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Abstract. Flash floods pose significant hazards in urbanised

zones and have important implications financially and for

humans alike in both the present and future due to the

likelihood that global climate change will exacerbate their

consequences. It is thus of crucial importance to improve

the models of these phenomena especially when they oc-

cur in heterogeneous and karst basins where they are diffi-

cult to describe physically. Toward this goal, this paper ap-

plies a recent methodology (Knowledge eXtraction (KnoX)

methodology) dedicated to extracting knowledge from a neu-

ral network model to better determine the contributions and

time responses of several well-identified geographic zones

of an aquifer. To assess the interest of this methodology, a

case study was conducted in southern France: the Lez hy-

drosystem whose river crosses the conurbation of Montpel-

lier (400 000 inhabitants). Rainfall contributions and time

transfers were estimated and analysed in four geologically

delimited zones to estimate the sensitivity of flash floods to

water coming from the surface or karst. The Causse de Viols-

le-Fort is shown to be the main contributor to flash floods and

the delay between surface and underground flooding is esti-

mated to be 3 h. This study will thus help operational flood

warning services to better characterise critical rainfall and

develop measurements to design efficient flood forecasting

models. This generic method can be applied to any basin with

sufficient rainfall–run-off measurements.

1 Introduction

Flash floods are rapid (they rise in a few hours) and in-

tense floods that occur within small basins. Our current lack

of understanding of these floods constitutes a great societal

challenge because of their socioeconomic and environmen-

tal impacts (Gaume and Bouvier, 2004; Llasat et al., 2010).

Over the past 20 years, flash flooding in south-eastern France

has caused more than 100 fatalities and several billion eu-

ros in property damage. In karst basins, the event of June

2010, in the river Var (southern France) caused 27 casual-

ties and more than one billion euros of damages. Early warn-

ing is also a priority (Borga et al., 2011; Price et al., 2011)

that could be improved by using forecast models. In recent

decades, considerable efforts have been devoted to improving

our understanding and forecasting of flash flooding (Gaume

et al., 2009; Marchi et al., 2010). In the literature three as-

pects were investigated: (i) the rain event (or other cause of

rising water), (ii) run-off genesis, and (iii) surface and under-

ground geomorphologic and geologic settings that channel

the water transfer toward the outlet.

Mediterranean rain events often occur at the meso-scale

(Rivrain, 1997) and generate intense localised rainfall. For

this reason, Le Lay and Saulnier (2007), Cosandey and

Robinson (2000), and Tramblay et al. (2010) show that flash-

flood generation is controlled by spatial and temporal vari-

ability of rainfall and initial soil-moisture conditions. More-

over, sensitivity to rainfall heterogeneity is elevated in small

watersheds, which are locations of flash flooding (Krajew-

ski et al., 1991; Corradini and Singh, 1985; Raynaud et
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al., 2015). The hydrodynamic behaviour of hydrosystems

subject to intense rain events depends on soil moisture as

well as geology, tectonics, and land use (Anctil et al., 2008;

Nikolopoulos et al., 2011). Moisture content estimation at

the watershed scale has proven beneficial for discharge pre-

diction (Kitanidis and Bras, 1980; Parajka et al., 2006;

Wooldridge et al., 2003). Nevertheless, soil-moisture mea-

surements are highly dependent on field measurement tech-

niques; they provide relative spatial and temporal distribu-

tions (Katul et al., 2007; Lauzon et al., 2004) rather than ab-

solute values.

In karst systems, underground water obviously plays a sig-

nificant role in flooding (Bailly-Comte et al., 2012; Fleury et

al., 2013). Nevertheless, karst systems are intrinsically het-

erogeneous and their hydrodynamic behaviour generally dif-

fers from one system to another (Bakalowicz, 2005). How-

ever, even if the contribution of karst groundwater to flash

flooding is assumed to be negligible because of its longer re-

sponse time (Borga et al., 2007; Norbiato et al., 2008), other

studies emphasise the considerable contribution of ground-

water to flash flooding (Bailly-Comte et al., 2012). Faced

with the question of the role of karst groundwater in flash

flooding, this study investigates a method for estimating spa-

tialised contributions from different parts of a heterogeneous

aquifer.

