian valuation (this conjecture is attributed in [22] to S. Shelah). A

characterisation of the subclass of dp-minimal fields is given in [28], which also confirms Shelah’s

conjecture for the particular case of dp-minimal fields. According to [28], the main Theorem “al-

most says that all infinite dp-minimal fields are elementary equivalent to ones of the form k((tΓ))

where k is Falg
p or a characteristic zero local field, and Γ satisfies some divisibility conditions. The

one exceptional case is the mixed characteristic case, which includes fields such as the spherical

completion of Zun
p (p1/p∞

).” In addition to the Baldwin-Saxl chain condition 1.2 for intersections of

uniformly definable subgroups, we shall only use the following result from [29, Theorem 4.3]. Let

us recall that if F is a field of characteristic p, a proper field extension K/F is called Artin-Schreier

if K = F (a) where a is a root of xp − x + b for some b ∈ F .

Fact 3.1 (Kaplan and Scanlon). An infinite NIP field has no Artin-Schreier extension.

The proof of Fact 3.1 strongly relies on the fact that a connected algebraic subgroup of (K, +)n of

Zariski dimension 1 is isomorphic to (K, +) when K is a perfect field. As an immediate Corollary of

Fact 3.1, using the result of Duret [17, Théorème 6.4] on weakly algebraically closed non separably

closed fields (see [29, Corollary 4.5]),

Fact 3.2 (Kaplan and Scanlon). An infinite NIP field of characteristic p contains Falg
p .

3.2. Metro equation in NIP division rings of prime characteristic. Let us first remark that

in a division ring having finite dimension over its centre and characteristic 0, the equation

xy − yx = 1

has no solution. For putting γx(y) = xy − yx, a simple induction shows that γx(y) = 1 implies

γx(yn) = nyn−1 for every n ∈ N, forcing the chain ker γx ⊂ · · · ⊂ ker γn
x of vector-spaces to be

properly ascending and contradicting the finiteness of the dimension. The same conclusion fails in

characteristic p, and P. Cohn provides the following general condition in [14, p. 68] (also reported

by Lam [34, p. 239]) for an arbitrary division ring D.

Fact 3.3 (Cohn). Let a ∈ D be algebraic over Z(D). Then ax − xa = 1 has a solution if and only

if a is not separable over Z(D).
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The equation ax − xa = 1 arose in a conversation between P. Cohn and S. Amitsur on the Paris

Metro on the 28th of June 1972 according to [15, p. 418], and is referred to as the metro-equation

in [14]. Our first goal is to show that the metro equation has no solution in an NIP division ring of

characteristic p. For that purpose, we recall Herstein’s Lemma.

Fact 3.4 (Herstein [25, Lemma 3.1.1]). Let a ∈ D× \ Z(D) have finite multiplicative order. There

is b ∈ D× and a natural number n ∈ N such that

b−1ab = an 6= a.

It is pointed out in [34, Exercise 16.17] that Fact 3.4 holds in every characteristic. In characte-

ristic p, the element b in Fact 3.4 has infinite order, for otherwise a and b would generate a finite

(noncommutative) integral domain, contradicting Wedderburn’s Little Theorem. It follows that in

an infinite division ring, any element a has an infinite centraliser, which we write C(a). For if a

has infinite order, then C(a) contains the infinite cyclic group 〈a〉, whereas if a has finite order q,

Herstein’s Lemma yields a b with b−1ab = an where a and an have same order q, so that n and q are

coprime. Writing ϕ for Euler’s totient function, Euler’s Theorem provides that C(a) contains the

infinite
〈

bϕ(q)
〉

(see also [33, Theorem 13.10]). One may use instead Brauer’s [15, Corollary 3.3.9]

which implies that any algebraic element over Z(D) has a “large” centraliser.

Fact 3.5 (Brauer [4]). For any a ∈ D, one has [D : C(a)]left = [Z(D)(a) : Z(D)].

By symmetry, Brauer’s result implies that for any a, the division ring D has equal right and left

C(a)-dimension, which we may write [D : C(a)] without ambiguity.

Theorem 3.6. The centre of an infinite NIP division ring is infinite.

