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NIP, and NTP_2 division rings of prime characteristic

Introduction

Macintyre proved any ω-stable field to be either finite or algebraically closed [START_REF] Macintyre | On ω1-categorical theories of fields[END_REF]Theorem 1]. This was generalised by Cherlin and Shelah to superstable fields [10, Theorem 1]. It follows that a superstable division ring is a field [START_REF] Cherlin | Superstable division rings[END_REF]. It was observed around 1991 that a division ring interpretable in a bounded PAC field K (e.g. a pseudo-finite field) is definably isomorphic to a finite field extension of K, and in particular commutative [START_REF] Hrushovski | Pseudo-finite fields and related structures[END_REF]Theorem 9.1]. Later on, it was shown in [START_REF] Pillay | Supersimple fields and division rings[END_REF]Theorem 5.1] that any supersimple division ring is a field. In another direction, Pillay proved that an infinite field definable in an o-minimal structure is either real-closed or algebraically closed [START_REF] Pillay | On groups and fields definable in o-minimal structures[END_REF]Theorem 3.9], and such a field has characteristic 0. It is shown in [START_REF] Otero | On groups and rings definable in o-minimal expansions of real closed fields[END_REF]Theorem 1.1] that a division ring definable in an o-minimal expansion of a real closed field R is definably isomorphic to either R, R √ -1 or the quaternions over R. This was generalised to division rings definable in any o-minimal structure in [START_REF] Ya | Definable compactness and definable subgroups of o-minimal groups[END_REF]Theorem 4.1]. A context that includes (almost) all the abovementioned structures is the one of superrosy structure, endowed with an abstract notion of ordinal valued rank on definable sets, preserved under definable bijections and satisfying Lascar's inequalities. It is shown in [START_REF] Hempel | Division rings with ranks[END_REF]Theorem 2.9] that a superrosy division ring has finite dimension over its centre.

More can be said in characteristic p, even in the absence of a well-behaved global rank. It is known that a stable division ring of characteristic p is a finite dimensional algebra over its centre [START_REF] Milliet | Stable division rings[END_REF]Theorem 2.1]. Whereas the only known stable division rings are commutative fields (the conjecture that stable fields are separably closed implies that stable division rings of characteristic p are commutative), Hamilton's Quaternions over the real or 2-adic numbers are noncommutative examples of NIP division rings of characteristic 0. The paper exhibits noncommutative examples of NIP division rings of characteristic p (Theorem 2.1), provides another simple proof that a stable division ring of characteristic p has finite dimension over its centre (Fact 5.3) and shows that the same conclusion holds for an NIP division ring of characteristic p (Theorem 6.1).

The proof of Theorem 6.1 closely follows ideas of Kaplan and Scanlon's [START_REF] Kaplan | Artin-Schreier extensions in NIP and simple fields[END_REF]Theorem 4.3] stating that an infinite NIP field of characteristic p does not have any proper Artin-Schreier extension. Our guiding line is the reminiscence from superstability that a well-behaved definable group morphism with a "small" kernel should have a "large" image. To achieve that, a Zariski dimension theory is developed in [START_REF] Milliet | Linear algebra over a difference division ring[END_REF] for subgroups of (D n , +) defined over a division ring D by linear equations involving a ring morphism σ. This dimension on a class of quantifier-free definable sets replaces the absence of a well-behaved model-theoretic rank. Sets of dimension zero include finite sets, but also Fix(σ) and right affine spaces of finite Fix(σ)-dimension.

Eventually, Using Chernikov, Kaplan and Simon's descending chain condition for NTP 2 groups [13, Theorem 2.4], as well as the same authors' generalisation of the definable case of Wagner's [START_REF] Kaplan | Artin-Schreier extensions in NIP and simple fields[END_REF]Theorem 3.2], stating that an NTP 2 field has only finitely many proper Artin-Schreier extensions [13, Theorem 3.1], we extend Theorem 6.1 to the case of NTP 2 division rings of characteristic p (Theorem 7.4), which has the unexpected consequence that the centre of an infinite NTP 2 division ring is infinite. Examples of strictly NTP 2 fields of characteristic 0 are given in [START_REF] Chernikov | Groups and fields with NTP2[END_REF], [START_REF] Chernikov | Valued difference fields and NTP2[END_REF] and [START_REF] Montenegro | Pseudo real closed fields, pseudo p-adically closed fields and NTP2[END_REF], and corresponding examples in characteristic p seem to be unknown.

We begin by recalling the definition of an NIP structure. Given a natural number k ∈ N and a structure (M, L), an L-formula φ(x, ȳ) has the k-independence property if there are tuples (a 1 , . . . , a k ) and bJ : J ⊂ {1, . . . , k} in M such that for any i < k + 1 and J ⊂ {1, . . . , k}, M |= φ(a i , bJ ) ⇐⇒ i ∈ J. Definition 1.1 (Shelah). A structure (M, L) is NIP (a shorthand for "not the independence property") if for every L-formula φ(x, ȳ), there is a natural number k ∈ N such that φ does not have the k-independence property.

Groups which are uniformly definable in an NIP structure satisfy the following Noetherian like condition (see [START_REF] Poizat | Groupes stables. Nur al-Mantiq wal-Ma ֓ rifah[END_REF]Lemme 1.3] or [52, Theorem 1.0.5] for a proof), which seems to have appeared following [2, p. 270].

Fact 1.2 (NIP descending chain condition).

In an NIP group, to any formula φ(x, ȳ) is associated a natural number n ∈ N such that the intersection of any finite family {G i : i < k} of subgroups defined respectively by the formulas {φ(x, āi ) : i < k} be the intersection of at most n among them.