Because of the lack of knowledge regarding the vari-

ous hydrodynamic behaviours involved in karst systems, a

generic black-box method seems to be adequate. For this rea-

son, neural network modelling seems to be a relevant method

(Kong-A-Siou et al., 2011, 2014; Kurtulus and Razack,

2007). For this purpose, in recent decades, the multilayer per-

ceptron has been increasingly used in the field of hydrology

(Maier and Dandy, 2000; Toth, 2009). These models have

been effective in identifying the rainfall–run-off relationship

(Hsu et al., 1995). Their ability to forecast flash floods (Touk-

ourou et al., 2011; Artigue et al., 2012) and model karst sys-

tem behaviour have also been demonstrated (Kong-A-Siou

et al., 2011). To model hydrosystem behaviour efficiently,

neural networks need relevant data sets as input and output

variables, and rigorous application of regularisation methods

(Abrahart and See, 2007; Bowden et al., 2005; Fernando et

al., 2009). Rainfall data are obvious inputs; in addition (An-

ctil et al., 2008), demonstrated that soil-moisture content ob-

servations improve prediction performance. Even so, selec-

tion of relevant variables to represent moisture content is a

difficult task (Darras et al., 2014a). Data quantity and qual-

ity are the major limiting factors in the application of neu-

ral networks to hydrological modelling (Pereira Filho and

Santos, 2006). Because of noisy data, neural networks used

to model natural phenomena are sensitive to overfitting; the

use of regularisation methods to deal with the bias–variance

trade-off is thus mandatory (cf. Sect. 3.1.2). Kong-A-Siou

et al. (2014) compared neural network models and VEN-

SIM software to simulate flooding or drought; they con-

cluded that neural modelling performed better for extreme

events, whereas VENSIM worked better for intermediate,

more complex events. This statistical approach has been used

to propose some interesting hydrological models. Artigue et

al. (2012) has proposed a combination of linear and non-

linear modelling in the same model. Corzo and Solomatine

(2007) have proposed a combination of specialised neural

networks to represent isolated processes involved in flood

genesis. These methods provided efficient forecasts on rapid

hydrodynamic watersheds. Moreover, recent advances have

proven that the use of these statistical tools can improve the

currently available knowledge of a system. Based on these

recent scientific findings, the Knowledge eXtraction (KnoX)

methodology was developed to describe contributions and

time transfers of spatialised rainfall in any basin. This pa-

per thus proposes to apply this methodology to better appre-

hend both surface and groundwater processes at the origin of

flash flooding in a karst basin. To this end, we focus on the

Lez karst hydrosystem which feeds the Lez river that flows

through the conurbation of Montpellier (southern France)

with a population of 400 000. Because of its meteorological

and geomorphological setting, the Lez river at the Lavalette

station, located at the entrance to the city of Montpellier is the

site of flash flooding. In addition, as a karst system, the geo-

morphological structure of the Lez aquifer is strongly hetero-

geneous, leading to anisotropic water circulation and highly

non-linear hydrodynamic behaviour. Flow rate at Lavalette

station includes contributions from perennial karst springs

(the most important is Lez spring), temporary karst springs

(Lirou spring can be stronger than Lez spring), diffuse karst

arrivals, and also run-off.

The scientific challenge of this study is thus to apply neu-

ral networks to better quantify processes operating in flash

flooding. For this purpose, after the Introduction, Sect. 2

presents a discussion of neural network modelling and the

KnoX method. Section 3 is a description of the study area.

Section 4 presents the application of the KnoX method to the

study area and estimate of contributions and time transfers

of spatialised rainfalls to discharge at Lavalette. Section 5

discusses the results and exposes operational and scientific

implications. In the conclusion section we discuss innovative

perspectives of this generic methodology.

2 Artificial neural network modelling for better

characterise processes

2.1 Neural network design

2.1.1 General presentation

Artificial neural networks are statistical black-box models

that use input–output measurements to identify non-linear

functions of a system. Basics about neural modelling can be

found in Dreyfus (2005), only specific information, manda-

tory for a comprehensive presentation of this study, will be
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provided hereafter. The chosen model is the multilayer per-

ceptron because of its properties of universal approximation

and parsimony (Barron, 1993). The universal approximation

is the capability to approximate any differentiable and con-

tinuous function with an arbitrary degree of accuracy (Hornik

et al., 1989). In our study, the multilayer perceptron is a feed-

forward model, a finite impulse response model based on

Nerrand et al. (1993). Designing a multilayer perceptron con-

sists mainly of selecting input variables and the number of

hidden neurons. This determines the number of parameters

mechanically; model complexity increases with the number

of parameters. The general equation of the function calcu-

lated by the feed-forward multilayer perceptron is the fol-

lowing:

yk
= gNN

(
yk−1

p , . . .,y
k−wy
p ,uk, . . .,uk−wu−1,C

)
, (1)

where the estimated value of the output at the discrete time k

is yk; the observed value of this variable is yk
p ; the input vec-

tor is uk; the non-linear function implemented by the neural

network is gNN; wu and wy are the width of windows used

to apply the input time series, they are linked to the length

of the vectors u and yp; and C is the matrix of parameters of

the model, also called “weights”.

As statistical models, neural networks are designed in rela-

tion to a database. This database is usually divided into three

sets: a training set, a stop set, and a test set. The training

set is used to calculate parameters through a training proce-

dure that minimises the mean quadratic error calculated on

output neurons. The training is stopped by the stop set (cf.

Sect. 2.1.2), and model quality is estimated by the third part

of the database: the test set, which is separate from the train-

ing and stopping sets. The model’s ability to be efficient on

the test set is called generalisation. However, the training er-

ror is not an efficient estimator of the generalisation error: the

efficiency of the training algorithm makes the model specific

to the training set. This specialisation of the neural network

on the training set is called overfitting. Overfitting is exac-

erbated by large errors and uncertainties in field measure-

ments; the model learns the specific realisation of noise in the

training set. This major issue of neural network modelling is

called bias–variance trade-off (Geman et al., 1992). Usually

regularisation methods are used to avoid overfitting; to this

end, two regularisation methods were used in this study.

2.1.2 Regularisation methods

In the context of this study, the goal of regularisation meth-

ods is to minimise output variance. To this end, cross-

validation (Stone, 1974) was used as explained in Kong-A-

Siou et al. (2012) to empirically select input variables and the

number of hidden neurons. Cross-validation thus minimises

model complexity and therefore output variance (Schoups et

al., 2008).

Another regularisation method is commonly employed:

early stopping (Sjöberg et al., 1995). This method stops train-

ing before overtraining occurs. A dedicated set, called a stop

set, is considered separately from the database.