Proof. Let D be an infinite NIP division ring of characteristic p. If all elements have finite order, by

Fact 3.4, the ring D is commutative, so we may assume that there is some c ∈ D× having infinite

order. The field Z (C(c)) is infinite. By Fact 3.2, it contains a copy of Falg
p . We have shown that

any infinite NIP division ring contains a copy of Falg
p . We claim that this copy is unique and lies

in the centre of Z(D). For that purpose, since any centraliser C(a) contains a copy Fa of Falg
p , it

suffices to fix a natural number n ∈ N and show that any two roots (ω1, ω2) of xpn − x commute.

This will provide that Fa = Fb for any (a, b) in D. Note that one has [D : C(ωi)] < pn by Fact 3.5.

It follows that the division ring C(ω1) ∩ C(ω2) is infinite, and NIP, so contains a copy Fn of Fpn .

But one has Fn(ω1) = Fn = Fn(ω2) since the polynomial xpn − x has already pn roots in Fn, so ω1

and ω2 commute. This shows that Z(D) contains Falg
p . �

Corollary 3.7 (metro equation). An NIP division ring of characteristic p satisfies xy − yx 6= 1.

Proof. We assume that the division ring is infinite, and first claim C(ap − a) ⊂ C(a) for every a.

The field Z (C(ap − a)) (a) is an Artin-Schreier extension of Z (C(ap − a)), and the later is infinite

by Theorem 3.6. By Fact 3.1, one has a ∈ Z (C(ap − a)) and thus C(ap − a) ⊂ C(a). Now, assume

for a contradiction that b−1ab = a + 1 holds. We deduce

b−1(ap − a)b = (a + 1)p − (a + 1) = ap − a,

a contradiction with the above claim. �

Corollary 3.8. For every element a in an NIP division ring of characteristic p, one has

C(ap) = C(a).

Proof. The element a is algebraic over the field Z(C(ap)). Since ax − xa = 1 has no solution in

C(ap), by Fact 3.3, a is separable over Z(C(ap)) so a ∈ Z(C(ap)) and C(ap) ⊂ C(a). �
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4. Linear preliminaries on difference division rings

Let (D, σ) be a division ring equipped with a ring morphism σ. We call the pair (D, σ) a

difference division ring, as in the commutative case [16, p. 57]. We write Fix(σ) for the division

subring defined by σ(x) = x and we make the additional assumptions:

• that the dimension [D : Fix(σ)]right is infinite,

• that σ is surjective on D.

In an attempt to make this paper self-contained, we gather in this Section the needed results from

[37] concerning the structure of those subsets of Dn that are defined by linear equations involving σ.

We state them in all generality, although they will be (mainly) applied in the case where σ = σa is

a conjugation map by some transcendental element a over Z(D).

4.1. 1-Twists. We define the set of 1-twists

D[σ] =

{

n
∑

i=0

riσ
i : r̄ ∈ Dn+1, n ∈ N

}

,

a left D-vector space with basis
{

σi : i ∈ N
}

. Equipped with the sum

n
∑

i=0

riσ
i +

n
∑

j=0

sjσ
j =

n
∑

k=0

(rk + sk)σk

and the obvious composition law
(

n
∑

i=0

riσ
i

)





n
∑

j=0

sjσj



 =
n
∑

i=0

n
∑

j=0

riσ
i(sj)σi+j ,

D[σ] is a unitary (we also write id for σ0) associative domain. Generalising Ore’s [39, Theorem 1]

that the ring of p-polynomials K[xp] form a Euclidean domain when K is a perfect field of charac-

teristic p, the domain D[σ] is also Euclidean with the natural degree function, from which follows:

Fact 4.1 (factorisation, [37, Lemma 3.2]). Let ρ be a 1-twist of degree n+1 having a nonzero root a.

There is a 1-twist δ of degree n such that ρ = δ
(

σ − σ(a)a−1id
)

.

Following [16, p. 58], we call a difference division ring (E, τ) such that D ⊂ E and τ : E → E

extends σ : D → D, a difference extension of (D, σ). By analogy with the definition in [1, p. 215]

given for differential fields, although another terminology also exists for difference fields (see e.g.