Examples of NIP division rings of prime characteristic

Theorem 2.1. There are noncommutative NIP division rings of every characteristic.

Proof. We recall Dickson's construction of cyclic algebras as explicated in [33, p. 229]. Let K/F be a Galois extension with cyclic Galois group Gal(K/F ) generated by an automorphism σ of order s = dim F K. Fixing a nonzero element α ∈ F and a symbol x, we let

D = K • 1 ⊕ K • x ⊕ • • • ⊕ K • x s-1 ,
and multiply elements in D by using the distributive law, and the two rules

x s = α, x • a = σ(a)x (for any a ∈ K).
As F ⊂ Z(D), the ring D is an F -algebra, of dimension s 2 . This algebra is denoted by (K/F, σ, α), and is called the cyclic algebra associated with (K/F, σ) and α ∈ F \ {0}. Let N K/F : K × → F × denote the norm map of the extension K/F defined by

N K/F (a) = τ ∈Gal(K/F ) τ (a).
In general, D = (K/F, σ, α) need not be a division algebra, but one has: Fact 2.2 [START_REF] Yuen | A first course in noncommutative rings[END_REF]Corollary 14.8]). Suppose s is a prime number. Then D = (K/F, σ, α) is a division algebra if and only if α / ∈ N K/F (K × ). Now let p be a prime number different from 2, let Γ be the ordered additive subgroup 1/p i : i ∈ N of R, and consider an NIP perfect field k of characteristic p having an element α ∈ k with no square root in k. For instance, using the following Fact 2.3 from [29, Theorem 5.9] (and from [3, Corollaire 7.5]), one may consider for k the field F alg p ((x Γ )) of formal Hahn series a γ x γ having a well ordered support in Γ and coefficients a γ ∈ F alg p and take α = x.

Fact 2.3 (Bélair, Kaplan, Scanlon and Wagner). Let (F, v) be an algebraically maximal valued field of characteristic p whose residue field k is perfect. Then (F, v) is NIP if and only if k is NIP and infinite and Γ is p-divisible.

With its natural valuation v mapping a series to the minimum of it support, the valued field (k, v) = F alg p ((x Γ )), v is maximal, i.e. has no proper valued field extension having both same residue field and same valuation group (see [START_REF] Krull | Allgemeine bewertungstheorie[END_REF] or [20, 

N F ( √ t)/F (a + b √ t) = (a + b √ t)(a -b √ t) = a 2 -b 2 t,
we claim that α does not belong to N F ( √ t)/F (F ( √ t) × ). Assume for a contradiction that a 2 -b 2 t = α holds for some (a, b) in F . Let a γ t γ and b δ t δ be the monomials of smallest valuation appearing in a and b respectively (where a γ and b δ are elements of k, possibly zero if a or b are zero). The monomials of smallest valuation appearing in a 2 and b 2 t are a 2 γ t 2γ and b 2 δ t 2δ+1 respectively. Since 2Γ and 2Γ+1 are disjoint, one has either a 2 γ t 2γ = α, or -b 2 δ t 2δ+1 = α. The first case leads to a 2 γ = α, a contradiction since α was chosen with no square root in k, and the second case to 2δ + 1 = 0, a contradiction as well. We conclude by Fact 2.2 that D is an NIP division ring.

Note that what is needed for the present purpose is:

• that F be NIP, so that D = (K/F, σ, α) be NIP as well,

• that α belong to F × \ N K/F (K × ), so that D be a division ring.

If p = 2, we let Γ = 1/2 i : i ∈ N and chose similarly a perfect NIP field k of characteristic 2 having an element α ∈ k with no third-root in k, and having a primitive third-root ω of 1. For instance, we may take k = F alg 2 ((x Γ )) and α = x. We then consider the NIP field F = k((t Γ )) and do a similar construction as above with the cyclic

F -algebra D = (F ( 3 √ t)/F, σ, α) of dimension 9 where σ ∈ Gal(F ( 3 √ t/F )) is the automorphism mapping a + b 3 √ t + c 3 √ t 2 to a + ωb 3 √ t + ω 2 c 3 √ t 2 . Using the identity 1 + ω + ω 2 = 0, one shows that the norm map N F ( 3 √ t)/F is defined by N F ( 3 √ t)/F (a + b 3 √ t + c 3 √ t 2 ) = (a + b 3 √ t + c 3 √ t 2 )(a + ωb 3 √ t + ω 2 c 3 √ t 2 )(a + ω 2 b 3 √ t + ωc 3 √ t 2 ) = a 3 + b 3 t + c 3 t 2 + 3abc(ω 2 t + ωt) = a 3 + b 3 t + c 3 t 2 -abct.
We claim that α does not belong to

N F ( 3 √ t)/F (F ( 3 √ t) × ).
Assume for a contradiction that a 3 + b 3 t + c 3 t 2 -abct = α holds for some a, b, c in F , and let a γ t γ , b δ t δ and c ε t ε be the monomials of smallest valuation appearing in a, b and c respectively (where a γ , b δ and c ε are elements of k, possibly zero). The monomials of smallest valuation appearing in a 3 , b 3 t, c 3 t 2 and abct are a 3 γ t 3γ , b 3 δ t 3δ+1 , c 3 ε t 3ε+2 and a γ b δ c ε t γ+δ+ε+1 respectively. Since 3Γ, 3Γ + 1 and 3Γ + 2 are pairwise disjoint, and since γ + δ + ε + 1 is the arithmetic mean of 3γ, 3δ + 1 and 3ε + 2, one has min{3γ, 3δ + 1, 3ε + 2} < γ + δ + ε + 1.

It follows that either a 3 γ t 3γ , or b 3 δ t 3δ+1 or c 3 ε t 3ε+2 equals α, but either case leads to a contradiction.