Working also on the Lez aquifer but considering only un-

derground water at the Lez spring, Kong-A-Siou et al. (2011)

applied multilayer perceptron to perform forecast at Lez

spring and validated cross-validation as a useful method to

select the complexity of the model. Moreover, Kong-A-Siou

et al. (2012), for the same basin, focussed on regularisation

methods (early stopping and weight decay). They conclude

that early stopping used in conjunction with cross-validation

was efficient.

Nevertheless these results, obtained with a 16-year daily

database cannot be applied directly in the present study be-

cause the flash-flood database is too limited to extract defini-

tively another set from the database (the stop set). Thus, to

apply early stopping without stop set, a pre-defined max-

imum number of training iterations were selected to stop

training before the complete convergence and, by this way,

avoid overtraining. Nevertheless, for this purpose, the selec-

tion of the optimal number of training iterations is done us-

ing a stop set. Then afterwards, the model is run without the

stop set using this pre-defined optimal number of training

iterations. In the first stage, the database, not including the

test set, was divided into S subsets corresponding to flash-

flood events. Training was performed on S-1 subsets with 50

different parameter initialisations. The remaining subset was

used as a stop set. Each subset was used in turn as a stop set.

For each trial the training iteration with the minimum mean

quadratic error over the stop set is set aside. The median of

these numbers of iterations was calculated for all stop sets

and all initialisations and selected as the optimal number of

training iterations. In a second stage, this optimal number of

training iteration (12 iterations) is used in all the following

without further utilisation of a stop set.

In this study, parameters are iteratively calculated using

the Levenberg–Marquardt algorithm (Hagan and Menhaj,

1994).

It is also well-known that model performance depends

strongly on the parameters initialisation. To define a reli-

able simulation independent from the initialisation, Darras

et al. (2014b) proposed to establish an ensemble of 50 mod-

els trained from different initialisations. The output is calcu-

lated at each time step by the median of the 50 outputs. It

is well-known that this method can smooth the output of the

model; nevertheless this is not a drawback in this study as

this method improves the robustness of the model, which is

very important to extract information.

2.2 Towards knowledge improvement about processes

Even if neural networks generally implement black-box

models, several authors have tried to make the model more

understandable. For example Johannet et al. (2008) and Jain
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and Kumar (2009) demonstrated the possibility of observing

physically interpretable information at the output of hidden

neurons. Another path would be to exploit parameters val-

ues. Several works were done to constrain the model using

physical knowledge at the level of the parameter for example

to select the best input set, or to select the more physically

plausible model (for example the parameters linked to the

evapotranspiration input must be positive) (Olden and Jack-

son, 2002; Kingston et al., 2006). Considering individual pa-

rameter value, another goal would be to assess that the neural

network model truly performed physical relation (Mount et

al., 2013).

Focusing on parameters, the principal difficulty is the

sensitivity of their values to the initialisation before train-

ing. This dependence can be avoided using statistical treat-

ments as proposed by Kingston et al. (2006). Kong-A-Siou et

al., (2013) used a multistep procedure to extract knowledge:

(i) proposal of a postulated model that describes the available

high-level knowledge about the behaviour of the system to

be modelled, (ii) implement a neural model architecture that

follows this postulated model: each box of this diagram is

implemented using a multilayer perceptron (or a unique lin-

ear neuron), (iii) train an ensemble of identical models that

differ by their initialisation, and calculate the median of the

absolute value of each parameter over the ensemble models

(noted as median parameter), and (iv) combine median pa-

rameters in a chain of causality to quantify the role of each in-

put variable. Compared to other works that calculate a similar

parameters chain-based calculation, and looked at constrains

at the level of parameters or inputs (Kingston et al., 2006),

this method is original because it applies constrains at the

level of processes identified in the block diagram (postulated

model). Using the block diagram of the postulated model in-

dicates that some processes are possible; others are not. It al-

lows thus for diminishing the number of parameters, and by

this way, the complexity of the model, and the multi-finality

of parameters value. The sign of the parameter is not impor-

tant as the product of two negative parameters is positive in

the chain of parameters product; for this reason and in or-

der to take profit of the “black-box” capabilities of ANN, we

do not want to constrain individual parameters. Kong-A-Siou

et al. (2013) applied this method to the Lez karst aquifer to

evaluate the groundwater contributions from different geo-

graphic zones to the discharge at the outlet. This methodol-

ogy is called KnoX. Its accuracy was assessed on a fictitious

model, whose processes were perfectly known, before being

applied to a real aquifer.

In this study we propose to apply the KnoX method to

quantify spatially and temporally the effect of different pro-

cesses, effective in a heterogeneous aquifer, to flash floods.

The considered gauge station is Lavalette at the entrance of

Montpellier, the time step is an hour. Regarding the case

study on the Lez basin, it is very different from the work

made by Kong-A-Siou et al. (2013), as in the present study

we considered flash flooding at Lavalette (maximum dis-

charge equal to 480 m3 s−1) having an important surface

water contribution; whereas the previous work investigated

daily run-off of underground water at the Lez spring (maxi-

mum discharge inferior to 20 m3 s−1). In the present study we

investigate the improvement of knowledge about karst and

non-karst (surface) flooding processes.

2.3 Performance criteria

Several criteria were used to model selection and perfor-

mance assessment. The first is the Nash–Sutcliffe efficiency,

hereafter referred to as R2 (Nash and Sutcliffe, 1970). R2 is

used to perform model selection using cross-validation. The

second is specifically flood oriented: the synchronous per-

centage of peak discharge, or SPPD. The last, a purely tem-

poral aspect, is the delay between measured and simulated

flood peak, hereafter referred to as Pd (peak delay).

