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Propagating speeds of bistable transition fronts in

spatially periodic media

Hongjun GUO ∗

Aix Marseille Univ, CNRS, Centrale Marseille, I2M, Marseille, France

Abstract

This paper is concerned with the propagating speeds of transition fronts in RN for spatially

periodic bistable reaction-diffusion equations. The notion of transition fronts generalizes

the standard notions of traveling fronts. Under the a priori assumption that there exist

pulsating fronts for every direction e with nonzero speeds, we show some continuity and

differentiability properties of the front speeds and profiles with respect to the direction e.

Finally, we prove that the propagating speed of any transition front is larger than the in-

fimum of speeds of pulsating fronts and less than the supremum of speeds of pulsating

fronts.

Keywords. Pulsating fronts; Transition fronts; Spatially periodic reaction-diffusion equa-

tions; Propagating speeds.

1 Introduction

In this paper, we study the propagating speeds of transition fronts of spatially periodic reaction-

diffusion equations of the type

ut = ∆u + f (x, u), (t, x) ∈ R × RN , (1.1)

where ut =
∂u
∂t

and ∆ denotes the Laplace operator with respect to the space variables x ∈ RN .

Throughout this paper, we assume that the reaction term f (x, u) is ZN-periodic with respect

to x. To be more precise, we denote by TN
= R

N/ZN the N-dimensional torus. We assume

that the function f : TN × R → R is continuous, Cα in x uniformly with respect to u ∈ R with

α ∈ (0, 1), of the class C2 in u uniformly with respect to x ∈ TN while the partial derivatives

fu(x, u) = ∂u f (x, u), fuu(x, u) = ∂uu f (x, u) are Lipschitz continuous in u, on TN × R. Moreover,

we assume that, for every x ∈ RN , the profile f (x, ·) is bistable in [0, 1], that is, there is θx ∈ (0, 1)

such that

f (x, 0) = f (x, 1) = f (x, θx) = 0, f (x, ·) < 0 on (0, θx), f (x, ·) > 0 on (θx, 1). (1.2)

∗The author was supported by the China Scholarship Council for 3 years of study at Aix Marseille Université.
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We also assume that 0 and 1 are uniformly (in x) stable zeroes of f (x, ·), in the sense that there

exist γ > 0 and σ ∈ (0, 1/2) such that

− fu(x, u) ≥ γ for all (x, u) ∈ RN × [0, σ] and (x, u) ∈ RN × [1 − σ, 1]. (1.3)

Notice that this implies in particular that σ < θx < 1 − σ. For mathematical convenience, we

assume that f (x, u) = fu(x, 0)u for (x, u) ∈ RN × (−∞,−u0) and f (x, u) = fu(x, 1)(u − 1) for

(x, u) ∈ RN × (1 + u0,+∞) for some positive u0, − fu(x, u) ≥ γ for all (x, u) ∈ RN × (−∞, σ] and

(x, u) ∈ RN × [1 − σ,+∞) and f (x, u), fu(x, u), fuu(x, u) are globally Lipschitz-continuous in u

uniformly in x ∈ RN .

The cubic nonlinearity is a typical case of such a function f satisfying (1.2) and (1.3), that

is,

f (x, u) = u(1 − u)(u − θx), (1.4)

where 0 < θx < 1 is a ZN-periodic Cα(RN) function with respect to x. Moreover, the intermediate

zero θx of f (x, ·) in (1.4) or more generally in (1.2) is not assumed to be constant in general.

Our main purpose in this paper is to study the propagating speeds of transition fronts which

are some classical solutions connecting the two stable states 0 and 1. A standard group of

transition fronts are so-called pulsating, or periodic fronts for our spatially periodic reaction-

diffusion equations. Let us recall the definition of a pulsating front which can be referred to

[33, 37, 38, 39].

Definition 1.1 (Pulsating fronts) A pair (Ue, ce) with Ue : R × TN → R and ce ∈ R is said to

be a pulsating front of (1.1) with effective speed ce in the direction e ∈ SN−1 connecting 0 and 1

if the two following conditions are satisfied:

(i) The map u(t, x) := Ue(x · e − cet, x) is an entire (classical) solution of the parabolic

equation (1.1).

(ii) The profile Ue satisfies

lim
ξ→+∞

Ue(ξ, y) = 0, lim
ξ→−∞

Ue(ξ, y) = 1, uniformly for y ∈ TN .

Notice that if (Ue(ξ, y), ce) is a pulsating front of (1.1) in the direction e ∈ SN−1, then it

satisfies the limit condition (ii) in the above definition as well as, if ce , 0, the semi-linear

elliptic degenerate equation

ce∂ξUe + ∂ξξUe + 2∇y∂ξUe · e + ∆yUe + f (y,Ue) = 0, for all (ξ, y) ∈ R × TN . (1.5)

Note that the notion of pulsating front with nonzero speed was first given in [33] and further

developed in [3, 37, 38, 39]. According to these references, it is said that an entire solution u(t, x)

of (1.1) is called a pulsating traveling wave solution in the direction e ∈ SN−1 and effective speed

c , 0 if it satisfies the following two conditions

(i) u(t + k·e
c
, x) = u(t, x − k), for all k ∈ ZN and (t, x) ∈ R × RN ,

(ii) limr→+∞ u(t, re + y) = 0, limr→−∞ u(t, re + y) = 1, for all t ∈ R and y ∈ RN .
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Notice that when the effective speed is nontrivial, this definition is equivalent to Definition 1.1.

In fact, if (Ue, ce) is a pulsating front with ce , 0 in sense of Definition 1.1, u(t, x) = U(x · e −
cet, x) becomes a pulsating front in sense of [3, 33, 37, 38, 39]. Conversely if u(t, x) is a pulsating

front in the direction e ∈ SN−1 and the effective speed c , 0, then so is U(ξ, x) := u(
x·e−ξ

c
, x) in

the sense of Definition 1.1 with ce = c.

Now we review some known existence results on standard traveling waves. In homogeneous

case, Aronson and Weinberger [2] and Fife and Mcleod [13] have studied the existence and

nonexistence of traveling fronts φ(x − ct) for one-dimensional equation

ut − uxx = f (u)

where f is bistable. Especially, if f simply satisfies f (0) = f (1) = 0, f < 0 on (0, θ) and f > 0

on (θ, 1), it is known to exist a traveling front φ(x − ct) satisfying

{

φ′′ + cφ′ + f (φ) = 0 in R,

0 < φ < 1 in R, φ(−∞) = 1 and φ(+∞) = 0.

Notice that the propagating speed c has the sign of
∫ 1

0
f (u)du and the profile φ is unique up

to shifts. For higher dimensions N ≥ 2, an immediate extension of one-dimensional traveling

fronts consists in planar traveling fronts

u(t, x) = φ(x · e − ct)

for any given unit vector e of RN , where (c, φ) are as above. We denote the level sets by

{x ∈ RN; u(t, x) = r} for 0 < r < 1 and any t ∈ R. Then, the level sets of planar fronts

are parallel hyperplanes which are orthogonal to the propagating direction e. We also notice

that the profiles of these fronts are invariant as they propagate with speed c in the direction e.

The existence and uniqueness of these fronts can be referred to the one-dimensional traveling

fronts. Besides, in RN with N ≥ 2, more general traveling fronts exist, which have non-planar

level sets. For instance, conical-shaped axisymmetric non-planar fronts are known to exist for

some f , see [7, 16, 25]. Fronts with non-axisymmetric shapes, such as pyramidal fronts, are

also known to exist, see [34, 36]. For qualitative properties of these traveling fronts, we refer to

[15, 16, 17, 25, 26, 29, 35, 36].

For explicit spatially periodic dependence, only few results has been obtained in the bistable

case. We may refer to the works of Xin [37, 38, 39] who used refined perturbation arguments

to obtain the existence of waves for such periodic equations

ut =

∑

i

(a(x)uxi
)xi
+

∑

i

bi(x)uxi
+ f (x, u) (1.6)

when the diffusivity matrix a is close to identity and f is independent of x. For one di-

mensional case of (1.6) when f (x, u) = g(x) f (u) with 0 < g1 ≤ g ≤ g2 < +∞ in R and
∫ 1

0
min[0,1] f (·, u)du > 0, Nolen and Ryzhik [28] proved the existence of pulsating fronts with

nonzero speed. Furthermore, if the solutions of (1.6) with some compactly supported initial

conditions can converge locally uniformly to 1 as t → +∞, there exist pulsating fronts with a

positive speed for (1.6), see [11]. Ding et al [8] also obtained some existence results of pulsating

fronts for one-dimensional reaction-diffusion equations in a periodic habitat. More precisely,
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they proved that pulsating fronts exist for small period and large period by applying the implicit

function theorem and abstract results of Fang and Zhao [12] and they got that the speed has the

sign of
∫

TN×[0,1]
f (x, u)dxdu when the speed is not zero. For one dimensional (1.1) with spatially

inhomogeneous mixed bistable-ignition reactions, Zlatoš [44] proved that there exists a unique,

up to shifts, right-facing (or left-facing) transition front which is increasing in time. Meantime,

he found a periodic pure bistable reaction such that there is no transition front of (1.1). Thus,

pulsating fronts with nonzero speed do not exist in general, we also refer to [8, 40, 41].

Throughout this paper, we assume that

(A1)
∫

TN×[0,1]
f (x, u)dxdu , 0,

(A2) for any direction e ∈ SN−1, there is a pulsating front (Ue, ce) with ce , 0 satisfying

Definition 1.1.

From the result of Ducrot [10] and our Lemma 2.2 in Section 2, it follows that the speed ce for

each direction e ∈ SN−1 has the sign of
∫

TN×[0,1]
f (x, u)dxdu once the assumptions (A1), (A2)

hold. Thus, without loss of generality, one can assume that
∫

TN×[0,1]
f (x, u)dxdu > 0, that is,

ce > 0 for all e ∈ SN−1. In fact, if ce < 0 for all e ∈ SN−1, one can replace u, f , Ue(ξ, y) by

ũ = 1 − u, g(x, u) = − f (x, 1 − u), Ũe(ξ, y) = 1 − Ue(−ξ, y) and then, the new pulsating front Ũe

propagates with speed −ce > 0. From [5] and Lemmas 2.3 and 2.4 in Section 2, for any direction

e ∈ SN−1, the speed ce is then unique and the pulsating front Ue is then unique up to shifts in

time.

As we emphasized, even for homogeneous case, there are many types of traveling fronts

in higher dimension such as standard planar fronts, conical-shaped axisymmetric non-planar

fronts, pyramidal fronts and so on. More complicated structured fronts exist for spatially pe-

riodic reaction-diffusion equations. A one-dimensional example can be refer to [9], in which

the authors established a new type of transition fronts which are not pulsating fronts. Even if

the types of traveling fronts are various, there are some common properties shared by them.

For all of them, the solutions u converge to the stable states 0 or 1 far away from their moving

or stationary level sets, uniformly in time. This fact led to the introduction of a more general

notion of traveling fronts, that is, transition fronts, see [4, 5] and see [30] in the one-dimensional

setting. In order to recall the notion of transition fronts, let us introduce a few notations. First,

for any two subsets A and B of RN and for x ∈ RN , we set

d(A, B) = inf
{

|x − y|; (x, y) ∈ A × B
}

and d(x, A) = d({x}, A), where | · | is the Euclidean norm in RN . Consider two families (Ω−t )t∈R
and (Ω+t )t∈R of open nonempty subsets of RN such that

∀t ∈ R,







































Ω
−
t ∩Ω+t = ∅,

∂Ω−t = ∂Ω
+

t =: Γt,

Ω
−
t ∪ Γt ∪Ω+t = RN ,

sup{d(x, Γt); x ∈ Ω+t } = sup{d(x, Γt); x ∈ Ω−t } = +∞

(1.7)

and


















inf
{

sup
{

d(y, Γt); y ∈ Ω+t , |y − x| ≤ r
}

; t ∈ R, x ∈ Γt

}

→ +∞

inf
{

sup
{

d(y, Γt); y ∈ Ω−t , |y − x| ≤ r
}

; t ∈ R, x ∈ Γt

}

→ +∞
as r → +∞. (1.8)

4



From the condition (1.7), we notice that the interface Γt is not empty for every t ∈ R. As far

as (1.8) is concerned, it says that for any M > 0, there is rM > 0 such that for any t ∈ R and

x ∈ Γt, there are y± ∈ RN such that

y± ∈ Ω±t , |x − y±| ≤ rM and d(y±, Γt) ≥ M. (1.9)

that is, y± ∈ B(x, rM) and B(y±, M) ⊂ Ω±t , where B(y, r) denotes the open Euclidean ball of center

y and radius r > 0. Moreover, the sets Γt are assumed to be made of a finite number of graphs:

there is an integer n ≥ 1 such that, for each t ∈ R, there are n open subsets ωi,t ⊂ RN−1(for

1 ≤ i ≤ n), n continuous maps ψi,t : ωi,t → R and n rotations Ri,t of RN , such that

Γt ⊂
⋃

1≤i≤n

Ri,t

(

{x ∈ RN ; x′ ∈ ωi,t, xN = ψi,t(x′)}
)

. (1.10)

Definition 1.2 [4, 5] For problem (1.1), a transition front connecting 0 and 1 is a classical solu-

tion u : R×RN → (0, 1) for which there exist some sets (Ω±t )t∈R and (Γt)t∈R satisfying (1.7), (1.8)

and (1.10), and, for every ε > 0, there exists Mε > 0 such that

{∀t ∈ R, ∀x ∈ Ω+t , (d(x, Γt) ≥ Mε)⇒ (u(t, x) ≥ 1 − ε),

∀t ∈ R, ∀x ∈ Ω−t , (d(x, Γt) ≥ Mε)⇒ (u(t, x) ≤ ε).
(1.11)

Furthermore, u is said to have a global mean speed γ (≥ 0) if

d(Γt, Γs)

|t − s| → γ as |t − s| → +∞.