The pure division rings constructed above are not stable since their centres are Henselian (see [START_REF] Efrat | Valuations, orderings, and Milnor K-theory[END_REF]Corollary 18.4.2]) and have a nontrivial definable valuation (see for example [START_REF] Koenigsmann | Uniformly defining p-henselian valuations[END_REF]Theorem 5.2] or [START_REF] Koenigsmann | Definable henselian valuations[END_REF]Theorem 3.10]).

Preliminaries on NIP division rings of prime characteristic

3.1. NIP Fields. It is believed that an NIP field is either finite, separably closed, real closed or admits a nontrivial henselian valuation (this conjecture is attributed in [START_REF] Halevi | Definable V-topolgies, henselianity and NIP[END_REF] to S. Shelah). A characterisation of the subclass of dp-minimal fields is given in [START_REF] Johnson | On dp-minimal fields[END_REF], which also confirms Shelah's conjecture for the particular case of dp-minimal fields. According to [START_REF] Johnson | On dp-minimal fields[END_REF], the main Theorem "almost says that all infinite dp-minimal fields are elementary equivalent to ones of the form k((t Γ ))

where k is F alg p or a characteristic zero local field, and Γ satisfies some divisibility conditions. The one exceptional case is the mixed characteristic case, which includes fields such as the spherical completion of Z un p (p 1/p ∞ )." In addition to the Baldwin-Saxl chain condition 1.2 for intersections of uniformly definable subgroups, we shall only use the following result from [START_REF] Kaplan | Artin-Schreier extensions in NIP and simple fields[END_REF]Theorem 4.3]. Let us recall that if F is a field of characteristic p, a proper field extension K/F is called Artin-Schreier if K = F (a) where a is a root of x p -x + b for some b ∈ F .

Fact 3.1 (Kaplan and Scanlon). An infinite NIP field has no Artin-Schreier extension.

The proof of Fact 3.1 strongly relies on the fact that a connected algebraic subgroup of (K, +) n of Zariski dimension 1 is isomorphic to (K, +) when K is a perfect field. As an immediate Corollary of Fact 3.1, using the result of Duret [START_REF] Duret | Les corps faiblement algébriquement clos non séparablement clos ont la propriété d'indépendance[END_REF]Théorème 6.4] on weakly algebraically closed non separably closed fields (see [START_REF] Kaplan | Artin-Schreier extensions in NIP and simple fields[END_REF]Corollary 4.5]),

Fact 3.2 (Kaplan and Scanlon

). An infinite NIP field of characteristic p contains F alg p .

Metro equation in NIP division rings of prime characteristic.

Let us first remark that in a division ring having finite dimension over its centre and characteristic 0, the equation

xy -yx = 1
has no solution. For putting γ x (y) = xy -yx, a simple induction shows that γ x (y) = 1 implies γ x (y n ) = ny n-1 for every n ∈ N, forcing the chain ker γ x ⊂ • • • ⊂ ker γ n x of vector-spaces to be properly ascending and contradicting the finiteness of the dimension. The same conclusion fails in characteristic p, and P. Cohn provides the following general condition in [14, p. 68] (also reported by Lam [34, p. 239]) for an arbitrary division ring D. Fact 3.3 (Cohn). Let a ∈ D be algebraic over Z(D). Then ax -xa = 1 has a solution if and only if a is not separable over Z(D).

The equation ax -xa = 1 arose in a conversation between P. Cohn and S. Amitsur on the Paris Metro on the 28th of June 1972 according to [15, p. 418], and is referred to as the metro-equation in [START_REF] Moritz | The range of derivations on a skew field and the equation axxb = c[END_REF]. Our first goal is to show that the metro equation has no solution in an NIP division ring of characteristic p. For that purpose, we recall Herstein's Lemma. It is pointed out in [START_REF] Yuen | Exercises in classical ring theory[END_REF]Exercise 16.17] that Fact 3.4 holds in every characteristic. In characteristic p, the element b in Fact 3.4 has infinite order, for otherwise a and b would generate a finite (noncommutative) integral domain, contradicting Wedderburn's Little Theorem. It follows that in an infinite division ring, any element a has an infinite centraliser, which we write C(a). For if a has infinite order, then C(a) contains the infinite cyclic group a , whereas if a has finite order q, Herstein's Lemma yields a b with b -1 ab = a n where a and a n have same order q, so that n and q are coprime. Writing ϕ for Euler's totient function, Euler's Theorem provides that C(a) contains the infinite b ϕ(q) (see also [START_REF] Yuen | A first course in noncommutative rings[END_REF]Theorem 13.10]). One may use instead Brauer's [15, Corollary 3.3.9] which implies that any algebraic element over Z(D) has a "large" centraliser. Fact 3.5 (Brauer [4]). Proof. Let D be an infinite NIP division ring of characteristic p. If all elements have finite order, by Fact 3.4, the ring D is commutative, so we may assume that there is some c ∈ D × having infinite order. The field Z (C(c)) is infinite. By Fact 3.2, it contains a copy of F alg p . We have shown that any infinite NIP division ring contains a copy of F alg p . We claim that this copy is unique and lies in the centre of Z(D). For that purpose, since any centraliser C(a) contains a copy F a of F alg p , it suffices to fix a natural number n ∈ N and show that any two roots (ω 1 , ω 2 ) of x p n -x commute. This will provide that F a = F b for any (a, b) in D. Note that one has [D : C(ω i )] < p n by Fact 3.5. It follows that the division ring C(ω 1 ) ∩ C(ω 2 ) is infinite, and NIP, so contains a copy F n of F p n . But one has F n (ω 1 ) = F n = F n (ω 2 ) since the polynomial x p n -x has already p n roots in F n , so ω 1 and ω 2 commute. This shows that Z(D) contains F alg p .