2.3.1 Nash–Sutcliffe efficiency

The Nash–Sutcliffe efficiency is the most widely used crite-

rion for evaluating hydrological models. It is equivalent to

the R2 determination coefficient:

R2
= 1−

n∑
k=1

(
yk

p − yk
)2

n∑
k=1

(
yk

p − yk
p

)2
, (2)

where k is discrete time, n the number of time steps used to

calculate R2, yk the simulated discharge, yk
p the measured

discharge, and yk
p is the measured mean discharge. The Nash

score is not really convenient for assessing flood simulations

as it takes into account errors on the whole event and not

specifically on the peak. For this reason, other criteria were

proposed.

2.3.2 Synchronous percentage of peak discharge

Synchronous percentage of peak discharge is especially de-

signed for the evaluation of flash-flood modelling. It is the

ratio of measured and simulated discharges at the time of the

observed peak discharge:

SPPD = 100
y

kmax
p

y
kmax

p
p

, (3)

where kmax
p is the time of the measured peak discharge.

2.3.3 Delay between measured and simulated flood

peaks

The delay between simulated and measured peak discharge

is calculated using Eq. (4). A positive delay means a retarded

simulated peak discharge. Conversely, a negative lag means
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advanced simulated peak discharge. The peak delay can be

expressed as

Pd = kmax
− kmax

p , (4)

where kmax is the time of the simulated peak discharge.

3 Case study: the Lez aquifer

3.1 Lez hydrosystem

The Lez aquifer is a Mediterranean karst system located in

south-eastern France upstream of Montpellier (Fig. 1). Its ex-

tent is estimated at about 380 km2 (Bérard, 1983). The Lez

spring is the main outlet of this aquifer, hereafter referred

to as the “basin”. Another major spring is the Lirou spring,

which flows only during rain events. Both springs feed the

Lez river, which crosses Montpellier and its conurbation, an

area with a population of about 400 000. The recharge area,

composed of karst outcrops and swallow holes, is estimated

at about 130 km2 (Dörfliger et al., 2008). The surface catch-

ment, an area of about 120 km2, hereafter referred to as the

“watershed”, is defined by its topographic setting at the outlet

of Lavalette gauging station. As often with karst systems, ge-

ographical areas of the watershed and the underground basin

are not superposed. Due to complex geology, the recharge

area extends to only a part of the watershed and underground

basin. For this reason, the Lez aquifer is considered to be a

hydrosystem.

3.2 Geological and tectonic settings

Similar to many karst systems, the Lez hydrosystem is com-

posed of karst and non-karst components. The karst com-

ponent crops out in the upstream part of the system; it un-

derlies impervious formations in the downstream part. The

karst component consists of Cretaceous and Jurassic carbon-

ate rocks. The karst in these formations developed under the

current Mediterranean Sea level as a result of the Messinian

crisis (Hsü et al., 1973). These formations also crop out

widely and form the calcareous plateaus of both the Causse

de l’Hortus and the Causse de Viols-le-Fort. The downstream

part of the system is composed of Eocene carbonate and clay

formations and Tertiary sandstone and conglomerate forma-

tions.

Two major tectonic events have affected the geomorpho-

logical structure of the Lez hydrosystem. The first was Pyre-

nean compression, which occurred during the Eocene. This

south–north compression led to the formation of east–west

trending faults. The second tectonic event was the opening

of the Lion Gulf during the Oligocene. This event led to the

formation of north-east–south-west sinistral faults, including

the Corconne fault that crosses the Lez basin.

Figure 1. Map of the Lez hydrosystem with location of karst out-

crops, rain gauges, gauging stations, springs, Causses de Viols-le-

Fort and de l’Hortus and of Corconne fault. Boundaries of surface

watershed, underground basin and urban zones are also shown.

3.3 Meteorological and hydrogeological setting

The study area is subject to a Mediterranean climate.

Mediterranean events often occur at the meso-scale and pro-

mote intense and localised rainfall. Daily rainfalls can reach

650 mm, such as one event that occurred in September 2002

in south-eastern France. Such high-volume rainfall events are

referred to as Mediterranean episodes.

3.4 Hydrodynamic circulation

Kong-A-Siou et al. (2013) divided the Lez basin into four

parts (Fig. 2) to better analyse the rainfall–run-off relation-

ship at the Lez Spring at a daily time step. The east–west di-

vision is based on the Corconne fault pathway. On the west-

ern side of the basin, the south–north division is based on the

Causse de Viols-le-Fort boundary, which is a cropping part

of the principal aquifer. On the eastern side of the basin, a

south–north division has been drawn based on its geological

setting (impervious or non-impervious soils). The Oligocene

and Eocene formations define a well-delineated impervious

zone in the south-eastern part of the basin. The geological

composition of each zone is assumed to be “homogeneous”,

www.hydrol-earth-syst-sci.net/19/4397/2015/ Hydrol. Earth Syst. Sci., 19, 4397–4410, 2015
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Figure 2. Map of the Lez basin: zone boundaries and topographic

watershed, impervious and non-impervious formations, faults inten-

sifying infiltration.

which means that the geology within a zone is quite similar

and that it differs more from the geology of other zones. Us-

ing the KnoX method, Kong-A-Siou et al. (2013) were able

to estimate both the water contribution from each “homoge-

neous” geological zone to the Lez spring discharge and the

mean time response. The last study, which was conducted at

daily time step, shows the important contribution, more than

half, of the north-eastern zone to the discharge of the Lez

spring. These contributions are presented in Table 5.