This definition has been shown in [4, 5, 14] to cover and unify all classical cases. Moreover,

it was proved in [14] that, under some assumptions on f , any almost-planar transition front (in

the sense that, for every t ∈ R, Γt is a hyperplane) connecting 0 and 1 is truly planar, and that

any transition front connecting 0 and 1 has a global mean speed γ, which is equal to |c f |. Non-

standard transition fronts which are not invariant in any moving frame as time runs were also

constructed in [14]. For other properties of bistable transition fronts, we refer to [4, 5, 14]. There

is now a large literature devoted to transition fronts in various homogeneous or heterogeneous

settings or for other reaction terms, see e.g. [6, 10, 18, 19, 20, 21, 22, 23, 24, 27, 28, 31, 32, 42,

43, 44].

Now, we present our results in this paper. Our first result is about the continuity of the speed

ce and the profile Ue with respect to e ∈ SN−1. Here, we can refer to [1] for the ignition type, in

which the authors proved the continuity of the speed and the profile of the pulsating front with

respect to the propagating direction.

Theorem 1.3 Assume that (A1), (A2) hold and ce > 0 for any e ∈ SN−1. Then, the speed ce and

the profile Ue are continuous with respect to e ∈ SN−1 under a normalization of the profile Ue,

that is,
∫

R+×TN U2
e (ξ, y)dydξ = 1 for all e ∈ SN−1.

Remark 1.4 In Theorem 1.3, the normalization of Ue could be modified. In fact, we can nor-

malize Ue by the integral
∫

R+×TN U2
e (ξ, y)dydξ being any positive constant, or by Ue(0, 0) being

any constant between 0 and 1 for all e ∈ SN−1.
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Normalize Ue by
∫

R+×TN U2
e (ξ, y)dydξ = 1 for all e ∈ SN−1. For any b ∈ RN \ {0}, define

Ub = U b
|b|

and cb = c b
|b|
. (1.12)

Then, Ub and cb are well defined and continuous with respect to b ∈ RN \ {0} by Theorem 1.3.

Theorem 1.5 Normalize Ue by
∫

R+×TN U2
e (ξ, y)dydξ = 1 and let Ub and cb be defined in (1.12).

Then, Ub and cb are doubly continuously Fréchet differentiable at any b ∈ RN \ {0}.

Finally, we prove in this paper that the propagating rate of a transition front satisfies some

estimates related to the speeds ce of pulsating fronts.

Theorem 1.6 Assume that (A1), (A2) hold and ce > 0 for any e ∈ SN−1. For any transition front

u(t, x) of (1.1), it holds that

inf
e∈SN−1

ce ≤ lim inf
|t−s|→+∞

d(Γt, Γs)

|t − s| ≤ lim sup
|t−s|→+∞

d(Γt, Γs)

|t − s| ≤ sup
e∈SN−1

ce.

Remark 1.7 By the continuity of ce from Theorem 1.3, the inf and sup are actually min and

max. Moreover, since ce > 0 for any e ∈ SN−1, one has that infe∈SN−1 ce > 0 and supe∈SN−1 ce <

+∞.

We point out that if (A1), (A2) do not hold, there may exist stationary pulsating fronts. In

this situation, we will lose the continuity and differentiability of pulsating fronts in general. On

the other hand, since infe∈SN−1 ce = 0 when there exist stationary fronts, the first inequality in

Theorem 1.6 holds obviously. But we can not obtain the last inequality in Theorem 1.6 by our

method since our proof is based on the continuity and differentiability of pulsating fronts.

We organize our paper as follows. In the next section, we investigate some properties of pul-

sating fronts. Especially we prove that the pulsating fronts Ue and the speeds ce are continuous

and Fréchet differentiable with respect to the direction e ∈ SN−1, that is, we prove Theorem 1.3

and Theorem 1.5. Section 3 is devoted to the proof of Theorem 1.6 by showing two key-lemmas

in Section 3.1 and completing the proof in Section 3.2.

2 Properties

In this section, we deduce some properties of pulsating fronts Ue(x · e − cet, x), which are

well-known for planar fronts in homogeneous case. Especially, we prove the continuity and

differentiability of ce and Ue(ξ, y) with respect to the direction e, which obviously hold for

homogeneous planar fronts since they are independent of the propagating direction.

2.1 General properties

Since the properties in this section are proved for pulsating fronts in every direction e, we fix an

arbitrary e ∈ SN−1 in this section. First, we prove that the pulsating fronts are approaching their

limiting states 0 and 1 exponentially.
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Lemma 2.1 For any pulsating front Ue(x · e− cet, x) with ce ≥ 0, there exist A1, A2 ∈ R, µ1 > 0,

µ2 > 0 (µ1, µ2 are independent of e), C1 > 0, C2 > 0 such that

0 < Ue(x · e − cet, x) ≤ C1e−µ1(x·e−ce t) if x · e − cet ≥ A1, (2.1)

0 < 1 − Ue(x · e − cet, x) ≤ C2eµ2(x·e−ce t) if x · e − cet ≤ A2. (2.2)

Proof. It is known by the strong maximum principle that 0 < Ue(x · e − cet, x) < 1 for all

(t, x) ∈ R × RN . We only prove (2.1), the proof being similar for (2.2). We deal with it into two

cases: ce = 0 and ce > 0 (although assumption (A1) implies ce , 0, we still deal with ce = 0 for

completeness).

Case 1: ce = 0. In this case, the pulsating front Ue(x · e − cet, x) is a stationary front, that is,

Ue(x · e − cet, x) = Ue(x · e, x) := U(x). From Definition 1.1 of pulsating front, it satisfies

− ∆U − f (x,U) = 0 for x ∈ RN , (2.3)

and limx·e→+∞U(x) = 0, limx·e→−∞ U(x) = 1. It means that there exists A1 ∈ R such that

0 < U(x) ≤ σ for all x · e ≥ A1. (2.4)

where σ is defined in (1.3). From (1.2), (1.3), (2.3) and (2.4), it follows that

− ∆U + γU ≤ 0 for all x · e ≥ A1, (2.5)

where γ > 0 is also given in (1.3).

Define ω(x) = σe−µ1(x·e−A1) where µ1 is a positive constant to be chosen. The function ω

satisfies

−∆ω + γω = (−µ2
1 + γ)σe−µ1(x·e−A1) for x ∈ RN .

Take µ1 =
√
γ so that −µ2

1
+γ = 0 which also means −∆ω+γω = 0 for x ∈ RN . Since U(x) → 0

as x · e→ +∞ and ω(x) ≥ U(x) for all x · e = A1 from (2.4), it follows from (2.5) and the elliptic

weak maximum principle, that

U(x) ≤ σe−µ1(x·e−A1) for x · e ≥ A1.

Case 2: ce > 0. In this case, we consider the pulsating front v(t, x) := Ue(x · e− cet, x) which

satisfies (1.1) with limiting conditions limx·e−ce t→±∞ v(t, x) = 0, 1. It means that there exists

A1 ∈ R such that

0 < v(t, x) ≤ σ for all x · e − cet ≥ A1. (2.6)

From (1.3) and (2.6), it follows that

vt − ∆v + γv ≤ 0 for all x · e − cet ≥ A1. (2.7)

Define ω(t, x) = σe−µ1(x·e−ce t−A1) for µ1 =
√
γ > 0 such that µ1ce − µ2

1
+ γ = µ1ce ≥ 0. Then

ω(t, x) satisfies

ωt − ∆ω + γω ≥ 0 for all (t, x) ∈ R × RN . (2.8)

On the other hand,

δ ≥ Ue(A1, x) for all x ∈ TN ,
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that is, ω(t, x) ≥ v(t, x) for all x · e − cet = A1. Let

ε∗ = inf{ε > 0; v(t, x) − ε ≤ ω(t, x) for all x · e − cet ≥ A1}

which is well-defined from (2.6) and ω(t, x) > 0. We only need to show ε∗ = 0.

Assume by contradiction that ε∗ > 0. There exist then a sequence (εn)n∈N of positive real

numbers and a sequence of points (tn, xn)n∈N satisfying xn · e − cetn ≥ A1 such that

εn → ε∗ as n→ +∞ and v(tn, xn) − εn > ω(tn, xn) for all n ∈ N. (2.9)

We claim that xn · e − cetn − A1 ≥ 0 are upper-bounded uniformly in n ∈ N. Otherwise,

v(tn, xn) → 0 and ω(tn, xn) → 0 which means −ε∗ ≥ 0 from (2.9) and then contradicts ε∗ > 0.

Therefore, ξn := xn · e − cetn are bounded and v(tn, xn) = U(ξn, xn), ω(tn, xn) = e−µ1ξn . Since

U(ξ, y) is periodic in y, there is then (ξ∗, x∗) ∈ R × RN or say, (t∗, x∗) ∈ R × RN such that

x∗ · e− cet
∗ > A1 and v(t∗, x∗)− ε∗ = ω(t∗, x∗). Define z = ω− v. From (2.7) and (2.8), it follows

that zt − ∆z + γz ≥ 0 for all x · e − cet ≥ A1. But z reaches a minimum at the point (t∗, x∗) with

x∗ · e − cet
∗ > A1 and z(t∗, x∗) = −ε∗ < 0. Thus, −γε∗ ≥ 0, which is a contradiction. Therefore,

ε∗ = 0, that is, (2.1) holds. This completes the proof. �

Although the following lemma is elementary, we state it for completeness.

Lemma 2.2 For any pulsating front Ue(x · e − cet, x) with ce , 0, the speed ce has the sign of
∫

TN×[0,1]
f (x, u)dxdu.

Proof. Notice that u(t, x) = Ue(x·e−cet, x) is a classical solution of (1.1) and v = ut is a classical

solution of vt = ∆v + fu(x, u)v. Then, by Lemma 2.1 and standard parabolic estimates, all

functions ∂ξUe, ∂yi
Ue, ∂ξξUe, ∂yiξUe, and ∂yiy j

Ue for i, j = 1, · · · ,N, converge to 0 exponentially

as ξ → ±∞. Integrating (1.5) in R × TN by parts against ∂ξUe, one has that

ce

∫

R×TN

|∂ξUe|2dydξ =

∫

TN×[0,1]

f (y, u)dydu.

Thus, ce has the sign of
∫

TN×[0,1]
f (x, u)dxdu. �

In the next lemma, we show that every pulsating front with nonzero speed is strictly mono-

tone in time.

Lemma 2.3 Any pulsating front Ue(x · e − cet, x) with ce , 0 is monotone in t.

Proof. By Definition 1.2 of transition fronts, one can notice that, any pulsating front Ue(x · e −
cet, x) is a transition front with (Γt)t∈R := (cete)t∈R, (Ω+t )t∈R := ({x|x · e < cet})t∈R, (Ω−t )t∈R :=

({x|x · e > cet})t∈R. Moreover, from (1.2), (1.3) and the regularity of f , there exists a positive

constant σ̂ such that the function f (x, s) is nonincreasing in [0, σ̂] and in [1 − σ̂, 1]. Therefore,

from [5, Definition 1.4], Ue(x · e − cet, x) is an invasion of 0 by 1 when ce > 0. Then, by [5,

Theorem 1.11] with its followed discussion, it implies that Ue(x · e − cet, x) is increasing in t.

Similarly when ce < 0, the pulsating front is an invasion of 1 by 0, and whence it is decreasing

in t. From the strong maximum principle applied to ut, this also implies that ∂ξUe(ξ, y) < 0 for

all (ξ, y) ∈ R × RN which completes the proof. �
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Lemma 2.4 For every direction e ∈ SN−1, the speed of pulsating fronts for (1.1) with non-zero

speed is unique in the sense that if Ue(x · e− cet, x) and Ũe(x · e− c̃et, x) are two pulsating fronts

with ce , 0, c̃e , 0, then ce = c̃e. Furthermore, the pulsating front is unique up to shifts in t,

that is, there is τ ∈ R such that Ũe(x · e − c̃et, x) = Ue(x · e − cet + τ, x).

Proof. Under the assumptions of Lemma 2.4, Lemma 2.2 implies that ce and c̃e have that same

sign. If follows then from [5, Thoerem 1.12 and 1.14] that ce = c̃e and that the fronts are unique

up to shifts in time. �

2.2 Continuity

This section is devoted to proving the continuity of (Ue, ce) with respect to the direction e.

Following the proof of [9, Theorem 1.4], we can get a uniform bound of the speeds of

pulsating fronts for any direction.

Lemma 2.5 There is a positive constant C depending only on the function f such that

sup
e∈SN−1

|ce| ≤ C.