Corollary 3.7 (metro equation). An NIP division ring of characteristic p satisfies xy

-yx = 1.
Proof. We assume that the division ring is infinite, and first claim C(a p -a) ⊂ C(a) for every a. Proof. The element a is algebraic over the field Z(C(a p )). Since ax -xa = 1 has no solution in C(a p ), by Fact 3.3, a is separable over Z(C(a p )) so a ∈ Z(C(a p )) and C(a p ) ⊂ C(a).

Linear preliminaries on difference division rings

Let (D, σ) be a division ring equipped with a ring morphism σ. We call the pair (D, σ) a difference division ring, as in the commutative case [16, p. 57]. We write Fix(σ) for the division subring defined by σ(x) = x and we make the additional assumptions:

• that the dimension [D : Fix(σ)] right is infinite, • that σ is surjective on D.
In an attempt to make this paper self-contained, we gather in this Section the needed results from [START_REF] Milliet | Linear algebra over a difference division ring[END_REF] concerning the structure of those subsets of D n that are defined by linear equations involving σ. We state them in all generality, although they will be (mainly) applied in the case where σ = σ a is a conjugation map by some transcendental element a over Z(D).

4.1. 1-Twists. We define the set of 1-twists

D[σ] = n i=0 r i σ i : r ∈ D n+1 , n ∈ N , a left D-vector space with basis σ i : i ∈ N . Equipped with the sum n i=0 r i σ i + n j=0 s j σ j = n k=0 (r k + s k )σ k
and the obvious composition law

n i=0 r i σ i   n j=0 s j σ j   = n i=0 n j=0 r i σ i (s j )σ i+j , D[σ]
is a unitary (we also write id for σ 0 ) associative domain. Generalising Ore's [39, Theorem 1] that the ring of p-polynomials K[x p ] form a Euclidean domain when K is a perfect field of characteristic p, the domain D[σ] is also Euclidean with the natural degree function, from which follows: 

σ i 1 (x 1 ), . . . , σ in (x n ) : (i 1 , . . . , i n ) ∈ N n . D[σ, n] is a left D[σ]-module.
We call its elements n-twists, and the zero set of a family S of n-twists a σ-linear set, which we write

V(S) = {(x 1 , . . . , x n ) ∈ D n : δ(x 1 , . . . , x n ) = 0 for all δ ∈ S}.
A map between two σ-linear sets is a σ-morphism if its coordinate maps are n-twists. A σ-morphism is a σ-isomorphism if bijective and if its inverse is a σ-morphism. We say that a σ-linear set V is radical if cl(I(V )) = I(V ). Fact 4.3 below is [START_REF] Milliet | Linear algebra over a difference division ring[END_REF]Theorem 6.6]. [START_REF] Kaplan | Artin-Schreier extensions in NIP and simple fields[END_REF] and [START_REF] Hempel | On n-dependent groups and fields[END_REF] in the particular case when the pair (D, σ) is an algebraically closed field (K, Frob) of characteristic p equipped with the Frobenius. In that particular case, if b - 

4.3. Zariski dimension. Given a subset V ⊂ D n , we write I(V ) = {δ ∈ D[σ, n] : δ(x 1 , . . . , x n ) = 0 for all (x 1 , . . . , x n ) ∈ V }. This is a D[σ]-submodule of D[σ, n]. We define the Zariski dimension of V by dim V = dim D[σ] D[σ, n] -dim D[σ] I(V ),

Fact 4.3. Given a σ-linear set V and a twist δ, one has

dim (V ∩ V(δ)) dim V 1.
G b = {(x 1 , . . . , x n ) ∈ D n : b 1 (σx 1 -x 1 ) = b i (σx i -x i ) for all 1 i n} . Then G b is radical if and only if b -1 1 , . . . , b -1
n are left Fix(σ)-linearly independent.

5.

A new look at the stable case

Stable division rings of prime characteristic.

We begin by proposing an alternative proof of the stable case, that does not use the fact that iterates of σ a -id are uniformly definable in characteristic p (where σ a is the conjugation map by a). The part of the argument that mimics Scanlon's result [47, Proposition 1] has the advantage to be valid in any characteristic. We recall the definition of a stable structure. Given a natural number k ∈ N and a structure (M, L), an L-formula φ(x, ȳ) with |x| = |ȳ| = ℓ has the k-order property if there are ℓ-tuples ā1 , . . . , āk-1 in M such that for any i, j < k, (M |= φ(ā i , āj )) ⇐⇒ i < j.

Definition 5.1 (Shelah). A structure (M, L) is stable if for every L-formula φ(x, ȳ), there is a natural number k ∈ N such that φ(x, ȳ) does not have the k-order property.

The above is adapted from [11, Definition 2.9]. It is not the original definition [51, Definition 2.2 p. 9], but is equivalent to it by [49, Theorem 2.13 p. 304] and by the Compactness Theorem. The following chain condition can be found in [START_REF] Poizat | Groupes stables. Nur al-Mantiq wal-Ma ֓ rifah[END_REF]Proposition 1.4]. Note the similarity between Fact 1.2 and Fact 5.2.

Fact 5.2 (Stable descending chain condition).

In a stable group, to any formula φ(x, ȳ) is associated a natural number n ∈ N such that the intersection of any family {G i : i ∈ I} of subgroups defined respectively by the formulas {φ(x, āi ) : i ∈ I} be the intersection of at most n among them.

Fact 5.3 ([36, Theorem 2.1]). A stable division ring of characteristic p has finite dimension over its centre.