3.5 Flash flooding in the Lez basin

Fed by abundant rainfall on the basin (245 mm in few days),

the Lez receives contributions from surface watershed and

also from underground (karst) basin thanks principally to

its tributary: the Lirou river. The Lez can exceed a dis-

charge higher than 500 m3 s−1 at its entrance to Montpel-

lier. This corresponds to a specific discharge greater than

4 m3 s−1 km−2, based on the size of the surface watershed

(120 km2, see Sect. 3.1), or 1.3 m3 s−1 km−2 considering the

whole underground basin (380 km2, see Sect. 3.1). These two

simple numbers highlight the need to better understand the

origin of the water, and water circulations during flash floods

at the Lavalette station at the entrance to Montpellier.

To this end, two different approaches have been proposed

in the literature, using event-based modelling. The first uses

data assimilation (Kalman filter) to (i) estimate karst filling

at the beginning of the event, (ii) adapt transfer velocity at

each time step, and (iii) correct the lack of accuracy of rain-

fall measurement. Based on these improvements, R2 of sim-

ulation increased from 0.89 to 0.91 for an event in Decem-

ber 2003, and from 0.72 to 0.98 for an event in September

2005 (Table 1). The model is based on the Soil Conserva-

tion Service production function coupled with a lag and route

transfer function (Coustau et al., 2012). The second approach

has operational goals and proposes a graphical method (aba-

cus) to estimate flood peaks from forecast rain features and

karst filling (Fleury et al., 2013). Using abacus, authors re-

vised the estimated peak of the September 2005 event down

to 460 m3 s−1 from 480 m3 s−1.

Thus, it appears that improved knowledge of karst–river

interactions is critical. For this purpose, in the next section

we propose to use the KnoX method to estimate the contri-

bution of each zone of the Lez basin to flash-flood events.

3.6 Database presentation and analysis

3.6.1 Monitoring network

Hourly rainfall data are available at five rain gauges: Saint-

Martin-de-Londres, Prades-le-Lez, Sommières, Vic-le-Fesq

and Saint-Hippolyte-du-Fort. The French Weather Forecast-

ing Service (Météo France) manages the first two gauges, and

the Flood Forecasting Service of the Grand Delta (SPCGD)

manages the last three gauges. Only the Prades-le-Lez rain

gauge is inside the Lez system, but as pointed out in intro-

duction, it is essential to make use of spatialised rainfall in-

formation. In addition, no data at the considered time step

is available further south than the Prades-le-Lez rain gauge.

Spatial rainfall variability is thus not correctly described in

the southern part of the basin. This will limit the reliability

of this study regarding the southern zone of the basin. Unfor-

tunately, it is not convenient to use weather radar information

in this basin because, due to the distance of the Nîmes radar

(50 km), this information is not robust from one event to

another and generally underestimate the rainfall value com-

pared to the rain gauge measurements (Marchandise, 2007;

Visserot, 2012); also radar information is not available for all

events in the database. Discharge data are provided by the

Lavalette gauging station managed by an office of the French

ministry of ecology and sustainable development (DIREN).

Both rainfall and discharge data are available at an hourly

time step, which is convenient for flash-flood modelling.

The data suffer from high noise and uncertainty. The un-

certainties of discharge measurements have been estimated

at around ±20 % for flash floods. The uncertainty of rainfall

measurements, can be as high as ±10 to 20 % (Marchandise,
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Table 1. Dates, peak discharges, and mean cumulative rainfalls of

flood events contained in the database. Intense events are high-

lighted by a star and in bold. Mean cumulative rainfall is calculated

using a weighted average of the five rain gauges with the Thiessen

polygon method.

Events Dates Peak Mean

discharge cumulative

(m3 s−1) rainfalls

(mm)

1 24–27 August 2002 7 128

2∗ 8–9 September 2002 112 171

3 8–13 October 2002 45 118

4∗ 9–13 December 2002 384 245

5 15–18 November 2003 68 86

6∗ 23–25 November 2003 95 51

7∗ 1–5 December 2003 438 234

8∗ 5–7 September 2005 480 144

9 27–31 January 2006 53 117

10 13–15 September 2006 25 147

11 23–26 September 2006 23 85

12 2–7 May 2007 9 88

13∗ 20–21 October 2008 114 123

14∗ 21–22 October 2008 104 72

15 1–8 November 2008 31 127

2007). Rainfall and discharge time series are available from

2002 to 2008. Fifteen flood events whose peak discharges ex-

ceed 80 m3 s−1 were selected (Table 2). Events 7 and 8 were

the most intense; contrary to other intense events, events 13

and 8 occurred on dry soils.

4 Application of the KnoX method to flash flooding at

Lavalette

4.1 From postulated model to neural network model

As presented in Sect. 2.2, the postulated model represents the

schematic high-level information one has about the basin of

interest. This a priori knowledge must be expressed using a

block diagram and each box of this diagram is implemented

using a multilayer perceptron (or a unique linear neuron).

4.1.1 Postulated model

The postulated model describing flash-flood genesis at

Lavalette station is based on the work of Kong-A-Siou et

al. (2013) as the considered basin is the same (surface

and underground). Remember that the primary difference

is that flash floods are considered at hourly time steps at

the Lavalette station in this study. Using continuous data at

daily time steps at the Lez spring, Kong-A-Siou et al. (2013)

showed that the north-eastern and north-western zones are

the principal contributors to Lez spring discharge. To esti-

mate the contributions of each zone to flooding at Lavalette,

we distinguished both behaviours: surface (rapid if inside the

impervious watershed) and underground (slower if infiltrated

into karst outcrops or in faults: faults play the role of a drain

in impervious parts of the basin inside and outside of the

Lavalette surface watershed). Schematically, by looking at

the map presented in Fig. 2 and following the previous rea-

soning, one can propose that the north-western zone would

make a minor contribution to flash flooding at Lavalette be-

cause it is outside the surface (topographic) basin and be-

cause its underground time response is high (Table 5). The

south-eastern zone would also have a minor impact because

its impervious area is mostly outside the Lavalette watershed.