Remark 2.6 The strategy for the proof of Lemma 2.5 as in [9], is to construct supersolutions

and subsolutions of (1.1) as

u(t, x) = min

(

e−(x·e−Ct)
+
σ

2
e−γt, 1

)

, for t ≥ 0 and x ∈ RN ,

and

u(t, x) = max

(

1 − e(x·e+Ct) − σ
2

e−γt, 0

)

, for t ≥ 0 and x ∈ RN ,

where σ and γ are given in (1.3) and C > 0 is a sufficiently large constant independent of the

direction e.

We now prove the continuity of (Ue, ce), that is, Theorem 1.3.

Proof of Theorem 1.3. Step 1: proof of infe∈SN−1 ce > 0. We first show that infe∈SN−1 ce > 0.

Assume by contradiction that there is a sequence (en)n∈N ⊂ SN−1 such that cen
→ 0 as n→ +∞.

We assume that there is e0 ∈ SN−1 such that en → e0 as n → +∞, even if it means to extract a

subsequence. For every direction e ∈ SN−1, we normalize Ue by

Ue(0, 0) = 1 − δ′, (2.10)

where δ′ > 0 will be defined later. Let un(t, x) = Uen
(x · en − cen

t, x). Since ∂ξUe is negative for

all e ∈ SN−1 and Uen
(ξ, y) is periodic in y, it follows that

un(1, x) ≥ 1 − δ′, for x ∈ ZN such that x · en − cen
≤ 0. (2.11)

By standard parabolic estimates, un converges locally uniformly, up to a subsequence, to a

solution u∞ of (1.1). By (un)t > 0, one has that (u∞)t ≥ 0. Furthermore, by (2.11), en → e0 and

cen
→ 0 as n→ +∞, it follows that

u∞(1, x) ≥ 1 − δ′, for x ∈ ZN such that x · e0 ≤ 0. (2.12)
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Let δ′ > 0 be chosen less than 1 and whence u∞(1, x) ≥ 1−δ′ > 0 for x ∈ ZN such that x · e0 ≤ 0

and u∞(0, 0) = 1− δ′ < 1. By the strong maximum principle, it follows that 0 < u∞(t, x) < 1 for

all (t, x) ∈ R × RN .

Let δ > 0 be such that

δ < min(γ, σ),

where γ and σ are defined in (1.3). Since limξ→−∞Ue0
(ξ, y) = 1 and limξ→+∞Ue0

(ξ, y) = 0, there

is C > 0 such that

Ue0
(ξ, y) ≥ 1 − δ, for ξ ≤ −C and Ue0

(ξ, y) ≤ δ, for ξ ≥ C. (2.13)

Since ∂ξUe0
(ξ, y) is negative and continuous in R × TN , there is k > 0 such that −∂ξUe0

≥ k for

all (ξ, y) ∈ [−C,C] × TN . Let ω > 0 such that

ωk ≥ L + δ,

where L = max(u,x)∈[0,1]×TN | fu(u, x)|. From (2.12), the Harnack inequality and 1 is a solution of

(1.1), one can choose δ′ small enough such that

u∞(0, x) ≥ 1 − δ, for x ∈ RN such that x · e0 ≤ 0. (2.14)

Then, for any (t, x) ∈ R × RN , we set

u(t, x) = max
(

Ue0
(x · e0 − ce0

t − ωe−δt + ω +C, x) − δe−δt, 0
)

. (2.15)

Let us check that u is a subsolution for the problem satisfied by u∞(t, x), for t ≥ 0 and x ∈ RN .

First, at the time 0, it follows from (2.14) that

u∞(0, x) ≥ 1 − δ ≥ u(0, x), for all x ∈ RN such that x · e0 ≤ 0.

On the other hand, from (2.13) and the fact that u∞ ≥ 0, it follows that for all x ∈ RN such that

x · e0 ≥ 0,

u(0, x) = max
(

Ue0
(x · e0 +C, x) − δ, 0

)

≤ max(0, 0) = 0 ≤ u∞(0, x).

Thus,

u∞(0, x) ≥ u(0, x), for all x ∈ RN .

Inspired by [13] and [14], it is easy to check that

Lu = u
t
− ∆u − f (u) ≤ 0

for all t ≥ 0 and x ∈ RN such that u(t, x) > 0. By the comparison principle, one gets that

u∞(t, x) ≥ u(t, x), for t ≥ 0 and x ∈ RN .

Since ce0
> 0 and limξ→−∞Ue0

(ξ, y) = 1, one infers that u∞(t, x) converges locally uniformly

to 1 as t → +∞.
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Fix l ∈ ZN such that l · e0 > 0. Since en → e0 and cen
→ 0 as n→ +∞, one has that l · en > 0

for n large enough, and l · en/cen
→ +∞ as n → +∞. Then, for any s ∈ R, it follows from the

definition of pulsating fronts and (un)t > 0 that

un(s, 0) ≤ un(
l · en

cen

, 0) = un(0,−l),

for n large enough. Passing to the limit as n→ +∞, it follows that

u∞(s, 0) ≤ u∞(0,−l) < 1,

for all s ≥ 0. This contradicts the locally uniform convergence of u∞(t, x) to 1 as t → +∞.

Thus, we get that infe∈SN−1 ce > 0.

Step 2: continuity of ce. Take any e0 ∈ SN−1 and any sequence (en)n∈N ⊂ SN−1 such that

en → e0 as n → +∞. Then, by Lemma 2.5 and Step 1, there is c > 0 and a subsequence cenk

such that cenk
→ c as nk → +∞. For all direction e ∈ SN−1, we still take the normalization

(2.10). By standard parabolic estimates applied to u(t, x) = Ue(x · e− cet, x) for all e ∈ SN−1, one

gets that Ue and its derivatives are uniformly bounded in R × TN and uniformly for e ∈ SN−1.

Then, the sequence Uenk
converges locally uniformly along with its derivatives up to the second

order, up to a subsequence, to a function U∞ and U∞ satisfies

c∂ξU∞ + ∂ξξU∞ + 2∇y∂ξU∞ · e0 + ∆yU∞ + f (y,U∞) = 0, for all (ξ, y) ∈ R × TN ,

and U∞(0, 0) = 1 − δ′. That also implies that if let vn(t, x) = Uenk
(x · enk

− cenk
t, x), one has that

vn(t, x) → v∞(t, x) = U∞(x · e0 − ct, x) locally uniformly in R × RN and v∞(t, x) satisfies (1.1).

Moreover, since Ue(ξ, y) is periodic in y and ∂ξUe(ξ, y) < 0 for all e ∈ SN−1, one has that U∞(ξ, y)

is periodic in y and ∂ξU∞(ξ, y) ≤ 0.

We borrow the parameters δ, ω, k from Step 1. By the normalization (2.10) and U∞(ξ, y) is

periodic in y and nonincreasing in ξ, one gets that v∞(t + 1, x) = U∞(x · e0 − c(t + 1), x) ≥ 1 − δ′
for all t ∈ R and x ∈ ZN such that x · e0 − c(t + 1) ≤ 0. From the Harnack inequality and 1 is a

solution of (1.1), one can choose δ′ small enough such that

v∞(t, x) = U∞(x · e0 − ct, x) ≥ 1 − δ, for all x · e0 − ct ≤ 0.

Then, one can prove as in Step 1 that u(t, x) defined in (2.15) is a subsolution of the problem

satisfied by v∞(t, x), for t ≥ 0 and x ∈ RN .

By the comparison principle, one gets that

v∞(t, x) = U∞(x · e0 − ct, x) ≥ u(t, x), for t ≥ 0 and x ∈ RN .

This implies that c ≥ ce0
. In fact, if c < ce0

, one has that for any (t, x) ∈ (0,+∞) × RN such that

x · e0 = ct, x · e0 − ce0
t −ωe−δt + ω +C = −(ce0

− c)t −ωe−δt +ω +C → −∞ as t → +∞. Since

limξ→−∞Ue0
(ξ, y) = 1 and limt→+∞ e−δt = 0, there exists T > 0 large enough such that for any

x ∈ RN such that x · e0 = cT ,

v∞(T, x) ≥ u(T, x) =max
(

Ue0
(x · e0 − ce0

T − ωe−δT + ω +C, x) − δe−δT , 0
)

≥ 1 − δ
′

2
. (2.16)
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However, for any x ∈ ZN such that x · e0 = cT , it follows that v∞(T, x) = U∞(0, x) = U∞(0, 0) =

1 − δ′ since U∞(ξ, y) is periodic in y which is a contradiction with (2.16).

Now we prove c ≤ ce0
. Take znk

such that Uenk
(znk

, 0) = δ′. Then, from the analysis of the

head of this step, one has that v′nk
(t, x) = Uenk

(x · enk
− cnk

t + znk
, x) converge locally uniformly,

up to a subsequence, to a solution v′∞(t, x) = U′∞(x · e0 − ct, x) of (1.1) where U′∞(0, 0) = δ′,

∂ξU
′
∞ ≤ 0 and U′∞(ξ, y) is periodic in y. Then, one can construct supersolutions for the problem

satisfied by v′∞(t, x) as

u(t, x) = min
(

Ue0
(x · e0 − ce0

t + ωe−δt − ω − C, x) + δe−δt, 1
)

,

for t ≥ 0 and x ∈ RN . Similar to the arguments as above, one infers that c ≤ ce0
.

Then, one can conclude that c = ce0
. By the uniqueness of ce0

in the direction e0 and e0 is

arbitrary taken, it implies that ce is continuous with respect to e ∈ SN−1.

Step 3: continuity of Ue under a normalization. We now prove the continuity of Ue under

the normalization
∫

R+×TN

U2
e (ξ, y)dydξ = 1. (2.17)

Take any e0 ∈ SN−1 and any sequence (en)n∈N ⊂ SN−1 such that en → e0 as n→ +∞. Remember

that cen
→ ce0

> 0 from the continuity of ce. Let ξn such that supy∈RN Uen
(ξn, y) = σ, where σ

is defined in (1.3) (remember also that σ < θx for all x ∈ RN). Then, by standard parabolic

estimates applied to the fronts (t, x) 7→ Uen
(x · en − cen

t, x) and since cen
→ ce0

> 0, the sequence

Uen
(·+ ξn, ·) converges locally uniformly along with its derivatives up to the second order, up to

a subsequence, to a function U∞ and U∞ satisfies

ce0
∂ξU∞ + ∂ξξU∞ + 2∇y∂ξU∞ · e0 + ∆yU∞ + f (y,U∞) = 0, for all (ξ, y) ∈ R × TN ,

and supy∈RN U∞(0, y) = σ. Since Ue(ξ, y) is periodic in y and ∂ξUe(ξ, y) < 0 for all e ∈ SN−1, one

has that U∞(ξ, y) is periodic in y and ∂ξU∞(ξ, y) ≤ 0. Thus, there are periodic functions p+(y)

and p−(y) such that limξ→−∞U∞(ξ, y) = p+(y) and limξ→+∞U∞(ξ, y) = p−(y). Moreover, by

standard parabolic estimates applied to u∞(t, x) = U∞(x − ce0
t, x), we get that p±(y) are C2(RN)

periodic stationary solutions of (1.1). From supy∈RN U∞(0, y) = σ, it follows that p−(y) ≤ σ.

Then, by the strong maximum principle, p−(y) ≡ 0. If p+(y) ≡ 1, it implies that u∞(t, x) =

U∞(x · e0 − ce0
t, x) is a pulsating front connecting 0 and 1. Then, by Lemma 2.4, one has that

U∞ equals to Ue0
up to shifts.

Assume by contradiction that p+(y) . 1. From the strong maximum principle, p+(y) < 1.

Set r = supx∈TN p+(y) < 1. Then, U∞(ξ, y) ≤ r < 1 for all (ξ, y) ∈ R × TN since ∂ξU∞(ξ, y) ≤ 0.

Let u(t, x) = Ue0
(x · e0 − ce0

t, x) and u∞(t, x) = U∞(x · e0 − ce0
t, x). Notice that u∞(t, x) > 0

from the maximum principle, since supy∈RN U∞(0, y) = σ > 0 and u∞ ≥ 0. Let δ′ > 0 such that

f (x, ·) is nonincreasing in (−∞, δ′]. Since U∞(ξ, y) is nonincreasing in ξ and limξ→+∞U∞(ξ, y) =

p−(y) = 0, there is a constant A such that

u∞(t, x) = U∞(x · e0 − ce0
t, x) ≤ δ′, for all (t, x) ∈ R × RN such that x · e0 − ce0

t ≥ A.

Since limξ→−∞Ue0
(ξ, y) = 1, there is τ > 0 such that

u(t + τ, x) = Ue0
(x · e0 − ce0

t − ce0
τ, x) ≥ r, for all (t, x) ∈ R × RN such that x · e0 − ce0

t ≤ A.
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Then, u∞(t, x) ≤ u(t + τ, x) for all (t, x) ∈ R × RN such that x · e0 − ce0
t ≤ A since u∞(t, x) =

U∞(x · e0 − ce0
t, x) ≤ r. Define

ω− = {(t, x) ∈ R × RN ; x · e0 − ce0
t ≥ A}.

One can follow the proof of [5, Lemma 4.2] to get that u∞(t, x) ≤ u(t + τ, x) for (t, x) ∈ ω−.
Then, u∞(t, x) ≤ u(t + τ, x) for all (t, x) ∈ R × RN .