Proof. It suffices to show that for every such division ring D and a ∈ D, the dimension [D : C(a)] is finite (by the stable descending chain condition 5.2 applied to centralisers, this will imply that D has finite dimension over a commutative subfield, hence over its centre). Let us assume for a contradiction that [D : C(a)] is infinite for some a ∈ D. Let σ a be the conjugation map by a and γ = σ a -id. We shall show that γ : D → D is onto, a contradiction with Corollary 3.7. We adapt the proof of [47, Proposition 1]. By the stable descending chain condition 5.2, there are a natural number n ∈ N and an n-tuple b = (b 1 , . . . , b n ) of elements in D × such that

I = b∈D × b • γ(D) = b∈ b b • γ(D).
Let G b the σ a -linear set defined by

G b = {(x 1 , . . . , x n ) ∈ D n : b 1 • γ(x 1 ) = b i • γ(x i ) for all 1 i n} .
This is an intersection of n -1 many σ a -hypersurfaces of D n , so dim G (b 1 ,...,bn) 1 by Fact 4.3. By Fact 4.4 and Fact 4.5, the group G b has infinite right Fix(σ)-dimension, so I contains a nonzero element. Since I is a left ideal of D, one must have I = D, hence γ is onto, as desired.

Remark 5.4. Separably closed fields are currently the only known examples of infinite stable fields [START_REF] Wood | Notes on the stability of separably closed fields[END_REF]Theorem 3]. From the conjecture [5, p. 1] every infinite stable field is separably closed, follows every stable division ring of characteristic p is a field. For if D is a stable division ring of characteristic p that is not a field, then D has finite dimension over its centre by Fact 5.3. Pick some a ∈ D \ Z(D). By Corollary 3.7, the equation ax -xa = 1 has no solution, so that the extension Z(D)(a)/Z(D) is separable by Fact 3.3. We do not know whether the reverse implication is true. Remark 5.5. Bounded PAC fields are currently the only known examples of infinite simple fields [START_REF] Chatzidakis | Generic structures and simple theories[END_REF]Corollary 4.8], and from the conjecture every infinite simple field is PAC, follows every simple division ring of characteristic p is a field, since on the one hand, such a division ring must have finite dimension over its centre by [START_REF] Milliet | Stable division rings[END_REF]Theorem 3.5], and on the other hand its centre has a trivial Brauer group by [START_REF] Fried | Field Arithmetic[END_REF]Theorem 11.6.4]. Also, since the iterated kernels of σ a -id are uniformly definable in characteristic p, the map σ a -id is not onto in an NSOP division ring of characteristic p. In the proof of Fact 5.3, the stable chain condition is applied to uniformly definable vector spaces over an infinite division ring, so the argument remains valid for a simple division ring of characteristic p, using the simple descending chain condition [53, Theorem 4.2.12].

Stable and simple difference fields.

Let us point out consequences that concern stable or simple difference fields. It is noticed in [START_REF] Chernikov | Valued difference fields and NTP2[END_REF]Lemma 2.11] that any model of ACFA is linearly surjective. Recall that ACFA is supersimple [START_REF] Chatzidakis | Model theory of difference fields[END_REF] and that a supersimple difference field is inversive (follows from [START_REF] Pillay | Corps et chirurgie[END_REF] or [START_REF] Pillay | Supersimple fields and division rings[END_REF]Fact 4.2

.(ii)]

). With a proof similar as the one of Fact 5.3, and arguing as in the proof of [START_REF] Kaplan | Artin-Schreier extensions in NIP and simple fields[END_REF]Theorem 3.2], one can withdraw the uniform definability assumption in [36, Proposition 3.6]: Theorem 5.6. If (K, σ) is a difference field with a simple theory and k = σ n (K), then

• either [K : Fix(σ)] is finite, • or Fix(σ) is finite, and the index |K/δ(K)| is finite for every δ ∈ k[σ] of valuation zero, • or every δ ∈ k[σ] of valuation zero is surjective.
The first case occurs when K/F is Galois over a simple field F , and σ a nontrivial element of Gal(K/F ). The second case occurs e.g. when K is a pseudo-finite field of characteristic p with the Frobenius (by [START_REF] Hrushovski | Pseudo-finite fields and related structures[END_REF]Lemma 4.5] or [7, Proposition 4.5]), in which case the index |K/δ(K)| is bounded by | ker δ| by Łos Theorem, and maybe greater than one, e.g. if δ is the Artin-Schreier map. The assumption on the valuation cannot be dropped as witnessed by an unperfect separably closed field. Since an infinite stable field has no proper definable additive subgroup of finite index, from Theorem 5.6, one recovers Scanlon's [47, Proposition 1]. Note that if (K, σ) is inversive and Fix(σ) infinite in Theorem 5.6, then (K, σ) is linearly surjective.

Proof of Theorem 5.6. We may assume that K is infinite, ℵ 0 -saturated, that [K : Fix(σ)] is infinite and that σ is injective. By the Compactness Theorem and saturation hypothesis, there is a transcendental element x over Fix(σ). For all n ∈ N, the element σ n (x) is also transcendental over Fix(σ). By the Compactness Theorem, there is an element in k that is transcendental over Fix(σ), so the dimension [k : k ∩ Fix(σ)] is infinite. Let δ ∈ k[σ] be of valuation zero. We shall show that δ(K) has finite additive index in K. Let G = {a • δ(K) : a ∈ k × }, a k × -invariant family. By [29, Fact 3.1], there is a k × -invariant additive subgroup N K containing a finite intersection of groups in G, say a∈ā a • δ(K) for some finite n-tuple ā = (a 1 , . . . , a n ) of elements in k × , such that the additive index |N/N ∩ G| is finite for all G ∈ G. Define the σ-linear group G ā(k) by

G ā(k) = {(x 1 , . . . , x n ) ∈ k n : a 1 • δ(x 1 ) = a i • δ(x i ) for all a i ∈ ā} . The difference field (k, σ) is inversive and [k : k ∩ Fix(σ)] infinite. As G ā(k)
is the intersection of n -1 many σ-hypersurfaces, it has Zariski dimension at least 1 by Fact 4.3, and in fact precisely 1 inductively on n using Fact 4.7. The group G 0 ā(k) is σ-isomorphic to (k, +) by Facts 4.4 and 4.5.