[48, Lemma 9.1 p. 17] or [45, Definition 4.3 p. 15]), we say that the difference division ring (D, σ)

is linearly surjective if for every nonzero 1-twist δ, the equation δ(x) = 1 has a solution in D.

Fact 4.2 ([37, Theorem 6.3]). Any (D, σ) has a linearly surjective difference extension.

4.2. σ-Linear sets, σ-morphisms. Let D[σ, n] denote the left D-vector space spanned by
{

σi1(x1), . . . , σin(xn) : (i1, . . . , in) ∈ Nn
}

.

D[σ, n] is a left D[σ]-module. We call its elements n-twists, and the zero set of a family S of n-twists

a σ-linear set, which we write

V(S) = {(x1, . . . , xn) ∈ Dn : δ(x1, . . . , xn) = 0 for all δ ∈ S}.

A map between two σ-linear sets is a σ-morphism if its coordinate maps are n-twists. A σ-morphism

is a σ-isomorphism if bijective and if its inverse is a σ-morphism.
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4.3. Zariski dimension. Given a subset V ⊂ Dn, we write

I(V ) = {δ ∈ D[σ, n] : δ(x1, . . . , xn) = 0 for all (x1, . . . , xn) ∈ V }.

This is a D[σ]-submodule of D[σ, n]. We define the Zariski dimension of V by

dim V = dimD[σ] D[σ, n] − dimD[σ] I(V ),

where dimD[σ] denotes the cardinal of any maximal D[σ]-independent set (well-defined by [37,

Theorem 1.3] and [37, Lemma 3.1]). For any submodule I ⊂ D[σ, n], we define its closure cl(I) by

cl(I) = {δ ∈ D[σ, n] : ∃γ ∈ D[σ] \ {0}, γδ ∈ I} .

We say that a σ-linear set V is radical if cl(I(V )) = I(V ). Fact 4.3 below is [37, Theorem 6.6].

Fact 4.3. Given a σ-linear set V and a twist δ, one has dim (V ∩ V(δ)) > dim V − 1.

Fact 4.4 and Fact 4.5 are immediate consequences of [37, Lemma 5.9].

Fact 4.4. A σ-linear set V has a unique radical component V 0 ⊂ V with dim V = dim V 0.

Fact 4.5. A radical σ-linear set of Zariski dimension d is σ-isomorphic to Dd.

Fact 4.6 ([37, Lemma 5.7]). Let U and V be σ-linear sets. Then dim (U × V ) = dim U + dim V.

Fact 4.7 is a consequence of [37, Theorem 5.8] and [37, Theorem 6.4.2].

Fact 4.7 (Rank-Nullity). Let U be irreducible σ-linear and f : U → Dn a σ-morphism. If (D, σ) is

linearly surjective, then Imf is σ-linear, and dim U = dim Imf + dim ker f.

4.4. A particular radical group. Fact 4.8 bellow is inspired by [29, Lemma 2.8] and its improved

version [23, Lemme 5.3]. It plays a crucial role in [29] and [23] in the particular case when the pair

(D, σ) is an algebraically closed field (K, Frob) of characteristic p equipped with the Frobenius. In

that particular case, if
{

b−1
1 , . . . , b−1

n

}

are Fp-linearly independent, [23, Lemme 5.3] states that, Gb̄

is connected as an algebraic group (i.e. has no subgroup of finite index defined by polynomials),

whereas Fact 4.8 only states that Gb̄ has no subgroup of finite index defined by p-polynomials.

But one recovers the conclusion of [23, Lemme 5.3] knowing that Gb̄ is σ-isomorphic to (K, +) by

Fact 4.5, and (K, +) is connected, so that Gb̄ is connected as well. The proof of Fact 4.8 uses

Fact 4.2 and [37, Theorem 6.4] stating that σ-linear sets project onto σ-linear sets over a linearly

surjective division ring.

Fact 4.8 (see [37, Lemma 6.7]). Given a natural number n > 1 and b̄ = (b1, . . . , bn) in D×, we

consider the σ-linear set defined by

Gb̄ = {(x1, . . . , xn) ∈ Dn : b1(σx1 − x1) = bi(σxi − xi) for all 1 6 i 6 n} .