Define

τ∗ = inf{τ′ ∈ R; u∞(t, x) ≤ u(t + τ′, x) for all (t, x) ∈ R × RN}.

Observe that τ∗ ∈ R is well defined, since u(t+ τ′, x)→ 0 as τ′ → −∞ for every (t, x) ∈ R×RN ,

while u∞(t, x) > 0. Since u(t, x) = Ue0
(x · e0 − ce0

t, x) and limξ→−∞Ue0
(ξ, y) = 1, there are some

B > 0 such that u(t + τ∗, x) ≥ (1 + r)/2 for any (t, x) ∈ R × RN such that x · e − ce0
t ≤ −B. Note

that u∞(t, x) ≤ r < (1 + r)/2 < 1. Then, assume that inf−B≤x·e0−ce0
t≤A(u(t + τ∗, x) − u∞(t, x)) > 0

and u∞(t, x) < u(t + τ∗, x) for all (t, x) ∈ R × RN such that −B ≤ x · e0 − ce0
t ≤ A. Then, there is

η0 > 0 such that for η ∈ (0, η0),

u∞(t, x) ≤ u(t + τ∗ − η, x), for all (t, x) ∈ R × RN such that −B ≤ x · e0 − ce0
t ≤ A.

Then, followed again the proof of [5, Lemma 4.2], one has that u∞(t, x) ≤ u(t + τ∗ − η, x) for

(t, x) ∈ ω− and also for all x ·e0−ce0
t ≤ −B, from the choice of B. Thus, u∞(t, x) ≤ u(t+τ∗−η, x)

for all (t, x) ∈ R × RN which contradicts the definition of τ∗. Therefore,

inf{u(t + τ∗, x) − u∞(t, x); −B ≤ x · e0 − ce0
t ≤ A} = 0.

Then, there is a sequence (tn, xn) such that −B ≤ xn · e0 − ce0
tn ≤ A and u∞(tn, xn) = u(tn +

τ∗, xn). By periodicity of Ue0
(ξ, y) and U∞(ξ, y) with respect to y, one can assume without loss

of generality that the sequence (xn)n∈N is bounded and that there is (t∗, x∗) ∈ R × RN such that

xn → x∗ and tn → t∗ as n → +∞. Therefore, u∞(t∗, x∗) = u(t∗ + τ∗, x∗) and u∞(·, ·) ≤ u(· + τ∗, ·)
in R × RN . The strong maximum principle implies that u∞(·, ·) ≡ u(· + τ∗, ·) in R ×RN , which is

a contradiction, since u∞ ≤ r in R × RN . Thus, p+(y) ≡ 1 and whence U∞ equals to Ue0
up to

shifts.

Now we show that the sequence of shifts ξn defined by supy∈RN Uen
(ξn, y) = σ is bounded.

Assume first by contradiction that, up to extraction of a subsequence, ξn → −∞ as n → +∞.

Since supy∈RN Uen
(ξn, y) = σ and ∂ξUen

(ξ, y) < 0, one has that Uen
(ξn + ξ, y) ≤ σ for ξ ≥ 0 and

y ∈ RN . Followed by the proof of Lemma 2.3, one gets that Uen
(ξn + ξ, y) ≤ σe−µ1ξ for ξ ≥ 0

and y ∈ RN , where µ1 is independent of en. Then, the normalization (2.17) implies that

1 =

∫

R+×TN

U2
en

(ξ, y)dydξ =

∫

(−ξn ,+∞)×TN

U2
en

(ξn + ξ, y)dydξ ≤
∫

(−ξn,+∞)×TN

σ2e−2µ1ξdξ → 0,

as ξn → −∞, which is a contradiction. Then, consider that ξn → +∞ as n → +∞. By the

normalization (2.17), one has that
∫

(−ξn,+∞)×TN U2
en

(ξn + ξ, y)dydξ = 1. Since, from the previous

paragraph, Uen
(ξn + ξ, y) → Ue0

(ξ + ξ0, y) locally uniformly in R × RN for some ξ0 ∈ R, we get

that
∫

[−K,K]×TN

U2
en

(ξn + ξ, y)dydξ →
∫

[−K,K]×TN

U2
e0

(ξ + ξ0, y)dydξ
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for any K > 0 as n→ +∞. Since ξn → +∞ as n→ +∞, one has that for all K > 0,

∫

[−K,K]×TN

U2
e0

(ξ + ξ0, y)dydξ ≤ lim
n→+∞

∫

[−K,K]×TN

U2
en

(ξn + ξ, y)dydξ

≤ lim
n→+∞

∫

(−ξn ,+∞)×TN

U2
en

(ξn + ξ, y)dydξ = 1.

The limit as K → +∞ leads to a contradiction, since Ue0
(ξ, y) → 1 as ξ → −∞. Thus, ξn is

bounded and up to extraction of a subsequence, Uen
(ξ, y) → Ue0

(ξ + ξ0, y) locally uniformly in

R × RN for some ξ0 ∈ R as n→ +∞.

Then, we prove that the convergence Uen
(ξ, y)→ Ue0

(ξ + ξ0, y) is in fact uniform in R×RN .

Note that the uniformity with respect to the second variable y immediately follows from the

periodicity. Furthermore, for a given ε > 0, let K > 0 be such that

0 ≤ Ue0
(ξ + ξ0, y) ≤ ε

2
for ξ ≥ K, y ∈ RN and 1 − ε

2
≤ Ue0

(ξ + ξ0, y) ≤ 1 for ξ ≤ −K, y ∈ RN .

Then, for n large enough, one has that

‖Uen
(ξ, y) − Ue0

(ξ + ξ0, y)‖L∞([−K,K]×RN ) ≤
ε

2
.

In particular, Uen
(K, y) ≤ ε and Uen

(−K, y) ≥ 1 − ε for all y ∈ RN and n large enough. Since

∂ξUe(ξ, y) < 0, it follows that

0 ≤ Uen
(ξ, y) ≤ ε for ξ ≥ K, y ∈ RN and 1 − ε ≤ Uen

(ξ, y) ≤ 1 for ξ ≤ −K, y ∈ RN .

Then, we get that

‖Uen
(ξ, y) − Ue0

(ξ + ξ0, y)‖L∞((−∞,−K]∪[K,+∞×RN ) ≤ ε,
for n large enough. Therefore, one can conclude that Uen

(ξ, y) → Ue0
(ξ + ξ0, y) uniformly in

R × RN as n→ +∞.

Finally, we show that ξ0 = 0. By Lemma 2.1, for any ε > 0, there exists K > 0 large enough

such that
∣

∣

∣

∣

∣

∣

∫

[K,+∞)×TN

(

U2
en

(ξ, y) − U2
e0

(ξ + ξ0, y)
)

dydξ

∣

∣

∣

∣

∣

∣

<
ε

2
.

Since Uen
(ξ, y) → Ue0

(ξ + ξ0, y) uniformly in R × RN as n → +∞, it follows Lebesgue’s domi-

nated convergence theorem that there is N such that for n ≥ N,

∣

∣

∣

∣

∣

∣

∫

(0,K]×TN

(

U2
en

(ξ, y) − U2
e0

(ξ + ξ0, y)
)

dydξ

∣

∣

∣

∣

∣

∣

<
ε

2
.

Thus, for n ≥ N, one has that

∣

∣

∣

∣

∣

∫

R+×TN

(

U2
en

(ξ, y) − U2
e0

(ξ + ξ0, y)
)

dydξ

∣

∣

∣

∣

∣

< ε.

which implies

∫

R+×TN

U2
en

(ξ, y)dydξ →
∫

R+×TN

U2
e0

(ξ + ξ0, y)dydξ, as n→ +∞.
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From the normalization (2.17), it follows that
∫

R+×TN

U2
e0

(ξ + ξ0, y)dydξ = 1 =

∫

R+×TN

U2
e0

(ξ, y)dydξ.

Since ∂ξUe0
(ξ, y) < 0, that implies ξ0 = 0. Since e0 is arbitrary taken, one concludes that Ue is

continuous with respect to e ∈ SN−1 under the normalization (2.17). The proof of Theorem 1.3

is thereby complete. �

2.3 Differentiability

This section is devoted to proving the differentiability of (Ue, ce) with respect to the direction e.

Let us introduce some notions first. Let L2(R × TN), H1(R × TN) and H2(R × TN) be the

Banach spaces defined by

L2(R × TN) ={u ∈ L2
loc(R × RN); u(ξ, y + k) = u(ξ, y) a.e. in R × RN for any k ∈ ZN ,

and u ∈ L2(R × K) for any bounded set K ⊂ RN},
H1(R × TN) ={u ∈ H1

loc(R × RN); u(ξ, y + k) = u(ξ, y) a.e. in R × RN for any k ∈ ZN ,

and u ∈ H1(R × K) for any bounded set K ⊂ RN},
and

H2(R × TN) ={u ∈ H2
loc(R × RN); u(ξ, y + k) = u(ξ, y) a.e. in R × RN for any k ∈ ZN ,

and u ∈ H2(R × K) for any bounded set K ⊂ RN},

endowed with the norms ‖u‖L2(R×TN ) = (
∫

R

∫

TN |u|2dydξ)1/2,

‖u‖H1(R×TN ) = ‖u‖L2(R×TN ) + ‖∂ξu‖L2(R×TN ) +

N
∑

i=1

‖∂yi
u‖L2(R×TN ),

and

‖u‖H2(R×TN ) = ‖u‖H1(R×TN ) + ‖∂ξξu‖L2(R×TN ) +

N
∑

i=1

‖∂ξ∂yi
u‖L2(R×TN ) +

N
∑

j=1

N
∑

i=1

‖∂y j
∂yi

u‖L2(R×TN ).

Fix a real β > 0 and for any e ∈ SN−1, define a linear operator

Me(v) := ce∂ξv + ∂ξξv + 2∇y∂ξv · e + ∆yv − βv,

where

v ∈ D := {v ∈ H1(R × TN); ∂ξξv + 2∇y∂ξv · e + ∆yv ∈ L2(R × TN)}.
The space D is endowed with the norm ‖v‖D = ‖v‖H1(R×TN ) + ‖∂ξξv + 2∇y∂ξv · e + ∆yv‖L2(R×TN ).

Before going further, we need some properties of the linearization of (1.5) at Ue. For any

e ∈ SN−1, define

He(v) := ce∂ξv + ∂ξξv + 2∇y∂ξv · e + ∆yv + fu(y,Ue)v, v ∈ D,

and let the adjoint operator H∗e be defined by H∗e (u) = −ce∂ξu+∂ξξu+2∇y∂ξu ·e+∆yu+ fu(y,Ue)u

for u ∈ D.

From the proofs of Lemma 3.1, Lemma 3.2 and Lemma 3.3 in [8], one has the following

lemma.

15



Lemma 2.7 For every e ∈ SN−1, the operator Me : D → L2(R × TN) is invertible. For all

e ∈ SN−1 and g ∈ L2(R × TN), there is a constant C such that

‖M−1
e (g)‖H1(R×TN ) ≤ C‖g‖L2(R×TN ).

For every e ∈ SN−1, every g ∈ L2(R × TN) and every sequences (en)n∈N in SN−1, (gn)n∈N in

L2(R × TN) such that en → e, ‖gn − g‖L2(R×TN ) → 0 as n→ +∞, there holds M−1
en

(gn)→ M−1
e (g)

in H1(R × TN) as n→ +∞.

Remark 2.8 Define

Mc,e(v) := c∂ξv + ∂ξξv + 2∇y∂ξv · e + ∆yv − βv.

Following the proofs of Lemma 3.1, Lemma 3.2 and Lemma 3.3 in [8], one can actually obtain

that for every e ∈ SN−1 and c > 0, the operator Mc,e : D → L2(R × TN) is invertible and for

every e ∈ SN−1, c > 0, g ∈ L2(R × TN) and every sequences (en)n∈N in SN−1, (cn)n∈N in (0,+∞)

and (gn)n∈N in L2(R × TN) such that en → e, cn → c, ‖gn − g‖L2(R×TN ) → 0 as n → +∞, there

holds M−1
cn ,en

(gn) → M−1
c,e(g) in H1(R × TN) as n → +∞. Since ce is continuous with respect to

e ∈ SN−1 and infe∈SN−1 ce > 0, one gets Lemma 2.7 immediately.

From the proof of Lemma 4.1 in [8], one has the following lemma.

Lemma 2.9 The operator He and H∗e have algebraically simple eigenvalue 0 and the range of

He is closed in L2(R × TN), and the kernel of He is generated by ∂ξUe.

For any e ∈ SN−1, v ∈ H2(R × TN), ϑ ∈ R and η ∈ RN , define

Ke(v, ϑ, η) = ϑ∂ξ(Ue + v) + 2∇y∂ξ(Ue + v) · η + f (y,Ue + v) − f (y,Ue) + βv,

and

Ge(v, ϑ, η) :=

(

v + M−1
e (Ke(v, ϑ, η)),

∫

R+×TN

[

(Ue(ξ, y) + v(ξ, y))2 − U2
e (ξ, y)

]

dydξ

)

.

In view of Lemma 2.7, the function Ge maps H2(R × TN) × R × RN to D × R. Note that

Ge(0, 0, 0) = 0.