So G ā(k) has infinite k ∩ Fix(σ)-dimension, and a∈ā a • δ(k) is nonzero, so N ∩ k is nonzero as well. But N ∩ k is k × -invariant, hence an ideal of k, and must equal k, so that k/k ∩ δ(K) embeds in N/N ∩ δ(K). Now putting δ = a n σ n + • • • + a 0 id with (a 0 , . . . , a n ) in k and a 0 = 0, one has for all a ∈ K the equality a = a -1 0 a n σ n (a) + • • • + a -1 0 a 1 σ(a) + δ(-a), whence K = σ(K) + δ(K).
We show inductively on n

∈ N that K = σ n (K) + δ(K) holds for every δ ∈ k[σ] having valuation zero. If K = σ n (K) + δ(K) holds for ever such δ, let δ = a n σ n + • • • + a 0 id in k[σ] with a i = σ i (b i )
and b i ∈ k (obtained by the Compactness Theorem). By induction hypothesis applied to

γ = σ n-1 (b n )σ n + • • • + b 1 σ + σ -1 (a 0 )id, one has K = σ n (K) + γ(K), whence σ(K) = σ n+1 (K) + σγ(K). But σγ = δσ, so K = σ(K) + δ(K) = σ n+1 (K) + δσ(K) + δ(K) = σ n+1 (K) + δ(K).
By the Compactness Theorem, one has K = k + δ(K), and thus

|K/δ(K)| = |k/k ∩ δ(K)| |N/N ∩ δ(K)|,
and |K/δ(K)| is finite, as claimed.

It is shown in [START_REF] Hrushovski | On superstable fields with automorphisms[END_REF]Proposition 3], using [10, Theorem 1], that if (K, σ) is a superstable difference field, then either σ is trivial, or Fix(σ) is finite. As a consequence of Theorem 5.6, one has: Corollary 5.7. If (K, σ) is a stable difference field of characteristic p, then either [K : Fix(σ)] or Fix(σ) is finite.

Proof. If both [K : Fix(σ)] and Fix(σ) are infinite, by Theorem 5.6, there is x ∈ K such that σ(x) -x = 1, from which follows σ(x p -x) = x p -x. But Fix(σ) is Artin-Schreier closed, so x ∈ Fix(σ), a contradiction. The conclusion of Corollary 5.7 fails for a simple field of characteristic p, as witnessed by ACFA. The analogous statement valid in all characteristics seems to be the following. Proposition 5.8. Let (K, σ, τ ) be a stable field structure with commuting ring morphisms τ and σ, such that Fix(τ ) ⊂ Fix(σ). Then either [K : Fix(σ)] or [Fix(σ) : Fix(τ )] is finite.

Proof. Assume for a contradiction that both [K : Fix(σ)] and [Fix(σ) : Fix(τ )] are infinite. Then, by Theorem 5.6 applied to (K, σ), there is an x such that σx -x = 1, from which follows σ(τ x -x) = τ x -x. So τ x -x belongs to Fix(σ); but (Fix(σ), τ ) is a stable difference field with infinite [Fix(σ) : Fix(τ )], so by Theorem 5.6, there is a ∈ Fix(σ) with τ x -x = τ a -a. Putting y = x -a, one has σy -y = 1, and also τ y = y, and so σy = y by assumption, a contradiction. Elbée [START_REF] Christian D'elbée | Corps gauche de dp-rang fini[END_REF] has a few lines proof, using computational properties of the dp-rank, that a strongly NIP division ring of dp-rank n has dimension at most n over its centre (in any characteristic), in the same vein as the proof of [27, Proposition 7.9] for division rings of finite S 1 -rank.

G (b 1 ,...,bm) = {(x 1 , . . . , x m ) ∈ D m : b 1 • γ(x 1 ) = b i • γ(x i ) for all 1 i m} .
Proposition 6.2. If (K, σ) is an NIP difference field of characteristic p, then either [K : Fix(σ)] or Fix(σ) is finite. Proof. If [K : Fix(σ)
] is infinite, an argument as in the proof of Theorem 6.1 (working over k = σ n (K)) shows that σ -id is surjective, so the argument in the proof of Corollary 5.7 applies.

The NTP 2 case

Shelah had introduced already in [50, Theorem 0.2] a large class of structures now called NTP 2 (for "not the tree property of the second kind") including both NIP and simple structures. We note here that the conclusions of [36, Theorem 3.5] and Theorem 6.1 extend to NTP 2 division rings of characteristic p, using Chernikov, Kaplan and Simon's results

• that NTP 2 groups satisfy a descending condition chain [13, Theorem 2.4]: Fact 7.1 (NTP 2 descending chain condition). In an NTP 2 group, to any formula φ(x, ȳ) is associated a natural number n ∈ N such that the intersection of any finite family {G i : i < k} of normal subgroups defined respectively by the formulas {φ(x, āi ) : i < k} has finite index in a subintersection of at most n among them.