Then Gb̄ is radical if and only if
{

b−1
1 , . . . , b−1

n

}

are left Fix(σ)-linearly independent.

5. A new look at the stable case

5.1. Stable division rings of prime characteristic. We begin by proposing an alternative proof

of the stable case, that does not use the fact that iterates of σa − id are uniformly definable in

characteristic p (where σa is the conjugation map by a). The part of the argument that mimics

Scanlon’s result [47, Proposition 1] has the advantage to be valid in any characteristic. We recall

the definition of a stable structure. Given a natural number k ∈ N and a structure (M, L), an
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L-formula φ(x̄, ȳ) with |x̄| = |ȳ| = ℓ has the k-order property if there are ℓ-tuples ā1, . . . , āk−1 in M

such that for any i, j < k,

(M |= φ(āi, āj)) ⇐⇒ i < j.

Definition 5.1 (Shelah). A structure (M, L) is stable if for every L-formula φ(x̄, ȳ), there is a

natural number k ∈ N such that φ(x̄, ȳ) does not have the k-order property.

The above is adapted from [11, Definition 2.9]. It is not the original definition [51, Definition 2.2

p. 9], but is equivalent to it by [49, Theorem 2.13 p. 304] and by the Compactness Theorem. The

following chain condition can be found in [46, Proposition 1.4]. Note the similarity between Fact 1.2

and Fact 5.2.

Fact 5.2 (Stable descending chain condition). In a stable group, to any formula φ(x, ȳ) is associated

a natural number n ∈ N such that the intersection of any family {Gi : i ∈ I} of subgroups defined

respectively by the formulas {φ(x, āi) : i ∈ I} be the intersection of at most n among them.

Fact 5.3 ([36, Theorem 2.1]). A stable division ring of characteristic p has finite dimension over

its centre.

Proof. It suffices to show that for every such division ring D and a ∈ D, the dimension [D : C(a)]

is finite (by the stable descending chain condition 5.2 applied to centralisers, this will imply that

D has finite dimension over a commutative subfield, hence over its centre). Let us assume for a

contradiction that [D : C(a)] is infinite for some a ∈ D. Let σa be the conjugation map by a and

γ = σa − id. We shall show that γ : D → D is onto, a contradiction with Corollary 3.7. We adapt

the proof of [47, Proposition 1]. By the stable descending chain condition 5.2, there are a natural

number n ∈ N and an n-tuple b̄ = (b1, . . . , bn) of elements in D× such that

I =
⋂

b∈D×

b · γ(D) =
⋂

b∈b̄

b · γ(D).

Let Gb̄ the σa-linear set defined by

Gb̄ = {(x1, . . . , xn) ∈ Dn : b1 · γ(x1) = bi · γ(xi) for all 1 6 i 6 n} .

This is an intersection of n − 1 many σa-hypersurfaces of Dn, so dim G(b1,...,bn) > 1 by Fact 4.3. By

Fact 4.4 and Fact 4.5, the group Gb̄ has infinite right Fix(σ)-dimension, so I contains a nonzero

element. Since I is a left ideal of D, one must have I = D, hence γ is onto, as desired. �

Remark 5.4. Separably closed fields are currently the only known examples of infinite stable fields

[54, Theorem 3]. From the conjecture [5, p. 1] every infinite stable field is separably closed, follows

every stable division ring of characteristic p is a field. For if D is a stable division ring of char-

acteristic p that is not a field, then D has finite dimension over its centre by Fact 5.3. Pick some

a ∈ D \ Z(D). By Corollary 3.7, the equation ax − xa = 1 has no solution, so that the extension

Z(D)(a)/Z(D) is separable by Fact 3.3. We do not know whether the reverse implication is true.