Lemma 2.10 For every e ∈ SN−1, the function Ge : H2(R × TN) ×R × RN → D × R is continu-

ous and it is continuously Fréchet differentiable with respect to (v, ϑ) and doubly continuously

Fréchet differentiable with respect to η.

Proof. Since Ke is affine with respect to ϑ and η and the function f (y, u) is globally Lipschitz-

continuous in u uniformly for y ∈ TN , it is elementary to get the continuity of Ke. Then, from

lemma 2.7, one has that G1(v, ϑ, η) := v + M−1
e (Ke(v, ϑ, η)) is continuous in H2(R × TN) × R ×

R
N . Since the continuity of G2 :=

∫

R+×TN

[

(Ue(ξ, y) + v(ξ, y))2 − U2
e (ξ, y)

]

dydξ is obvious from

Cauchy-Schwarz inequality, it follows that Ge = (G1,G2) is continuous in H1(R×TN)×R×RN .
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Since Ge is affine with respect to η, it is obvious that Ge is doubly continuously Fréchet

differentiable with respect to η and the first ordered derivative is

∂ηGe(v, ϑ, η)η̃ =
(

M−1
e (2∇y∂ξ(Ue + v) · η̃), 0

)

,

for any (v, ϑ, η) ∈ H2(R × TN) × R × RN and η̃ ∈ R. Now we show that Ge is continuously

Fréchet differentiable with respect to (v, ϑ). Notice that f (y,Ue + u) is continuously Fréchet

differentiable with respect to u. In fact, for any u, v ∈ H2(R × TN), one has that

lim
h→0

f (y,Ue + u + hv) − f (y,Ue + u)

h
= fu(y,Ue + u)v,

in L2(R×TN). Hence, the function Ge(v, ϑ, η) is Fréchet differentiable with respect to (v, ϑ) with

derivative

∂(v,ϑ)Ge(v, ϑ, η)(ṽ, ϑ̃)

=

(

ṽ + M−1
e (ϑ∂ξ ṽ + ϑ̃∂ξ(Ue + v) + 2∇y∂ξṽ · η + fu(y,Ue + v)ṽ + βṽ)

2
∫

R+×TN (Ue(ξ, y) + v(ξ, y))ṽ(ξ, y)dydξ

)

.
(2.18)

for any (v, ϑ, η) ∈ H2(R × TN) × R × RN and (ṽ, θ̃) ∈ H2(R × TN) × R. Since fu(y, u) is glob-

ally Lipschitz-continuous in u uniformly for y ∈ TN and following the arguments in the first

paragraph, one gets that ∂(v,ϑ)Ge : H2(R × TN) × R × RN → L(H2(R × TN) × R,D × R) is

continuous.

This completes the proof. �

For any e ∈ SN−1 and (ṽ, ϑ̃) ∈ D × R, define

Qe(ṽ, ϑ̃) =

(

ṽ + M−1
e (ϑ̃∂ξUe + fu(y,Ue)ṽ + βṽ), 2

∫

R+×TN

Ue(ξ, y)ṽ(ξ, y)dydξ

)

. (2.19)

Notice that Qe has the same form as ∂(v,ϑ)Ge(0, 0, 0) from (2.18).

Lemma 2.11 For every e ∈ SN−1, the operator Qe : D × R → D × R is invertible. Then, for

every e ∈ SN−1, g ∈ D, d ∈ R and every sequences (en)n∈N in SN−1, (gn)n∈N in D, (dn)n∈N in R such

that en → e, ‖gn − g‖D → 0 and |dn − d| → 0 as n → +∞, there holds Q−1
en

(gn, dn) → Q−1
e (g, d)

in L2(R × TN) × R as n → +∞, where the space L2(R × TN) × R is endowed with the norm

‖(ṽ, ϑ̃)‖L2(R×TN )×R = ‖ṽ‖L2(R×TN ) + |ϑ̃|. Furthermore, for all e ∈ SN−1, g ∈ L2(R × TN) and d ∈ R,

there is C > 0 such that

‖Q−1
e (g, d)‖L2(R×TN )×R ≤ C‖(g, d)‖D×R.

Proof. The proof of invertibility can just follow the proof of [8, Lemma 3.3] step by step, by

only noticing that the kernel of He is generated by ∂ξUe from Lemma 2.9 and the domain of Qe

is D × R.

Now, we prove the convergence. Since Q−1
e (g, d) is linear for (g, d) ∈ D × R, we first show

that Q−1
e (gn, dn) → (0, 0) in L2(R × TN) × R as n → +∞ when ‖gn‖D → 0 and |dn| → 0 as

n → +∞. Let (ṽn, ϑ̃n) = Q−1
e (gn, dn). Since the range of Qe is closed and the kernel of Qe is

trivial, one has that (ṽn, ϑ̃n)→ (0, 0) in L2(R×TN)×R (actually ṽn → 0 strongly in L2(R×TN),

weakly in H1). Moreover, by Lemma 2.7, one has that Q−1
en

(g, d)→ Q−1
e (g, d) in L2(R×TN)×R
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as n → +∞ when en → e as n → +∞ for any g ∈ D and d ∈ R. Since ‖Q−1
en

(gn, dn) −
Q−1

e (g, d)‖L2(R×TN )×R ≤ ‖Q−1
en

(gn, dn)−Q−1
e (gn, dn)‖L2(R×TN )×R + ‖Q−1

e (gn, dn)−Q−1
e (g, d)‖L2(R×TN )×R,

one can get the conclusion that Q−1
en

(gn, dn) → Q−1
e (g, d) in L2(R × TN) × R as n → +∞, when

en → e, ‖gn − g‖D → 0 and |dn − d| → 0 as n→ +∞.

For every e ∈ SN−1 and any g ∈ D, d ∈ R, there is δe > 0 small enough such that

‖ δe

‖(g, d)‖D×R
Q−1

e (g, d)‖L2(R×TN )×R ≤ 1,

since Q−1
e (gn, dn) → (0, 0) in L2(R × TN) × R as n → +∞ when ‖gn‖D → 0 and |dn| → 0 as

n→ +∞. That implies that for every e ∈ SN−1, there is δe > 0 such that

‖Q−1
e (g, d)‖L2(R×TN )×R ≤

1

δe

‖(g, d)‖D×R. (2.20)

We now show that 1/δe is uniformly bounded for e ∈ SN−1. Assume by contradiction that there

is a sequence (en)n∈N ⊂ SN−1 such that

‖ 1

‖(g, d)‖D×R
Q−1

en
(g, d)‖L2(R×TN )×R → +∞, as n→ +∞.

There is e0 ∈ SN−1 such that en → e0, up to a subsequence, as n → +∞. Then, up to a

subsequence, Q−1
en

(g, d)→ Q−1
e0

(g, d) in L2(R × TN) × R as n→ +∞. Thus, one has that

‖ 1

‖(g, d)‖D×R
Q−1

e0
(g, d)‖L2(R×TN )×R = +∞,

which contradicts (2.20). Therefore, for all e ∈ SN−1, g ∈ L2(R × TN) and d ∈ R, there is C > 0

such that

‖Q−1
e (g, d)‖L2(R×TN )×R ≤ C‖(g, d)‖D×R.

The proof is thereby complete. �

Given the previous lemmas, we are now ready to prove Theorem 1.5.

Proof of Theorem 1.5. Step 1: first order differentiability. For every e ∈ SN−1, normalize Ue

by
∫

R+×TN

U2
e (ξ, y)dydξ = 1. (2.21)

For any b ∈ RN \ {0}, let

Ub = U b
|b|

and cb = c b
|b|
.

Then, by Theorem 1.3, (Ub, cb) is well defined and continuous with respect to b ∈ RN \ {0}.
Furthermore, Ub and cb satisfy

cb∂ξUb + ∂ξξUb + 2∇y∂ξUb ·
b

|b| + ∆yUb + f (y,Ub) = 0. (2.22)

Now fix arbitrary e ∈ SN−1. For any h ∈ RN such that e + h ∈ RN \ {0}, one has that Ue+h

and ce+h satisfy (2.22) with b replaced by e + h. Let Ũh = Ue+h − Ue ∈ D, c̃h = ce+h − ce ∈ R
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and h̃ = (e + h)/|e + h| − e. Notice that ‖(Ũh, c̃h)‖L2(R×TN )×R → 0 and h̃ = −(e · h)e + h + o(|h|) as

|h| → 0. By the normalization (2.21), (Ue+h, ce+h) satisfying (2.22) with b = e + h and (Ue, ce)

satisfying (1.5), one can compute that

Ge(Ũh, c̃h, h̃) = (0, 0).

Recalling that Ge(0, 0, 0) = (0, 0) and by Lemma 2.10 and the definition of Fréchet differentia-

bility, it follows that

(0, 0) = Ge(Ũh, c̃h, h̃)−Ge(0, 0, 0) = ∂(v,ϑ)Ge(0, 0, 0)(Ũh, c̃h)+∂ηGe(0, 0, 0)h̃+ω1(h̃)+ω2(Ũh, c̃h),

where ω1(h̃) = o(|h|) and ω2(Ũh, c̃h) = o(‖(Ũh, c̃h)‖L2(R×TN )×R) as |h| → 0. Since ∂(v,ϑ)Ge(0, 0, 0)

has the same form as Qe and Ũh ∈ D, c̃h ∈ R, one can replace ∂(v,ϑ)Ge(0, 0, 0) by Qe in the above

equation. Thus, it follows from Lemma 2.11 that

(Ũh, c̃h) + Q−1
e (ω2(Ũh, c̃h)) = − Q−1

e (∂ηGe(0, 0, 0)h̃) − Q−1
e (ω1(h̃))

= − Q−1
e (M−1

e (2∇y∂ξUe · h̃), 0) − Q−1
e (ω1(h̃)). (2.23)

Then, one has that

1

|h| ‖(Ũh, c̃h)+Q−1
e (ω2(Ũh, c̃h))‖L2(R×TN )×R =

1

|h| ‖Q
−1
e (M−1

e (2∇y∂ξUe · h̃), 0)+Q−1
e (ω1(h̃))‖L2(R×TN )×R.

By Lemma 2.7, Lemma 2.11 and ω1(h̃) = o(|h|) as |h| → 0, the right hand is bounded as |h| → 0.

Moreover, since ω2(Ũh, c̃h) = o(‖(Ũh, c̃h)‖L2(R×TN )×R) as |h| → 0, one has that

‖(Ũh, c̃h) + Q−1
e (ω2(Ũh, c̃h))‖L2(R×TN )×R ≥‖(Ũh, c̃h)‖L2(R×TN )×R − ‖Q−1

e (ω2(Ũh, c̃h))‖L2(R×TN )×R

≥1

2
‖(Ũh, c̃h)‖L2(R×TN )×R,

as |h| → 0. Then, ‖(Ũh, c̃h)‖L2(R×TN )×R/|h| is bounded as |h| → 0. It implies that Q−1
e (ω2(Ũh, c̃h)) =

o(|h|) as |h| → 0. Therefore, by (2.23) and recalling that h̃ = −(e · h)e+ h+ o(|h|) as |h| → 0, one

gets that

(Ue+h − Ue, ce+h − ce) = (Ũh, c̃h) = −Q−1
e (M−1

e (2∇y∂ξUe · h̃), 0) + o(|h|)
= (e · h)Q−1

e (M−1
e (2∇y∂ξUe · e), 0) − Q−1

e (M−1
e (2∇y∂ξUe · h), 0) + o(|h|).

Thus, by the arbitrariness of e in SN−1, one can conclude that (Ub, cb) is Fréchet differentiable

everywhere at e ∈ SN−1. Denote the derivative by (U′e, c
′
e), that is, for any h ∈ RN

(U′e(h), c′e(h)) = (e · h)Q−1
e (M−1

e (2∇y∂ξUe · e), 0) − Q−1
e (M−1

e (2∇y∂ξUe · h), 0), (2.24)

where (U′e, c
′
e) : RN → L2(R × TN) × R. By Lemma 2.7, Lemma 2.11 and the continuity of Ue

with respect to e ∈ SN−1, one has that for any h ∈ RN , (U′e(h), c′e(h)) is continuous with respect to

e ∈ SN−1 (one can actually prove that (U′en
(h), c′en

(h))→ (U′e(h), c′e(h)) as n→ +∞ when en → e

as n→ +∞). Since Ue(·, ·) ∈ C2,2(R×RN), it implies that U′e(h)(·, ·) is in C2,2(R×RN), for every

h ∈ RN .
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Then, for any b ∈ RN \ {0} and any direction h ∈ RN , one gets that

(Ub+h − Ub, cb+h − cb) =

(

U b+h
|b+h|
− U b

|b|
, c b+h
|b+h|
− c b

|b|

)

=

(

U′b
|b|

(
h

|b|
− b · h
|b|3

b), c′b
|b|

(
h

|b|
− b · h
|b|3

b)

)

+ o(|h|).