• that NTP 2 fields have finitely many Artin-Schreier extensions [13, Theorem 3.1], conclusion which was remarked by Wagner for simple fields [START_REF] Kaplan | Artin-Schreier extensions in NIP and simple fields[END_REF]Theorem 3.2].

We recall the definition of an NTP 2 structure (although we shall not use it directly). Given a natural number k ∈ N, and a structure (M, L), an L-formula φ(x, ȳ) has the k-tree property 2 if there is an array (ā i,j ) i,j<k of tuples in M such that {φ(x, a i,j ) : j < k} are pairwise inconsistent for each i < k and {φ(x, a i,f (i) ) : i < k} is consistent for any f : {1, . . . , k -1} → {1, . . . , k -1}. Definition 7.2 (Shelah). A structure (M, L) is NTP 2 if for every L-formula, there is a natural number k ∈ N such that ϕ(x, ȳ) does not have the k-tree property 2 . Lemma 7.3. An NTP 2 division ring of characteristic p has a definable division subring of finite codimension in which xy -yx = 1 holds.

Proof. We may assume that the ambient division ring is ℵ 0 -saturated, and first claim: Claim 1. For any element a of infinite order, one has C(a p -a) ⊂ C a p n for some n ∈ N.

By [13, Theorem 3.1], the field Z(C(a p -a)) has finitely many Artin-Schreier extensions. Since Z(C(a p -a))(a p i ) is an Artin-Schreier extension for each i ∈ N, and since the set {a p i : i ∈ N} is infinite, there is an n ∈ N such that a p n ∈ Z(C(a p -a)), whence C(a p -a) ⊂ C(a p n ), as claimed. Writing M for the set defined by ∃b b -1 xb -x = 1 , we split the proof of Lemma 7.3 into two cases: Case 1. There exists ᾱ = (α 1 , . . . , α q ), a finite tuple of elements of finite order, such that M ∩ C(ᾱ) contains only finitely many ω = (ω 1 , . . . , ω r ) of finite order. We consider the division subring C = C(ᾱ, ω). It has finite codimension by Fact 3.5, and we claim that it satisfies xy -yx = 1. Assume for a contradiction that b -1 ab -a = 1 holds for some (a, b) in C. If a has finite order, then it is one of the ω i , so a commutes with b, a contradiction. So a has infinite order. One has b -1 (a p -a)b = (a + 1) p -(a + 1) = a p -a, and thus b ∈ C(a p n ) for some n ∈ N. But one also has b -1 a p n b = a p n + 1, a contradiction. Case 2. For all ᾱ = (α 1 , . . . , α q ) of finite order, there are infinitely many elements {ω i : i ∈ I(ᾱ)} of finite order in M ∩ C(ᾱ). If the elements in {ω i : i ∈ I(1)} have unbounded order, since M is definable, by the Compactness Theorem and the saturation assumption, M contains an element of infinite order, which leads to a contradiction as in Case 1, using Claim 1. So the elements in {ω i : i ∈ I(1)} have bounded order. They are all roots of a common polynomial x p n -x for some n ∈ N. Since the additive index |C 1 /C 2 | is either 1 or ∞ whenever C 1 is an infinite division ring with division subring C 2 , by the NTP 2 descending chain condition 7.1 and Fact 3.5, there are a natural number k ∈ N and a finite tuple (ω 1 , . . . , ω k ) of elements of finite order such that C(ω 1 , . . . , ω k ) = C(ω 1 , . . . , ω k , ω) for any ω ∈ M of finite order. Putting ω = (ω 1 , . . . , ω k ), it follows that the elements in {ω i : i ∈ I(ω)} form an infinite (by assumption) commuting set, and are zeros of x p n -x, a contradiction. 
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 34 Herstein [25, Lemma 3.1.1]). Let a ∈ D × \ Z(D) have finite multiplicative order. There is b ∈ D × and a natural number n ∈ N such that b -1 ab = a n = a.
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 36 For any a ∈ D, one has [D : C(a)] left = [Z(D)(a) : Z(D)]. By symmetry, Brauer's result implies that for any a, the division ring D has equal right and left C(a)-dimension, which we may write [D : C(a)] without ambiguity. The centre of an infinite NIP division ring is infinite.

  The field Z (C(a p -a)) (a) is an Artin-Schreier extension of Z (C(a p -a)), and the later is infinite by Theorem 3.6. By Fact 3.1, one has a ∈ Z (C(a p -a)) and thus C(a p -a) ⊂ C(a). Now, assume for a contradiction that b -1 ab = a + 1 holds. We deduce b -1 (a p -a)b = (a + 1) p -(a + 1) = a p -a, a contradiction with the above claim. Corollary 3.8. For every element a in an NIP division ring of characteristic p, one has C(a p ) = C(a).
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 41 (factorisation,[START_REF] Milliet | Linear algebra over a difference division ring[END_REF] Lemma 3.2]). Let ρ be a 1-twist of degree n + 1 having a nonzero root a. There is a 1-twist δ of degree n such that ρ = δ σ -σ(a)a -1 id .Following[16, p. 58], we call a difference division ring (E, τ ) such that D ⊂ E and τ : E → E extends σ : D → D, a difference extension of (D, σ). By analogy with the definition in[1, p. 215] given for differential fields, although another terminology also exists for difference fields (see e.g. [48, Lemma 9.1 p. 17] or [45, Definition 4.3 p. 15]), we say that the difference division ring (D, σ) is linearly surjective if for every nonzero 1-twist δ, the equation δ(x) = 1 has a solution in D.
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 4237 Theorem 6.3]). Any (D, σ) has a linearly surjective difference extension. 4.2. σ-Linear sets, σ-morphisms. Let D[σ, n] denote the left D-vector space spanned by