Remark 5.5. Bounded PAC fields are currently the only known examples of infinite simple fields

[6, Corollary 4.8], and from the conjecture every infinite simple field is PAC, follows every simple

division ring of characteristic p is a field, since on the one hand, such a division ring must have finite

dimension over its centre by [36, Theorem 3.5], and on the other hand its centre has a trivial Brauer

group by [21, Theorem 11.6.4]. Also, since the iterated kernels of σa − id are uniformly definable

in characteristic p, the map σa − id is not onto in an NSOP division ring of characteristic p. In the

proof of Fact 5.3, the stable chain condition is applied to uniformly definable vector spaces over an

infinite division ring, so the argument remains valid for a simple division ring of characteristic p,

using the simple descending chain condition [53, Theorem 4.2.12].
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5.2. Stable and simple difference fields. Let us point out consequences that concern stable

or simple difference fields. It is noticed in [12, Lemma 2.11] that any model of ACFA is linearly

surjective. Recall that ACFA is supersimple [8] and that a supersimple difference field is inversive

(follows from [43] or [44, Fact 4.2.(ii)]). With a proof similar as the one of Fact 5.3, and arguing

as in the proof of [29, Theorem 3.2], one can withdraw the uniform definability assumption in [36,

Proposition 3.6]:

Theorem 5.6. If (K, σ) is a difference field with a simple theory and k =
⋂

σn(K), then

• either [K : Fix(σ)] is finite,

• or Fix(σ) is finite, and the index |K/δ(K)| is finite for every δ ∈ k[σ] of valuation zero,

• or every δ ∈ k[σ] of valuation zero is surjective.

The first case occurs when K/F is Galois over a simple field F , and σ a nontrivial element of

Gal(K/F ). The second case occurs e.g. when K is a pseudo-finite field of characteristic p with

the Frobenius (by [27, Lemma 4.5] or [7, Proposition 4.5]), in which case the index |K/δ(K)| is

bounded by | ker δ| by Łos Theorem, and maybe greater than one, e.g. if δ is the Artin-Schreier

map. The assumption on the valuation cannot be dropped as witnessed by an unperfect separably

closed field. Since an infinite stable field has no proper definable additive subgroup of finite index,

from Theorem 5.6, one recovers Scanlon’s [47, Proposition 1]. Note that if (K, σ) is inversive and

Fix(σ) infinite in Theorem 5.6, then (K, σ) is linearly surjective.

Proof of Theorem 5.6. We may assume that K is infinite, ℵ0-saturated, that [K : Fix(σ)] is infi-

nite and that σ is injective. By the Compactness Theorem and saturation hypothesis, there is a

transcendental element x over Fix(σ). For all n ∈ N, the element σn(x) is also transcendental over

Fix(σ). By the Compactness Theorem, there is an element in k that is transcendental over Fix(σ),

so the dimension [k : k ∩ Fix(σ)] is infinite. Let δ ∈ k[σ] be of valuation zero. We shall show that

δ(K) has finite additive index in K. Let G = {a · δ(K) : a ∈ k×}, a k×-invariant family. By [29,

Fact 3.1], there is a k×-invariant additive subgroup N 6 K containing a finite intersection of groups

in G, say
⋂

a∈ā a · δ(K) for some finite n-tuple ā = (a1, . . . , an) of elements in k×, such that the

additive index |N/N ∩ G| is finite for all G ∈ G. Define the σ-linear group Gā(k) by

Gā(k) = {(x1, . . . , xn) ∈ kn : a1 · δ(x1) = ai · δ(xi) for all ai ∈ ā} .

The difference field (k, σ) is inversive and [k : k ∩ Fix(σ)] infinite. As Gā(k) is the intersection of

n − 1 many σ-hypersurfaces, it has Zariski dimension at least 1 by Fact 4.3, and in fact precisely 1

inductively on n using Fact 4.7. The group G0
ā(k) is σ-isomorphic to (k, +) by Facts 4.4 and 4.5.

So Gā(k) has infinite k ∩ Fix(σ)-dimension, and
⋂

a∈ā a · δ(k) is nonzero, so N ∩ k is nonzero as well.

But N ∩ k is k×-invariant, hence an ideal of k, and must equal k, so that k/k ∩ δ(K) embeds in

N/N ∩ δ(K). Now putting δ = anσn + · · · + a0id with (a0, . . . , an) in k and a0 6= 0, one has for all

a ∈ K the equality

a = a−1
0 anσn(a) + · · · + a−1

0 a1σ(a) + δ(−a), whence K = σ(K) + δ(K).