This implies that (Ub, cb) is continuously Fréchet differentiable at any b ∈ RN \ {0}.
Step 2: second order differentiability. By Step 1, (U′

b
, c′

b
) is well defined and continuous

with respect to b ∈ RN \ {0}. Fix arbitrary e ∈ SN−1 and h ∈ RN . From the definition of (Ub, cb),

one has that (Ub, cb) satisfies (2.22). Differentiating (2.22) at b on the direction h ∈ RN , one gets

that

c′b(h)∂ξUb + cb∂ξU
′
b(h) + ∂ξξU

′
b(h) + 2∇y∂ξUb · (

h

|b|
− b · h
|b|3

b)

+ 2∇y∂ξU
′
e(h) · b

|b| + ∆yU
′
b(h) + fu(y,Ub)U′b(h) = 0 (2.25)

For any e ∈ SN−1, h ∈ RN , v1, v2 ∈ H2(R × TN), ϑ1, ϑ2 ∈ R and η ∈ RN , define

K′e(v1,ϑ1, v2, ϑ2, η) := c′e(h)∂ξv1 + ϑ2∂ξ(Ue + v1) + ϑ1∂ξ(U
′
e(h) + v2)

+ 2∇y∂ξUe · [
h

|e + η| − h − (e + η) · h
|e + η|3 (e + η) + (e · h)e]

+ 2∇y∂ξv1 · [
h

|e + η| −
(e + η) · h
|e + η|3 (e + η)] + 2∇y∂ξU

′
e(h) · ( e + η

|e + η| − e)

+ 2∇y∂ξv2 · (
e + η

|e + η| − e) + βv2 + fu(y,Ue + v1)(U′e(h) + v2) − fu(y,Ue)U
′
e(h)

and

G′e(v1, ϑ1, v2, ϑ2, η)

:=

(

v2 + M−1
e (K′e(v1, ϑ1, v2, ϑ2, η)), 2

∫

R+×TN

[

U′e(h)(ξ, y)v1(ξ, y) + v2(Ue(ξ, y) + v1)
]

dydξ

)

.

Following the arguments of Lemma 2.10, one has that for every e ∈ SN−1, the function G′e :

H2(R × TN) × R × H2(R × TN) × R × RN → D × R is continuous and it is continuously Fréchet

differentiable with respect to (v1, ϑ1) and (v2, ϑ2) respectively, and doubly continuously Fréchet

differentiable with respect to η. One can compute that the function G′e(v1, v2, ϑ1, ϑ2, η) is with

derivatives

∂ηG
′
e(v1, ϑ1, v2, ϑ2, η)η̃ =

(

M−1
e (J1), 0

)

,

∂(v1 ,ϑ1)G
′
e(v1, ϑ1, v2, ϑ2, η)(ṽ1, ϑ̃1) =

(

M−1
e (J2), 2

∫

R+×TN

(

U′e(h)ṽ1 + v2ṽ1

)

dydξ

)

,

∂(v2,ϑ2)G
′
e(v1, ϑ1, v2, ϑ2, η)(ṽ2, ϑ̃2) =

(

ṽ2 + M−1
e (J3), 2

∫

R+×TN

ṽ2(Ue + v1)dydξ

)

,

where

J1 = 2∇y∂ξ(U
′
e(h) + v2) · η1 + 2∇y∂ξ(Ue + v1) · η2,

20



J2 = (c′e(h) + ϑ2)∂ξ ṽ1 + 2∇y∂ξṽ1 · [
h

|e + η|
− (e + η) · h
|e + η|3

(e + η)] + fuu(y,Ue + v1)ṽ1(U′e(h) + v2),

J3 = ϑ1∂ξṽ2 + 2∇y∂ξ ṽ2 · (
e + η

|e + η| − e) + βṽ2 + fu(y,Ue + v1)ṽ2 + ϑ̃2∂ξ(Ue + v1),

with

η1 =
η̃

|e + η| −
(e + η) · η̃
|e + η|3 (e + η),

η2 = −
(e + η) · η̃
|e + η|3 h − (e + η) · h

|e + η|3 η̃ − [
η̃ · h
|e + η|3 − 3(e + η) · h (e + η) · η̃

|e + η|4 ](e + η),

for any (v1, ϑ1, v2, ϑ2, η) ∈ H2(R×TN)×R×H2(R×TN)×R×RN , η̃ ∈ RN , (ṽ1, θ̃1) ∈ H2(R×TN)×R
and (ṽ2, θ̃2) ∈ H2(R × TN) × R. One also has that

∂(v2 ,ϑ2)G
′
e(0, 0, 0, 0, 0)(ṽ2, ϑ̃2)

=

(

ṽ2 + M−1
e (βṽ2 + fu(y,Ue)ṽ2 + ϑ̃2∂ξUe), 2

∫

R+×TN Ue(ξ, y)ṽ2(ξ, y)dydξ
)

.
(2.26)

Notice that ∂(v2 ,ϑ2)G
′
e(0, 0, 0, 0, 0) has the same form as Qe.

For any ρ ∈ RN such that e + ρ ∈ RN \ {0}, let Ũ′ρ(h) = U′e+ρ(h) − U′e(h) ∈ D, c̃′ρ(h) =

c′e+ρ(h) − c′e(h) ∈ R, Ũρ = Ue+ρ − Ue ∈ D, and c̃ρ = ce+ρ − ce ∈ R. Then, from (2.25), it follows

that G′e(Ũρ, c̃ρ, Ũ
′
ρ(h), c̃′ρ(h), ρ) = 0. By G(0, 0, 0, 0, 0) = (0, 0), it follows that

(0, 0) =G(Ũρ, c̃ρ, Ũ
′
ρ(h), c̃′ρ(h), ρ) −G(0, 0, 0, 0, 0)

=∂(v1,ϑ1)G(0, 0, 0, 0, 0)(Ũρ, c̃ρ) + ∂(v2,ϑ2)G(0, 0, 0, 0, 0)(Ũ′ρ(h), c̃′ρ(h))

+ ∂ηG(0, 0, 0, 0, 0)ρ + ω1(ρ) + ω2(Ũρ, c̃ρ) + ω3(Ũ′ρ(h), c̃′ρ(h)),

where ω1(ρ) = o(|ρ|), ω2(Ũρ, c̃ρ) = o(‖(Ũρ, c̃ρ)‖L2(R×TN )×R) (remember that ‖(Ũρ, c̃ρ)‖L2(R×TN )×R =

O(|ρ|) from arguments of Step 1) and ω2(Ũ′ρ(h), c̃′ρ(h)) = o(‖(Ũ′ρ(h), c̃′ρ(h))‖L2(R×TN )×R) as |ρ| → 0.

Since ∂(v2,ϑ2)G(0, 0, 0, 0, 0) has the same form as Qe and Ũ′
h
(h) ∈ D, c̃′

h
(h) ∈ R, one can replace

∂(v2 ,ϑ2)G(0, 0, 0, 0, 0) by Qe in the above equation. Thus, it follows from Lemma 2.11 that

(Ũ′ρ(h), c̃′ρ(h)) + Q−1
e (ω3(Ũ′ρ(h), c̃′ρ(h)))

= − Q−1
e (∂ηG(0, 0, 0, 0, 0)ρ) − Q−1

e (ω1(ρ) + ω2(Ũρ, c̃ρ))

= − Q−1
e (M−1

e (2∇y∂ξU
′
e(h) · ρ1 + 2∇y∂ξUe · ρ2), 0) − Q−1

e (ω1(ρ) + ω2(Ũρ, c̃ρ)), (2.27)

with

ρ1 = ρ − (e · ρ)e, ρ2 = −(e · ρ)h − (e · h)ρ − [ρ · h − 3(e · h)(e · ρ)]e. (2.28)

Then, one has that

1

|ρ|
‖(Ũ′ρ(h), c̃′ρ(h)) + Q−1

e (ω3(Ũ′ρ(h), c̃′ρ(h)))‖L2(R×TN )×R

=
1

|ρ| ‖Q
−1
e (M−1

e (2∇y∂ξU
′
e(h) · ρ1 + 2∇y∂ξUe · ρ2), 0) + Q−1

e (ω1(ρ) + ω2(Ũρ, c̃ρ))‖L2(R×TN )×R.

Since ω1(ρ) + ω2(Ũρ, c̃ρ) = o(|ρ|) as |ρ| → 0, the right hand is bounded as |ρ| → 0. Moreover,

since ω3(Ũ′ρ(h), c̃′ρ(h) = o(‖(Ũ′ρ(h), c̃′ρ(h))‖L2(R×TN )×R) as |ρ| → 0, one has that

‖(Ũ′ρ(h), c̃′ρ(h)) + Q−1
e (ω3(Ũ′ρ(h), c̃′ρ(h)))‖L2(R×TN )×R
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≥‖(Ũ′ρ(h), c̃′ρ(h))‖L2(R×TN )×R − ‖Q−1
e (ω3(Ũ′ρ(h), c̃′ρ(h)))‖L2(R×TN )×R

≥1

2
‖(Ũ′ρ(h), c̃′ρ(h))‖L2(R×TN )×R,

as |ρ| → 0. Then, ‖(Ũ′ρ(h), c̃′ρ(h))‖L2(R×TN )×R/|ρ| is bounded as |ρ| → 0. Thus, by Lemma 2.11,

one has that Q−1
e (ω3(Ũ′ρ(h), c̃′ρ(h))) = o(|ρ|) as |ρ| → 0. Therefore, by (2.27), one gets that

(U′e+ρ(h) − U′e(h), c′e+ρ(h) − c′e(h)) = (Ũ′ρ(h), c̃′ρ(h))

= − Q−1
e (M−1

e (2∇y∂ξU
′
e(h) · ρ1 + 2∇y∂ξUe · ρ2), 0) + o(|ρ|)

Thus, by the arbitrariness of e ∈ SN−1, one can conclude that (U′
b
(h), c′

b
(h)) is Fréchet differ-

entiable at e ∈ SN−1 for any h ∈ RN . Denote the derivative by (U′′e (h), c′′e (h)), that is, for any

ρ ∈ RN

(U′′e (h)(ρ), c′′e (h)(ρ)) = −Q−1
e (M−1

e (2∇y∂ξU
′
e(h) · ρ1 + 2∇y∂ξUe · ρ2), 0), (2.29)

where ρ1, ρ2 are defined in (2.28). By Lemma 2.7, Lemma 2.11 and the continuity of U′e(h) with

respect to e ∈ SN−1, one has that for any h ∈ RN and ρ ∈ RN , (U′′e (h)(ρ), c′′e (h)(ρ)) is continuous

with respect to e ∈ SN−1. Since U′e(h)(·, ·) ∈ C2,2(R × RN), it implies that U′′e (h)(ρ)(·, ·) is in

C2,2(R × RN).

Similarly as in Step 1, one can also get that U′
b
(h) is continuously Fréchet differentiable at

any b ∈ RN \ {0}. The proof is thereby complete. �

From the arguments above, we know that for every e ∈ SN−1, U′e, ∂ξU
′
e, ∂yi

U′e (i = 1, · · · , N)

and U′′e are bounded linear operators. We emphasize the meaning of the Fréchet derivatives at

e ∈ SN−1 by examples that U′e(h)(·, ·) is the derivative of Ub(·, ·) (where Ub(·, ·) is defined in

(1.12)) at e ∈ SN−1 on the direction h ∈ RN and U′′e (h)(ρ)(·, ·) is the derivative of U′
b
(h)(·, ·)

at e ∈ SN−1 on the direction ρ ∈ RN . As we mentioned in the proof of Theorem 1.5 that

U′e(h)(·, ·) is in C2,2(R×RN), the derivatives of U′e(h)(·, ·) with respect to ξ and y are well defined,

denoted by ∂ξU
′
e(h), ∂yi

U′e(h) (i = 1, · · · , N) for any h ∈ RN . By the definition of U′e and the

definition of Fréchet differentiability, we know that ∂ξU
′
e(h), ∂yi

U′e(h) (i = 1, · · · , N) are also

the Fréchet derivatives of ∂ξUb and ∂yi
Ub (i = 1, · · · , N) at e ∈ SN−1 on the direction h ∈ RN .

Furthermore, since U′e(h) is a linear operator with respect to h, we can easily get that U′e(h) is

Fréchet differentiable with respect to h, with the derivative U′e(ρ) at any h ∈ RN on the direction

ρ ∈ RN . Then, we denote the norm of the Fréchet derivatives by that for every e ∈ SN−1,

‖U′e‖ = sup
h∈RN

‖U′e(h)‖L2(R×TN )

|h| , ‖∂ξU′e‖ = sup
h∈RN

‖∂ξU′e(h)‖L2(R×TN )

|h| ,

and

‖∂yi
U′e‖ = sup

h∈RN

‖∂yi
U′e(h)‖L2(R×TN )

|h| (i = 1, · · · , N), ‖U′′e ‖ = sup
(h,ρ)∈RN×RN

‖U′′e (h)(ρ)‖L2(R×TN )

|h||ρ| .

Since Ue is continuous with respect to e ∈ SN−1 and SN−1 is a compact subset of RN , one has

that ∂ξUe, ∂yi
Ue (i = 1, · · · , N) are also continuous with respect to e ∈ SN−1 and it follows from

(ii) of Definition 1.1 that

lim
ξ→±∞

Ue(ξ, y) = 0, 1, uniformly for e ∈ SN−1.
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This also implies that limξ→±∞U′e(h)(ξ, y) = 0 for any h ∈ RN , uniformly for y ∈ RN , e ∈ SN−1.

Thus, ‖U′e‖ is bounded uniformly for e ∈ SN−1. Similarly, one can get that ‖∂ξU′e‖, ‖∂yi
U′e‖

(i = 1, · · · , N) and ‖U′′e ‖ are bounded uniformly for e ∈ SN−1.