  where dim D[σ] denotes the cardinal of any maximal D[σ]-independent set (well-defined by [37, Theorem 1.3] and [37, Lemma 3.1]). For any submodule I ⊂ D[σ, n], we define its closure cl(I) by cl(I) = {δ ∈ D[σ, n] : ∃γ ∈ D[σ] \ {0}, γδ ∈ I} .
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 44 Fact 4.5 are immediate consequences of [37, Lemma 5.9].
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 44 A σ-linear set V has a unique radical component V 0 ⊂ V with dim V = dim V 0 . Fact 4.5. A radical σ-linear set of Zariski dimension d is σ-isomorphic to D d .
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 46 [START_REF] Milliet | Linear algebra over a difference division ring[END_REF] Lemma 5.7]). Let U and V be σ-linear sets. Then dim (U × V ) = dim U + dim V.
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 4 7 is a consequence of [37, Theorem 5.8] and [37, Theorem 6.4.2].
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 47 Rank-Nullity). Let U be irreducible σ-linear and f : U → D n a σ-morphism. If (D, σ) is linearly surjective, then Imf is σ-linear, and dim U = dim Imf + dim ker f. 4.4. A particular radical group. Fact 4.8 bellow is inspired by [29, Lemma 2.8] and its improved version [23, Lemme 5.3]. It plays a crucial role in
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 48 (see[START_REF] Milliet | Linear algebra over a difference division ring[END_REF] Lemma 6.7]). Given a natural number n 1 and b = (b 1 , . . . , b n ) in D × , we consider the σ-linear set defined by

6 .

 6 The NIP case Theorem 6.1. An NIP division ring of characteristic p has finite dimension over its centre. Proof. It suffices to show that for every such division ring D and a ∈ D, the dimension [D : C(a)] is finite (for in that case, the set {[D : C(a)] : a ∈ D} is bounded by the Compactness Theorem, hence any descending chain of centralisers must stabilise by the NIP chain condition 1.2). Let us assume for a contradiction that [D : C(a)] is infinite for some a ∈ D. Let σ a be the conjugation map by a and γ = σ a -id. We shall show that γ : D → D is onto, a contradiction with Corollary 3.7. We adapt the proof of [29, Theorem 4.3]. For every natural number m 1 and infinite tuple b ∈ D N , let us consider the σ a -linear additive subgroup G (b 1 ,...,bm) of D m defined by

  One has dim G (b 1 ,...,bm) 1 by Fact 4.3. Consider the first projection π 1 : G m b → D. One has ker π 1 = {0} × ker γ × • • • × ker γ. Since ker γ = C(a) is defined by the equation σ -id, the D[σ]-module I(ker γ) has D[σ]-dimension 1, so ker γ has Zariski dimension 0. By Fact 4.6, the kernel ker π 1 also has Zariski dimension 0. By Fact 4.7, one has dim G (b 1 ,...,bm) = 1. Since [D : C(a)] is infinite, by Fact 4.8, one can chose an infinite tuple b ∈ D N such that the σ a -linear group G (b 1 ,...,bm) is radical for every m. By the NIP chain condition 1.2, there are natural numbers n and i such that j∈{1,...,n+1} b j • γ(D) = j∈{1,...,n+1}\{i} b j • γ(D). Note that this is the only place where we use the NIP hypothesis to show that γ is onto. We may reorder the tuple (b 1 , . . . , b n+1 ) if need be and assume that i = n + 1, so that the projection π : G (b 1 ,...,b n+1 ) → G (b 1 ,...,bn) on the n first coordinates is onto. Since G (b 1 ,...,b n+1 ) and G (b 1 ,...,bn) are radical, by Fact 4.5, there are two σ a -isomorphisms α : G (b 1 ,...,b n+1 ) → (D, +) and β : G (b 1 ,...,bn) → (D, +). The σ a -morphism ρ = βπα -1 makes the following diagram commute. G (b 1 ,...,b n+1 ) G (b 1 ,...,bn) Since ker π = {0} × • • • × {0} × C(a), the map ρ has a nontrivial kernel. Let c ∈ ker ρ \ {0}, and put ρ * (x) = ρ(cx). Then ρ * : D → D is onto since ρ is. One also has ker ρ * = c -1 • α(ker π). Since ker π has right C(a)-dimension 1, ker ρ * also has right C(a)-dimension 1. Since ker ρ * contains 1, one must have ker ρ * = ker γ = C(a), and the equality ker ρ * = ker γ holds in any difference extension of (D, σ a ). By Fact 4.1, the twist ρ * factorises in ρ * = δγ with γ = σ a -id. If x ∈ ker δ, then x = γ(y) for some y in a linearly surjective extension of (D, σ a ) given by Fact 4.2, hence y ∈ ker ρ * = ker γ so x = 0. It follows that δ is bijective, so γ is onto D, which is the desired contradiction.
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 7475 An NTP 2 division ring of characteristic p has finite dimension over its centre.Proof. By Lemma 7.3, it suffices to show that for every such division ring D satisfying xy -yx = 1, the dimension [D : C(a)] is finite for every a. Let us assume for a contradiction that [D : C(a)] is infinite. As in the proof of Theorem 6.1, we consider σ a the conjugation map by a, we write γ = σ a -id and show that γ is onto D. This can be done choosing an infinite tuple b ∈ D N such that the groups G (b 1 ,...,bn) are radical for each n 1 thanks to Fact 4.8, and applying the NTP 2 chain condition 7.1 to the family {b i • γ(D) : i ∈ N}, of right vector spaces over the infinite division ring C(a). This contradicts the assumption that xy -yx = 1 holds in D. The centre of an infinite NTP 2 division ring is infinite.