We show inductively on n ∈ N that K = σn(K) + δ(K) holds for every δ ∈ k[σ] having valuation

zero. If K = σn(K) + δ(K) holds for ever such δ, let δ = anσn + · · · + a0id in k[σ] with ai = σi(bi)

and bi ∈ k (obtained by the Compactness Theorem). By induction hypothesis applied to

γ = σn−1(bn)σn + · · · + b1σ + σ−1(a0)id,

one has K = σn(K) + γ(K), whence σ(K) = σn+1(K) + σγ(K). But σγ = δσ, so

K = σ(K) + δ(K) = σn+1(K) + δσ(K) + δ(K) = σn+1(K) + δ(K).
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By the Compactness Theorem, one has K = k + δ(K), and thus

|K/δ(K)| = |k/k ∩ δ(K)| 6 |N/N ∩ δ(K)|,

and |K/δ(K)| is finite, as claimed. �

It is shown in [26, Proposition 3], using [10, Theorem 1], that if (K, σ) is a superstable difference

field, then either σ is trivial, or Fix(σ) is finite. As a consequence of Theorem 5.6, one has:

Corollary 5.7. If (K, σ) is a stable difference field of characteristic p, then either [K : Fix(σ)] or

Fix(σ) is finite.

Proof. If both [K : Fix(σ)] and Fix(σ) are infinite, by Theorem 5.6, there is x ∈ K such that

σ(x) − x = 1, from which follows σ(xp − x) = xp − x. But Fix(σ) is Artin-Schreier closed, so

x ∈ Fix(σ), a contradiction. �

The conclusion of Corollary 5.7 fails for a simple field of characteristic p, as witnessed by ACFA.

The analogous statement valid in all characteristics seems to be the following.

Proposition 5.8. Let (K, σ, τ) be a stable field structure with commuting ring morphisms τ and σ,

such that Fix(τ) ⊂ Fix(σ). Then either [K : Fix(σ)] or [Fix(σ) : Fix(τ)] is finite.

Proof. Assume for a contradiction that both [K : Fix(σ)] and [Fix(σ) : Fix(τ)] are infinite. Then, by

Theorem 5.6 applied to (K, σ), there is an x such that σx − x = 1, from which follows σ(τx − x) =

τx − x. So τx − x belongs to Fix(σ); but (Fix(σ), τ) is a stable difference field with infinite

[Fix(σ) : Fix(τ)], so by Theorem 5.6, there is a ∈ Fix(σ) with τx − x = τa − a. Putting y = x − a,

one has σy − y = 1, and also τy = y, and so σy = y by assumption, a contradiction. �

6. The NIP case

Theorem 6.1. An NIP division ring of characteristic p has finite dimension over its centre.

Proof. It suffices to show that for every such division ring D and a ∈ D, the dimension [D : C(a)] is

finite (for in that case, the set {[D : C(a)] : a ∈ D} is bounded by the Compactness Theorem, hence

any descending chain of centralisers must stabilise by the NIP chain condition 1.2). Let us assume

for a contradiction that [D : C(a)] is infinite for some a ∈ D. Let σa be the conjugation map by a

and γ = σa − id. We shall show that γ : D → D is onto, a contradiction with Corollary 3.7. We

adapt the proof of [29, Theorem 4.3]. For every natural number m > 1 and infinite tuple b̄ ∈ DN,

let us consider the σa-linear additive subgroup G(b1,...,bm) of Dm defined by

G(b1,...,bm) = {(x1, . . . , xm) ∈ Dm : b1 · γ(x1) = bi · γ(xi) for all 1 6 i 6 m} .

One has dim G(b1,...,bm) > 1 by Fact 4.3. Consider the first projection π1 : Gm
b̄

→ D. One has

ker π1 = {0} × ker γ × · · · × ker γ.