3 Propagating speed of transition fronts

This section is devoted to prove Theorem 1.6. It shows that the propagating speed of transition

fronts can not be less than the infimum of the speeds of pulsating fronts and can not be larger

than the supremum of the speeds of pulsating fronts. As the transition fronts concerned in

homogeneous case [14], the lower bound of the propagating speed of transition fronts is related

on how fast the domain in which the solution of the following Cauchy problem (3.1) is close to

1 extends and the upper bound is related on how fast the domain in which the solution of (3.2) is

close to 0 contracts. Thus, in the following section, we prove two key-lemmas about the speed

of extension or contraction.

3.1 Two key-lemmas

In this section, we prove Lemma 3.1 and Lemma 3.2 below. In the sequel, we let Ue be a family

of pulsating fronts with normalization

∫

R+×TN−1

U2
e (ξ, y)dydξ = 1, for every e ∈ SN−1.

For any b ∈ RN \ {0}, let Ub defined in (1.12), that is, Ub = Ub/|b|. By Theorem 1.3 and Theorem

1.5, Ub are continuous and doubly continuously Fréchet differentiable at any e ∈ SN−1. We also

let

c = inf
e∈SN−1

ce and c = sup
e∈SN−1

ce.

As we mentioned in Remark 1.7, one actually has that c = mine∈SN−1 ce > 0 and c = maxe∈SN−1 ce <

+∞. Fix two real numbers α and β such that

0 < α < inf
x∈TN

θx ≤ sup
x∈TN

θx < β < 1

where θx is defined in (1.2) (remember that 0 < σ < θx < 1 − σ < 1 for all x ∈ TN with

σ ∈ (0, 1/2)).

For any R > 0, let vR and ωR denote the solutions of the Cauchy problems

{

(vR)t = ∆vR + f (x, vR), t > 0, x ∈ RN ,

vR(0, x) = β for |x| < R, vR(0, x) = 0 for |x| ≥ R,
(3.1)

and

{

(ωR)t = ∆ωR + f (x, ωR), t > 0, x ∈ RN ,

ωR(0, x) = α for |x| < R, ωR(0, x) = 1 for |x| ≥ R.
(3.2)

23



Lemma 3.1 There is R > 0 such that the following holds: for all ε ∈ (0, c], there is Tε > 0 such

that

vR(t, x) ≥ 1 − σ for all t ≥ Tε and |x| ≤ (c − ε)t, (3.3)

where σ is defined in (1.3). Furthermore,

vR(t, ·)→ 1 locally uniformly as t → +∞. (3.4)

Lemma 3.2 For any ε > 0, there are some real numbers Tε > 0 and Rε > 0 such that for all

R ≥ Rε, the solution ωR satisfies

ωR(t, x) ≤ σ for all Tε ≤ t ≤ R

c̄ + ε
and |x| ≤ R − (c̄ + ε)t.

Lemma 3.1 and Lemma 3.2 could be viewed as analogs of Lemma 4.1 and Lemma 4.2 in

[14] for spatially homogeneous bistable case. However, regarding to our spatially periodic case,

pulsating fronts are depending on the propagating direction e ∈ SN−1 and propagating speeds

are different for different directions in general, which also implies the method in [14] can not

apply here directly.

Proof of Lemma 3.1. Step 1: choice of some parameters. Let us set δ = σ
2
, where σ is

defined in (1.3). Since limξ→±∞Ue(ξ, y) = 0, 1 uniformly for y ∈ RN and e ∈ SN−1, there exists

a constant C > 0 independent of e such that

Ue(ξ, y) ≥ 1 − δ, for all ξ ≤ −C, y ∈ RN and e ∈ SN−1,

and

Ue(ξ, y) ≤ δ, for all ξ ≥ C, y ∈ RN and e ∈ SN−1.

Since ∂ξUe is negative and continuous on (ξ, y) ∈ R × RN and recalling that ∂ξUe is continuous

with respect to e ∈ SN−1, there is a constant k > 0 such that −∂ξUe ≥ k on [−C,C] × RN for all

e ∈ SN−1. For any ε ∈ (0, c], let δε such that

0 < δε = min

(

δ,
εk

8L

)

, (3.5)

where L := max(x,u)∈RN×[0,1] | fu(x, u)|. Let Cε ≥ 3 large enough such that

N
√

N

Cε

sup
e∈SN−1















3‖U′e‖ + 2‖∂ξU′e‖ +
2

N

N
∑

i=1

‖∂yi
U′e‖ +

√
N

Cε

‖U′′e ‖














≤ min

{

1

3
γδε,

εk

8

}

, (3.6)

where γ is defined in (1.3), together with

N − 1

Cε

≤ ε

4
. (3.7)

Similar as the definition of C, there exists C′ε > 0 independent of e such that

Ue(ξ, y) ≥ 1 − δε, for all ξ ≤ −C′ε, y ∈ RN and e ∈ SN−1,
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and

Ue(ξ, y) ≤ δε, for all ξ ≥ C′ε, y ∈ RN and e ∈ SN−1.

Let us now introduce an auxiliary function. It is elementary to check that there is C2 function

hε : R→ [0, 1] such that for some ξε > 0,

hε(ξ) = 0 for ξ ≤ −ξε − C, hε(ξ) = 1 for ξ ≥ −C and 0 ≤ h′ε(ξ) ≤ 1 for ξ ∈ R.

Furthermore, we choose ξε large enough such that h′ε(ξ) and h′′ε (ξ) are so small that

2
(

|∂ξUe(ξ, y)| + |∇yUe(ξ, y)|
)

h′ε(ξ) ≤ 1

3
γδε for all ξ ∈ R, y ∈ RN and e ∈ SN−1, (3.8)

and

δ|h′′ε (ξ)| ≤ 1

3
γδε for all ξ ∈ R. (3.9)

Step 2: proof when c/2 ≤ ε ≤ c. To do so, it is sufficient to show that Lemma 3.1 holds with

ε = ε0 := c/2 > 0, for some R > 0.

Let ̺β(t, x) be the solution of (1.1) with initial condition ̺β(0, x) = β for x ∈ RN . Since

β ∈ (supx∈TN θx, 1), there holds ̺β(t, x)→ 1 as t → +∞ uniformly in x ∈ RN , and there is T > 0

such that ̺β(T, x) ≥ 1 − δε0
/2 for all x ∈ RN . From the maximum principle, it follows that

0 ≤ ̺β(T, x) − vR(T, x) ≤ eLT

(4πT )N/2

∫

|y|≥R

e−
|x−y|2

4T dy

for all R > 0 and x ∈ RN . Thus, if 0 < B ≤ R and |x| ≤ R − B, one has that

0 ≤ ̺β(T, x) − vR(T, x) ≤ eLT

(4πT )N/2

∫

|z|≥B

e−
|z|2
4T dz.

Therefore, there exists a constant B > 0 such that, for all R ≥ B and |x| ≤ R − B, ̺β(T, x) −
vR(T, x) ≤ δε0

/2. Then, it holds that

vR(T, x) ≥ ̺β(T, x) −
δε0

2
≥ 1 − δε0

for all R ≥ B and |x| ≤ R − B. (3.10)

Let us set

R = ξε0
+ C +Cε0

+C′ε0
+ B > B > 0. (3.11)

For the family of pulsating fronts Ue(ξ, y) with ce, we treat the direction e as a variation x̂ = x
|x|

for x ∈ RN \ {0} and we can get that (U x̂(ξ, y), cx̂) satisfies

cx̂∂ξU x̂ + ∂ξξU x̂ + 2∇y∂ξU x̂ · x̂ + ∆yU x̂ + f (y,U x̂) = 0, for all (ξ, y) ∈ R × RN and x ∈ RN \ {0}.
(3.12)

For all (t, x) ∈ [T,+∞) × RN , we set

v(t, x) := max
{

U x̂(ζ(t, x), x)hε0
(ζ(t, x)) + (1 − δ)(1 − hε0

(ζ(t, x)) − δε0
, 0

}

, (3.13)

where

ζ(t, x) = |x| −
(

c − ε0

2

)

(t − T ) − ξε0
− C − Cε0

. (3.14)
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Notice that, when t ≥ T and |x| ≤ Cε0
, then hε0

(ζ(t, x)) = 0. Hence (3.13) makes sense for x = 0,

even if U x̂ is not defined when x = 0. Let us then check that v is a subsolution for the problem

satisfied by vR, for t ≥ T and x ∈ RN .

First, at the time T , it follows from (3.10) and the definition of v that

vR(T, x) ≥ 1 − δε0
≥ v(T, x) for all |x| ≤ R − B.

On the other hand, if |x| ≥ R−B, then |x| −ξε0
−C−Cε0

≥ C′ε0
from (3.11), hence ζ(t, x) ≥ C′ε0

>

0 < −C and hε0
(ζ(t, x)) = 1. From the definition of C′ε0

and the fact that vR ≥ 0 in (0,+∞)×RN ,

one has that

v(T, x) ≤ 0 ≤ vR(T, x) for all |x| ≥ R − B.

Thus,

vR(T, x) ≥ v(T, x) for all x ∈ RN .

Let us now check that

Lv = v
t
− ∆v − f (x, v) ≤ 0, (3.15)

for all t ≥ T and x ∈ RN such that v > 0. Let (t, x) be any point in [T,+∞) × RN such that

v(t, x) > 0. For (t, x) ∈ [T,+∞) × RN such that ζ(t, x) < −ξε0
− C, one has that hε0

(ζ(t, x)) = 0

and

v(t, x) = 1 − δ − δε0
≥ 1 − σ.

Furthermore, by continuity of ζ, this property holds in a neighborhood of such a point (t, x) in

[T,+∞) × RN . Thus, there holds

Lv =v
t
− ∆v − f (x, v)

= − f (x, 1 − δ − δε0
) ≤ 0,

from (1.3) since 0 < δε0
≤ δ = σ/2.

Consider now (t, x) ∈ [T,+∞) × RN such that v(t, x) > 0 and −ξε0
− C ≤ ζ(t, x) ≤ −C. One

has |x| ≥ (c − ε0/2)(t − T ) +Cε0
≥ Cε0

≥ 3 > 0 and

1 − δ ≤ U x̂(ζ(t, x)) < 1 and v(t, x) ≥ 1 − δ − δε0
≥ 1 − σ. (3.16)

After some calculations and from (3.12), there holds that

Lv =v
t
− ∆v − f (x, v)

=(cx̂ − c +
ε0

2
)∂ξU x̂hε0

− (c − ε0

2
)[U x̂ − (1 − δ)]h′ε0

− ∂ξU x̂

N − 1

|x|
hε0
− 2∂ξU x̂h

′
ε0

− 2∇yU x̂ ·
x

|x|
h′ε0
− [U x̂ − (1 − δ)]h′′ε0

− [U x̂ − (1 − δ)]N − 1

|x|
h′ε0
+ f (x,U x̂)hε0

− f (x,U x̂hε0
+ (1 − δ)(1 − hε0

) − δε0
) − 2

N
∑

i=1

∂ξU
′
x̂(x̂xi

)(ζ(t, x), x)
xi

|x|hε0

− 2

N
∑

i=1

∂yi
U′x̂(x̂xi

)(ζ(t, x), x)hε0
− 2

N
∑

i=1

U′x̂(x̂xi
)(ζ(t, x), x)

xi

|x|
h′ε0
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−
N

∑

i=1

U′′x̂ (x̂xi
)(x̂xi

)(ζ(t, x), x)hε0
−

N
∑

i=1

U′x̂(x̂xi xi
)(ζ(t, x), x)hε0

,

where v and all its derivatives are taken at (t, x), hε0
and all its derivatives are taken at ζ(t, x), U x̂

and all its derivatives are taken at (ζ(t, x), x), and for i = 1, · · · ,N,

x̂xi
=

(

− x1xi

|x|3 , · · · ,
1

|x| −
x2

i

|x|3 , · · · ,−
xN xi

|x|3

)

,

x̂xi xi
=

(

− x1

|x|3 + 3
x1x2

i

|x|5 , · · · ,−3
xi

|x|3 + 3
x3

i

|x|5 , · · · ,−
xN

|x|3 + 3
xN x2

i

|x|5

)

.

Notice that |x̂xi
| ≤
√

N/|x| and |x̂xi xi
| ≤
√

N/|x| for all i = 1, · · · ,N (remember that |x| ≥ Cε ≥ 3).