Regarding the south-western and north-eastern zones, it is

difficult to propose an a priori quantification. It is thus not

easy to estimate the principal contributors to flash flooding.

Application of the KnoX method would provide this quantifi-

cation. The postulated model of the basin behaviour is thus

composed of four branches, each corresponding to a zone

of the basin, involving surface and groundwater, and feeding

a complex mixing process. The postulated model is repre-

sented in Fig. 3 in a grey block diagram.

The model used to apply the KnoX method is based on the

multilayer perceptron; it follows the postulated model repre-

sented in Fig. 3 with four zones contributing to discharge at

Lavalette station. As suggested by the KnoX method, to be

able to identify the contribution of each zone to the discharge,

a linear hidden neuron is added between the inputs and the

layer of sigmoid neurons. These neurons are intended to rep-

resent rain that falls on each zone; they facilitate the estimate

of the time response of water falling in each zone.

4.1.2 Input data

Inputs are mean rainfalls for each zone. These rainfalls

are calculated using the Thiessen polygon method. Table 2

shows the weight of each rain gauge for each zone. It high-

lights the sparse spatial distribution of rainfall information in

the south of the basin. Nevertheless, taking into account the

importance of the stakes in this zone, and as the goal of this

study is to better understand the behaviour of the basin in or-

der to develop well-suited monitoring strategy, we consider

the rainfall information sufficient to carry out this study.

4.2 Model design

4.2.1 Model selection

As presented in Sect. 2.1.2, model selection is done using

cross-validation and pre-definite number of training itera-

tions. Ranges of investigation and chosen values of various

window width and hidden neurons numbers are provided in

Table 3. One can note that the complexity of the model is

moderate (small number of hidden neurons). To make the

model assessment more reliable on the most intense events 7
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Table 2. Percentage of each rain gauge to the rainfall for each zone and for the whole Lez basin by Thiessen polygons.

Rain gauges North-eastern North-western South-eastern South-western Whole

zone zone zone zone Lez system

area

Prades-le-Lez 74 % 13 % 100 % 39 % 61 %

Sommières 12 % – – – 5 %

Vic-le-Fesq 14 % 3 % – – 6 %

Saint-Martin-de-Londres – 20 % – 61 % 15 %

Saint-Hippolyte-du-Fort – 64 % – – 13 %

Table 3. Optimisation of the rainfall temporal window widths.

North-eastern North-western South-eastern South-western Previous Nc

zone zone zone zone discharge

Temporal window width range (h) 3–9 2–8 2–8 3–9 1–5 1–7

Chosen temporal window width (h) 7 7 4 7 1 5

Figure 3. Postulated model: grey block diagram. Three layer multilayer perceptron with linear hidden layer between rainfall inputs and

non-linear layer. Parameters used in Eq. (4) are denoted in red.

and 8, model selection was done without these events (blind

assessment).

4.2.2 Model validation

The database presented in Table 4 shows seven flash-flood

events. Because of the small number of events and their het-

erogeneity it seemed necessary to estimate modelling quality

on all events. We thus decided to train seven models, testing

each on one event (training performed on the six following

events). The model tested on event n is noted as Tn. This

is a cross-test operation. Table 4 shows the performance of

the seven models in terms of R2, synchronous percentage of

peak discharge (SPPD), and peak delay (Pd). After training,

we compared the quality of the models: aside from model T2,

R2 and SPPD scores of model T13 are the worst, respectively

0.71 and 138 %. The other models show satisfactory R2 and

SPPD scores: R2 from 0.79 to 0.96 and SPPD from 87 to 99 %.
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Figure 4. Hydrographs of major events in the database: events 7 and 8. Simulated discharge is the median of outputs coming from the

50 run models (differing by their initialisation parameters). Uncertainty on the observed value is the measurement 20 %. Uncertainty on the

simulated value is represented by simulations coming from the 50 run models (differing by their parameters initialisation).

Table 4. Performances of models T2, T4, T6, T7, T8, T13 and T14:

Nash criterion (R2), the synchronous percentage of the peak dis-

charge (SPPD) and the peak delay (Pd). T7 and T8 are models tested

on the two most intense events, they are highlighted in bold.

Models R2 SPPD Pd

(%) (h)

T2 −0.75 22 −5

T4 0.96 87 −1

T6 0.84 122–89 0–0

T7 0.96 99 0

T8 0.93 97 0

T13 0.71 138 0

T14 0.79 94 1

Regarding the Pd, only model T2 performed badly. The mod-

els T4, T7, T8, and T14 are efficient regarding the three per-

formance criteria. Model T13 overestimates the flood peak;

note that event 13 is the sole event that occurred on dry soils,

except event 8 when extremely intense rainfall was observed.

Looking at hydrographs presented in Fig. 4 for the two

most intense events and taking into account the scores pre-

sented in Table 4, one can suggest that the models are effi-

cient enough to be used for knowledge extraction. In addi-

tion, as it will be shown in Sect. 4.3.1, knowledge extraction

is independent of outliers as it takes into account all events

of the training database.