Since ker γ = C(a) is defined by the equation σ − id, the D[σ]-module I(ker γ) has D[σ]-dimension 1,

so ker γ has Zariski dimension 0. By Fact 4.6, the kernel ker π1 also has Zariski dimension 0. By

Fact 4.7, one has

dim G(b1,...,bm) = 1.
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Since [D : C(a)] is infinite, by Fact 4.8, one can chose an infinite tuple b̄ ∈ DN such that the

σa-linear group G(b1,...,bm) is radical for every m. By the NIP chain condition 1.2, there are natural

numbers n and i such that
⋂

j∈{1,...,n+1}
bj · γ(D) =

⋂

j∈{1,...,n+1}\{i}
bj · γ(D).

Note that this is the only place where we use the NIP hypothesis to show that γ is onto. We may

reorder the tuple (b1, . . . , bn+1) if need be and assume that i = n + 1, so that the projection

π : G(b1,...,bn+1) → G(b1,...,bn)

on the n first coordinates is onto. Since G(b1,...,bn+1) and G(b1,...,bn) are radical, by Fact 4.5, there

are two σa-isomorphisms

α : G(b1,...,bn+1) → (D, +) and β : G(b1,...,bn) → (D, +).

The σa-morphism ρ = βπα−1 makes the following diagram commute.

G(b1,...,bn+1) G(b1,...,bn)

(D, +) (D, +)

α

π

ρ

β

Since ker π = {0} × · · · × {0} × C(a), the map ρ has a nontrivial kernel. Let c ∈ ker ρ \ {0}, and

put ρ∗(x) = ρ(cx). Then ρ∗ : D → D is onto since ρ is. One also has ker ρ∗ = c−1 · α(ker π).

Since ker π has right C(a)-dimension 1, ker ρ∗ also has right C(a)-dimension 1. Since ker ρ∗ contains

1, one must have ker ρ∗ = ker γ = C(a), and the equality ker ρ∗ = ker γ holds in any difference

extension of (D, σa). By Fact 4.1, the twist ρ∗ factorises in ρ∗ = δγ with γ = σa − id. If x ∈ ker δ,

then x = γ(y) for some y in a linearly surjective extension of (D, σa) given by Fact 4.2, hence

y ∈ ker ρ∗ = ker γ so x = 0. It follows that δ is bijective, so γ is onto D, which is the desired

contradiction. �

Elbée [19] has a few lines proof, using computational properties of the dp-rank, that a strongly

NIP division ring of dp-rank n has dimension at most n over its centre (in any characteristic), in

the same vein as the proof of [27, Proposition 7.9] for division rings of finite S1-rank.

Proposition 6.2. If (K, σ) is an NIP difference field of characteristic p, then either [K : Fix(σ)]

or Fix(σ) is finite.

Proof. If [K : Fix(σ)] is infinite, an argument as in the proof of Theorem 6.1 (working over k =
⋂

σn(K)) shows that σ − id is surjective, so the argument in the proof of Corollary 5.7 applies. �

7. The NTP2 case

Shelah had introduced already in [50, Theorem 0.2] a large class of structures now called NTP2

(for “not the tree property of the second kind”) including both NIP and simple structures. We note

here that the conclusions of [36, Theorem 3.5] and Theorem 6.1 extend to NTP2 division rings of

characteristic p, using Chernikov, Kaplan and Simon’s results

• that NTP2 groups satisfy a descending condition chain [13, Theorem 2.4]:
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Fact 7.1 (NTP2 descending chain condition). In an NTP2 group, to any formula φ(x, ȳ) is

associated a natural number n ∈ N such that the intersection of any finite family {Gi : i < k}
of normal subgroups defined respectively by the formulas {φ(x, āi) : i < k} has finite index

in a subintersection of at most n among them.

• that NTP2 fields have finitely many Artin-Schreier extensions [13, Theorem 3.1], conclusion

which was remarked by Wagner for simple fields [29, Theorem 3.2].

We recall the definition of an NTP2 structure (although we shall not use it directly). Given a

natural number k ∈ N, and a structure (M, L), an L-formula φ(x, ȳ) has the k-tree property2 if

there is an array (āi,j)i,j<k of tuples in M such that {φ(x, ai,j) : j < k} are pairwise inconsistent for

each i < k and {φ(x, ai,f(i)) : i < k} is consistent for any f : {1, . . . , k − 1} → {1, . . . , k − 1}.