4.3 Contributions and time transfers of spatial rainfall

to discharge at the Lavalette station

The KnoX method was used to estimate the contributions

of the four previously defined zones to flash flooding at the

Lavalette station.

4.3.1 Extraction of information from parameters

After training, the median of absolute values of the param-

eters for 50 different initialisations is calculated. It is noted

as M
∣∣Cij

∣∣ for the parameter Cij linking the neuron (or in-

put) j to the neuron i. The rainfall contribution of zone z to

output at time step k− d (k is the discrete time and d a de-

lay) is denoted as rz(k− d). It is calculated according to the

chain of parameters linking one input: rz(k− d), to the out-

put y(k). As it is shown in Fig. 3, we have three layers of

parameters between the input rz(k− d) and the output y(k);

therefore, there are three terms in the numerator; denomina-

tor corresponds to normalisation terms in order to estimate

the specific contribution of the input rz(k− d) relative to the

sum of all other parameters of the same layer. There is also

three normalisation terms because there are three layers of

parameters. The following notations are reported in red in

Fig. 3. The contribution is calculated as

P (rz (k− d))=

M
∣∣CHzrd

∣∣∑wz

d=0

M ∣∣CHzrd

∣∣∑Nc

HN=1

[
M
∣∣CHNHz

∣∣∑l
Hz=1

(
M
∣∣CHNHz

∣∣)+∑w1−1
d=1

(
M
∣∣CHNqd

∣∣) M
∣∣CoHN

∣∣∑n
HN=1

(
M
∣∣CoHN

∣∣)
]

, (5)

where Hz(Hz = 1,4) is the subscript of the first hidden layer

of linear neurons, HN(HN = 1, Nc) is the subscript of the sec-

ond hidden layer (of Nc non-linear neurons); qd is the sub-

script of the previously measured discharge inputs yq, and o

is the subscript of the output layer.

The contribution of an entire zone can be expressed as the

sum of the contributions of the considered zone at different

time steps:
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Table 5. Contributions (in bold) of different zones to discharge. Flash-flood contribution is the median of contributions of rainfall inputs to

the output of the seven models T2, T4, T6, T7, T8, T13 and T14. Maximum and minimum values come from the set of 7 models in this study

and from 10 experiments of 50 initialisations in Kong-A-Siou et al. (2013).

North-western North-eastern South-western South-eastern

zone zone zone zone

Part of the surface watershed at Lavalette 10 % 45 % 20 % 25 %

Rainfalls contribution to flash flooding 9 % 26 % 47 % 18 %

at Lavalette (min–max) (8–11 %) (18–30 %) (43–54 %) (12–24 %)

Time delay of principal contributions – −2 h; −5 h −1 h; −4 to −5 h 0 h

Part of the underground basin at Lez spring 22 % 36 % 18 % 24 %

from Kong-A-Siou et al. (2013)

Rainfalls contribution to daily discharge at Lez spring 29 % 52 % 13 % 6 %

from Kong-A-Siou et al. (2013) (min–max) (28–31 %) (50–54 %) (10–15 %) (4–7 %)

Time delay of principal contributions −1 to −3 days −1 day −1 day 0 day

Pz =

∑wz

d=0
P (rz (k− d)) . (6)

This contribution calculus is done for each exogenous in-

put: rainfall or measured discharge, and for each designed

model (Tn, n= 1, 7). The contributions of the previous mea-

sured discharges used as input to the model ranges from 21

to 30 % (79–70 % for total rainfall) depending on the consid-

ered model Tn (n= 1, 7). Nevertheless, only rainfall contri-

bution values are considered (for a total of 100 %) because

the measured input of discharge plays the role of state vari-

able (Artigue et al., 2012). Rainfall contribution medians for

the seven models are provided in Table 5. Values obtained by

Kong-A-Siou et al. (2013) are also reported; they show the

difference between contributions of the same zones to very

different processes (flash flood at Lavalette station for this

study, and daily aquifer discharge at the Lez spring in the

2013 study).

4.4 Time distribution of contributions

Figure 5 shows the time distributions of contributions by

the north-western, north-eastern, south-western, and south-

eastern rainfall inputs. The percentages expressed in this sec-

tion are the contribution of the inputs to the output.

Figure 5 shows that the major contribution comes from

the south-western zone, with two peaks at k-1 and k-4 to k-

5. This means that, on average, for all events and all time

steps, water comes principally from the south-western zone

via two transfer functions: one associated with rapid surface

response (k-1) and the other associated with slower karst re-

sponse (k-4 to k-5) (Causse de Viols-le-Fort, cf. Figs. 1, 2).

The same reasoning can be applied to the north-eastern zone:

fast surface response at k-2 and slower karst water at k-5 (due

to numerous faults in this zone, cf. Fig. 2); nevertheless, con-

tributions from the north-eastern zone are less pronounced

than the south-western ones.

5 Discussion

5.1 Rainfalls contributions to discharge

The map shown in Fig. 2 and Table 5 can guide the discus-

sion: Fig. 2 presents the transcription of geological properties

in infiltration capabilities.

– Regarding the south-western zone (43–54 %), it appears

that the large extent of karst delayed contribution (24 %

for k-4 to k-5) comes from the Causse de Viols-le-Fort.

This property is not observed in daily continuous mod-

elling (Table 5) because the Lirou spring (outlet of the

Causse de Viols-le-Fort, cf. Fig. 1) is an intermittent

spring that flows only in wet conditions; moreover, this

part of the aquifer is pumped for drinking water during

the dry season.

– Regarding the north-eastern zone, the second largest

contributor to flash flooding at Lavalette (18–30 %), a

careless analysis could lead to the conclusion that it

may be the major contributor because it has a large im-

pervious basin within the surface watershed of the Lez

at Lavalette. However, significant losses occur through

numerous faults in the southern part of this zone (cf.

Fig. 2). As in the south-western zone, two contribu-

tions play a role: surface (rapid) and underground (slow)

(recall that the contribution reflects the behaviour of

the entire training database; thus, this schematic be-

haviour can be assumed). Nevertheless the Lez spring,

which drains the underground north-eastern zone, has

a smaller discharge than Lirou spring, during flood

events, and thus softens the underground flooding. The

daily discharge of the north-eastern zone to Lez spring

(50–54 %) can be explained only by infiltration through

numerous faults, not only limited to the surface water-

shed but also in the extreme northern part of the under-
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Figure 5. Median and total spread of time distributions of north-western, north-eastern, south-western and south-eastern rainfall inputs

contributions calculated from parameters of the seven designed models.

ground basin. Indeed, a dye tracing experiment demon-

strated water circulation between sinkholes in river trib-

utaries of the Vidourle (east of Lez basin, cf. Fig. 2)

(Bérard, 1983).

– In the north-western zone, both behaviours (flash flood-

ing at Lavalette or daily run-off at the Lez spring) differ

greatly. For flash floods at Lavalette, the north-western

zone has a weak influence, which is consistent with the

representation of the basin in Fig. 2 (perched aquifer

delaying water transfers and limited infiltration along

the Corconne fault due to the limited infiltration capa-

bility of the fault); for daily run-off at the Lez spring,

conversely, delayed transfer and permanent infiltration

along faults increases the storage and thus contributes

more to daily run-off (28–31 %).

– Lastly, the south-eastern zone has a lesser effect on

flash flooding due to its small area in the watershed at

Lavalette (12–24 %). One can observe a relatively large

variability on Fig. 5. This may be a limit of the work

due to (i) the high sensitivity of this small fully imper-

vious area to localised heavy rainfall, combined with the

bad representation of the rainfall variability in this zone

(Sect. 3.6.1), or (ii) the heterogeneity of events that in-

fluences the training. For daily run-off at the Lez spring,

this zone can be excluded from the recharge basin (4–

7 %); this is consistent with the Fig. 2 information, as

the zone is composed of impervious formations down-

stream of the spring.

5.2 Time behaviour

Temporal contributions within each zone are shown in Fig. 5.

As analysed previously, these contributions are consistent

with dual behaviours: fast surface water and slower karst wa-

ter. The sensitivity of these estimations with respect to the

different models (seven models) shown by dotted points does

not contradict the proposed analysis.

5.3 Flash-flood simulations

Schematically, Fig. 5 shows that response times of 2 h (prob-

ably surface water) and 5–6 h (probably karst water) are not

very different. Consequently, it is possible for karst water to

add to surface flooding in the event of multi-peak rainfalls.

This behaviour was underlined by Bailly-Comte et al. (2012),

Coustau et al. (2012), and Fleury et al. (2013) who focussed

on the importance of the initial water level inside the karst.

Consequently, flash-flood simulations would require real-

time piezometric information in both the north-eastern and

south-western zones to estimate the influence of karst water

in these two zones.
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5.4 Limits of the study

The KnoX method is a novel tool for investigating the be-

haviour of heterogeneous basins. Because this method is

currently under discovery and development, the sensitivity

of the provided estimations to noise, uncertainty, and small

database size have not yet been fully assessed. Nevertheless

the overview of the Lez aquifer that this method has provided

appears to be quite consistent with the current knowledge.

Based on the proposed behaviour of the Lez aquifer, several

fieldwork projects are currently in progress to assess karst

and non-karst contributions at the Lavalette station.

6 Conclusion

Mediterranean flash floods and mountain floods are respon-

sible for numerous casualties and major property damage.

These floods occur in heterogeneous basins, which are diffi-

cult to observe and thus to model. For this reason this paper

investigates the ability to obtain information on a complex

aquifer through global systemic modelling using neural net-

works. For this purpose we chose as a case study flash flood-

ing at the entrance to the great city of Montpellier (south-

ern France) where large potential losses are at stake. After

recent trends in flash flooding and karst modelling, this pa-

per focuses on hydrological modelling with neural networks

and presents the basics of neural network modelling. It was

shown that these statistical models can efficiently model un-

known relationships using only databases. Moreover, effi-

cient new approaches were demonstrated to extract informa-

tion from a set of parameters. Among these methods, the

KnoX method can identify contributions from various geo-

graphic zones to discharge at the basin outlet; it also provides

better characterisation of processes linked to karst water and

surface water. To investigate this capability, a case study was

conducted on a complex hydrosystem, the Lez hydrosystem.

The application to this system shows that the KnoX method

consistently estimated the water contributions from four “ho-

mogenous” geological zones of the hydrosystem to the dis-

charge at its outlet. The main contributor to flash flooding

at Lavalette was identified as the Causse de Viols-le-Fort

karst plateau. Piezometric information within this plateau

would thus be of crucial importance to model flooding at

the Lavalette station. On a more interesting note, several

time responses were identified and associated with surface

circulations or underground contributions. The lag between

these two different response times, estimated at 3 h, may thus

correspond to a synchronisation difference between surface

and underground flooding. This information may help flood

warning services anticipate the size of a flood in case of a

rain event composed of two rain peaks separated by 3 h.

This is a generic method that can be applied to any hetero-

geneous basin as long as a sufficient database is available.
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