Definition 7.2 (Shelah). A structure (M, L) is NTP2 if for every L-formula, there is a natural

number k ∈ N such that ϕ(x, ȳ) does not have the k-tree property2.

Lemma 7.3. An NTP2 division ring of characteristic p has a definable division subring of finite

codimension in which xy − yx 6= 1 holds.

Proof. We may assume that the ambient division ring is ℵ0-saturated, and first claim:

Claim 1. For any element a of infinite order, one has C(ap − a) ⊂ C
(

apn)

for some n ∈ N.

By [13, Theorem 3.1], the field Z(C(ap − a)) has finitely many Artin-Schreier extensions. Since

Z(C(ap − a))(api

) is an Artin-Schreier extension for each i ∈ N, and since the set {api

: i ∈ N} is

infinite, there is an n ∈ N such that apn ∈ Z(C(ap − a)), whence C(ap − a) ⊂ C(apn

), as claimed.

Writing M for the set defined by ∃b
(

b−1xb − x = 1
)

, we split the proof of Lemma 7.3 into two cases:

Case 1. There exists ᾱ = (α1, . . . , αq), a finite tuple of elements of finite order, such that M ∩C(ᾱ)

contains only finitely many ω̄ = (ω1, . . . , ωr) of finite order. We consider the division subring

C = C(ᾱ, ω̄). It has finite codimension by Fact 3.5, and we claim that it satisfies xy − yx 6= 1.

Assume for a contradiction that b−1ab − a = 1 holds for some (a, b) in C. If a has finite order, then

it is one of the ωi, so a commutes with b, a contradiction. So a has infinite order. One has

b−1(ap − a)b = (a + 1)p − (a + 1) = ap − a,

and thus b ∈ C(apn

) for some n ∈ N. But one also has b−1
(

apn)

b = apn

+ 1, a contradiction.

Case 2. For all ᾱ = (α1, . . . , αq) of finite order, there are infinitely many elements {ωi : i ∈ I(ᾱ)}
of finite order in M ∩ C(ᾱ). If the elements in {ωi : i ∈ I(1)} have unbounded order, since M is

definable, by the Compactness Theorem and the saturation assumption, M contains an element

of infinite order, which leads to a contradiction as in Case 1, using Claim 1. So the elements in

{ωi : i ∈ I(1)} have bounded order. They are all roots of a common polynomial xpn − x for some

n ∈ N. Since the additive index |C1/C2| is either 1 or ∞ whenever C1 is an infinite division ring

with division subring C2, by the NTP2 descending chain condition 7.1 and Fact 3.5, there are a

natural number k ∈ N and a finite tuple (ω1, . . . , ωk) of elements of finite order such that

C(ω1, . . . , ωk) = C(ω1, . . . , ωk, ω)

for any ω ∈ M of finite order. Putting ω̄ = (ω1, . . . , ωk), it follows that the elements in {ωi : i ∈ I(ω̄)}
form an infinite (by assumption) commuting set, and are zeros of xpn − x, a contradiction. �

Theorem 7.4. An NTP2 division ring of characteristic p has finite dimension over its centre.
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Proof. By Lemma 7.3, it suffices to show that for every such division ring D satisfying xy − yx 6= 1,

the dimension [D : C(a)] is finite for every a. Let us assume for a contradiction that [D : C(a)]

is infinite. As in the proof of Theorem 6.1, we consider σa the conjugation map by a, we write

γ = σa − id and show that γ is onto D. This can be done choosing an infinite tuple b̄ ∈ DN such

that the groups G(b1,...,bn) are radical for each n > 1 thanks to Fact 4.8, and applying the NTP2

chain condition 7.1 to the family {bi · γ(D) : i ∈ N}, of right vector spaces over the infinite division

ring C(a). This contradicts the assumption that xy − yx 6= 1 holds in D. �

Corollary 7.5. The centre of an infinite NTP2 division ring is infinite.
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