Hence,

Lv ≤ε0

2
∂ξU x̂hε0

− ∂ξU x̂

N − 1

|x| hε0
−

(

2∂ξU x̂ + 2∇yU x̂ ·
x

|x|

)

h′ε0
− [U x̂ − (1 − δ)]h′′ε0

+ f (x,U x̂)hε0
− f (x,U x̂hε0

+ (1 − δ)(1 − hε0
) − δε0

) + 2

N
∑

i=1

‖∂ξU′x̂‖|x̂xi
|

+ 2

N
∑

i=1

‖∂yi
U′x̂‖|x̂xi

| + 2

N
∑

i=1

‖U′x̂‖|x̂xi
| +

N
∑

i=1

‖U′′x̂ ‖|x̂xi
|2 +

N
∑

i=1

‖U′x̂‖|x̂xi xi
|

≤ε0

2
∂ξU x̂hε0

− ∂ξU x̂

N − 1

|x|
hε0
−

(

2∂ξU x̂ + 2∇yU x̂ ·
x

|x|

)

h′ε0
− [U x̂ − (1 − δ)]h′′ε0

+ f (x,U x̂)hε0
− f (x,U x̂hε0

+ (1 − δ)(1 − hε0
) − δε0

)

+
N
√

N

|x|
sup

e∈SN−1















3‖U′e‖ + 2‖∂ξU′e‖ +
2

N

N
∑

i=1

‖∂yi
U′e‖ +

√
N

|x|
‖U′′e ‖















,

since cx̂ ≥ c, ∂ξU x̂ < 0, 0 ≤ hε0
≤ 1, U x̂ ≥ 1−δ, 0 ≤ h′ε0

≤ 1 and (3.16). Since ζ(t, x) ≥ −ξε0
−C,

that is, |x| ≥ (c − ε0

2
)(t − T ) +Cε0

≥ Cε0
and from (3.7), one has that

ε0

2
∂ξU x̂hε0

− ∂ξU x̂

N − 1

|x| hε0
≤ ε0

4
∂ξU x̂hε0

≤ 0. (3.17)

Then, from (3.6), (3.8) and (3.9), it follows that

−
(

2∂ξU x̂ + 2∇yU x̂ ·
x

|x|

)

h′ε0
− [U x̂ − (1 − δ)]h′′ε0

≤ 2

3
γδε0

, (3.18)

and

N
√

N

|x|
sup

e∈SN−1















3‖U′e‖ + 2‖∂ξU′e‖ +
2

N

N
∑

i=1

‖∂yi
U′e‖ +

√
N

|x|
‖U′′e ‖















≤ 1

3
γδε0

. (3.19)

On the other hand, one can calculate that

f (x,U x̂)hε0
− f (x,U x̂hε0

+ (1 − δ)(1 − hε0
) − δε0

)
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= − f (x,U x̂)(1 − hε0
) + fu(x,U1(t, x))

(

[U x̂ − (1 − δ)](1 − hε0
) + δε0

)

. (3.20)

where U1(t, x) = U x̂ − θ[U x̂ − (1− δ)](1−hε0
)− θδε0

for some θ(t, x) ∈ [0, 1]. Since U x̂(ζ(t, x)) ≥
1 − δ for −ξε0

− C ≤ ζ(t, x) ≤ −C and then U1(t, x) ≥ 1 − δ − δε0
≥ 1 − σ, it follows from (1.3)

and (3.20) that

f (x,U x̂)hε0
− f (x,U x̂hε0

+ (1 − δ)(1 − hε0
) − δε0

) ≤ −γδε0
. (3.21)

Thus, it concludes from (3.17)-(3.19) and (3.21) that for any (t, x) ∈ [T,+∞) × RN such that

v(t, x) > 0 and −ξε0
− C ≤ ζ(t, x) ≤ −C,

Lv = v
t
− ∆v − f (x, v) ≤ 0.

For any (t, x) ∈ [T,+∞) × RN such that v(t, x) > 0 and ζ(t, x) > −C, one has that

|x| ≥ Cε0
, hε0

(ζ(t, x)) = 1, and v(t, x) = U x̂(ζ(t, x), x) − δε0
,

and the same properties hold in a neighborhood of (t, x) in [T,+∞) × RN . After some calcula-

tions, there holds

Lv =v
t
− ∆v − f (x, v)

=(cx̂ − c +
ε0

2
)∂ξU x̂ − ∂ξU x̂

N − 1

|x|
+ f (x,U x̂) − f (x,U x̂ − δε0

)

− 2

N
∑

i=1

∂ξU
′
x̂(x̂xi

)(ζ(t, x), x)
xi

|x|
− 2

N
∑

i=1

∂yi
U′x̂(x̂xi

)(ζ(t, x), x)

−
N

∑

i=1

U′′x̂ (x̂xi
)(x̂xi

)(ζ(t, x), x) −
N

∑

i=1

U′x̂(x̂xi xi
)(ζ(t, x), x)

≤ε0

4
∂ξU x̂ + f (x,U x̂) − f (x,U x̂ − δε0

)

+
N
√

N

|x| sup
e∈SN−1















‖U′e‖ + 2‖∂ξU′e‖ +
2

N

N
∑

i=1

‖∂yi
U′e‖ +

√
N

|x| ‖U
′′
e ‖















from (3.17). If −C < ζ(t, x) ≤ C, then

−∂ξU x̂(ζ(t, x)) ≥ k and f (x,U x̂) − f (x,U x̂ − δε0
) ≤ Lδε0

.

where L := max(x,u)∈RN×[0,1] | fu(x, u)|. From (3.5) and (3.6), one concludes that for any (t, x) ∈
[T,+∞) × RN such that v(t, x) > 0 and −C < ζ(t, x) ≤ C,

Lv ≤ −ε0

4
k +

ε0k

8
+
ε0k

8
= 0.

Finally, if ζ(t, x) ≥ C, then

0 < U x̂(ζ(t, x)) ≤ δ and f (x,U x̂) − f (x,U x̂ − δε0
) ≤ −γδε0

.
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From (3.6) and ∂ξU x̂ < 0, it concludes that for any (t, x) ∈ [T,+∞) × RN such that v(t, x) > 0

and ζ(t, x) ≥ C,

Lv ≤ −γδε0
+

1

3
γδε0
≤ 0.

As a consequence, it follows from the maximum principle that for all t ≥ T and x ∈ RN ,

1 ≥ vR(t, x) ≥ v(t, x) ≥ U x̂(ζ(t, x), x)hε0
(ζ(t, x)) + (1 − δ)(1 − hε0

(ζ(t, x))) − δε0
. (3.22)

But

max
|x|≤(c−ε0)t

ζ(t, x) ≤ (c − ε0)t −
(

c − ε0

2

)

(t − T )→ −∞ as t → +∞,

from (3.14) and the positivity of ξε0
, C, Cε0

. Since hε0
(ξ) = 0 for ξ ≤ −ξε0

−C and (3.22), there

is Tε0
> T > 0 such that

1 ≥ vR(t, x) ≥ 1 − δ − δε0
≥ 1 − σ for all t ≥ Tε0

and |x| ≤ (c − ε0)t. (3.23)

Then, for any sequence (tn)n∈N such that tn → +∞ as n→ +∞, the sequence vn(t, x) := v(t+tn, x)

converges, up to a subsequence, to a solution v∞(t, x) of (1.1) locally uniformly in C1,2(R×RN)

and v∞ ≥ 1−σ by (3.23). Let ̺1−σ(t, x) be the solution of (1.1) with initial condition ̺1−σ(0, x) =

1 − σ for x ∈ RN . Then, ̺1−σ(t, x) is a subsolution of the problem satisfied by v∞(t, x) and

̺1−σ(t, x)→ 1 as t → +∞ since 1 − σ > θx for all x ∈ TN. Thus, one has that v∞(t, x) ≡ 1 and

vR(t, x)→ 1 locally uniformly as t → +∞. (3.24)

Step 3: proof when 0 < ε ≤ c. We only have to show that the conclusion holds for 0 < ε <

ε0. Let now ε be arbitrary in (0, ε0). We borrow the notions from Step 1 and set

Rε = ξε +C +Cε +C′ε > 0. (3.25)

From (3.24), there is Tε ≥ T such that

vR(Tε, x) ≥ 1 − δε for all |x| ≤ Rε.

We also define v and ζ as in (3.13) and (3.14) with T and ε0 replaced by Tε and ε. Following

the same calculations as in Step 3, one gets that (3.15) holds for all (t, x) ∈ [Tε,+∞) × RN such

that v(t, x) > 0. We only have to compare vR and v at time Tε. If |x| ≤ Rε, then vR(t, x) ≥ 1−δε ≥
v(Tε, x). If |x| ≥ Rε, then

ζ(Tε, x) = |x| − ξε − C −Cε ≥ Rε − ξε −C − Cε = C′ε

from (3.14) and (3.25), whence hε(ζ(Tε, x)) = 1, U x
|x|

(ζ(Tε, x)) ≤ δε and v(Tε, x) = 0 ≤ vR(Tε, x).

Thus,

vR(t, x) ≥ v(Tε, x) for all x ∈ RN .

Therefore, it follows from the maximum principle that

vR(t, x) ≥ v(t, x) ≥ U x̂(ζ(t, x), x)hε(ζ(t, x))+ (1− δ)(1− hε(ζ(t, x))− δε for all t ≥ Tε and x ∈ RN .

As in Step 2, this leads to (3.3) and (3.4). This completes the proof. �
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Now we prove Lemma 3.2 in a similar way.

Proof of Lemma 3.2. Take any ε > 0. We borrow some notions from the proof of Lemma

3.1, that is, δ, C, k, δε, Cε and C′ε are defined as in Step 1 of the proof of Lemma 3.1. On the

other hand, the auxiliary function hε needs some modification, that is, one chooses a C2 function

hε : R→ [0, 1] such that for some ξε > 0,

hε(ξ) = 0 for ξ ≥ ξε +C, hε(ξ) = 1 for ξ ≤ C and − 1 ≤ h′ε(ξ) ≤ 0 for ξ ∈ R.

Furthermore, we choose ξε large enough such that h′ε(ξ) and h′′ε (ξ) are so small that

2
(

|∂ξUe(ξ, y)| + |∇yUe(ξ, y)|
)

|h′ε(ξ)| ≤ 1

3
γδε for all ξ ∈ R, y ∈ RN and e ∈ SN−1, (3.26)

and

δ|h′′ε (ξ)| ≤ 1

3
γδε for all ξ ∈ R. (3.27)

Let ̺α(t, x) be the solution of (1.1) with initial condition ̺α(0, x) = α for x ∈ RN . Since α ∈
(0, infx∈TN θx), there holds ̺α(t, x)→ 0 as t → +∞, and there is τε > 0 such that ̺α(τε, x) ≤ δε/2
for all x ∈ RN . From the maximum principle, it follows that there exists Bε > 0 such that, for

all R ≥ Bε and |x| ≤ R − Bε, 0 ≥ ̺α(τε, x) − ωR(τε, x) ≥ −δε/2, whence

ωR(τε, x) ≤ ̺α(τε, x) +
δε

2
≤ δε for all R ≥ Bε and |x| ≤ R − Bε. (3.28)

We choose Tε ≥ τε such that

εt

2
≥ C + ξε + Bε + C′ε for all t ≥ Tε, (3.29)

and Rε > 0 such that

Rε ≥ max (Bε, (c̄ + ε)Tε) and
εRε

2(c̄ + ε)
≥ Bε +C + ξε + C′ε + Cε. (3.30)

In the sequel, let R be an arbitrary real number such that R ≥ Rε. For the family of pulsating

fronts Ue(ξ, y) with ce, we treat the direction e as a variation x̃ = − x
|x| for x ∈ RN \ {0} and we

can get that (U x̃(ξ, y), cx̃) satisfies

cx̃∂ξU x̃ + ∂ξξU x̃ + 2∇y∂ξU x̃ · x̃ + ∆yU x̃ + f (y,U x̃) = 0, for all (ξ, y) ∈ R × RN and x ∈ RN \ {0}.
(3.31)

Set

E :=

[

τε,
R

c̄ + ε

]

× RN .

For all (t, x) ∈ E, we set

ω̄(t, x) := min
{

U x̃(ζ(t, x), x)hε(ζ(t, x)) + δ(1 − hε(ζ(t, x)) + δε, 1
}

, (3.32)

where

ζ(t, x) = −|x| −
(

c̄ +
ε

2

)

(t − τε) + R − Bε − C′ε. (3.33)
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Notice that, when τε ≤ t ≤ R/(c + ε) and |x| ≤ Cε, then ζ(t, x) ≥ C + ξε by (3.30) and

hε(ζ(t, x)) = 0. Hence (3.32) makes sense for x = 0, even if U x̃ is not defined when x = 0. Let

us check that ω̄ is a supersolution for the problem satisfied by ωR, in the set E.

At the time τε, one can follow from (3.28), (3.30) and the definition of ω̄ that

ωR(τε, x) ≤ δε ≤ ω̄(τε, x) for all |x| ≤ R − Bε.

On the other hand, if |x| ≥ R − Bε, then ζ(τε, x) = −|x| + R − Bε − C′ε ≤ −C′ε < 0 < C, hence

h(ζ(τε, x)) = 1. From the definition of C′ε and the fact that ωR ≤ 1 in (0,+∞) × RN , one has that

ω̄(τε, x) = 1 ≥ ωR(τε, x), for all |x| ≥ R − Bε.

Thus,

ω(τε, x) ≥ ωR(τε, x), for all x ∈ RN .

Let us now check that

Lω̄ = ω̄t − ∆ω̄ − f (x, ω̄) ≥ 0

for all (t, x) ∈ E such that ω̄(t, x) < 1. This will be sufficient to ensure that ω is a supersolution.

Let (t, x) be any point in E such that ω̄(t, x) < 1. For (t, x) ∈ E such that ζ(t, x) > C + ξε, one

has that hε(ζ(t, x)) = 0 and

ω̄(t, x) = δ + δε ≤ σ.

Thus, there holds

Lω̄ = ω̄t − ∆ω̄ − f (x, ω̄) = − f (x, δ + δε) ≥ 0,

from (1.3) since 0 < δε ≤ δ ≤ σ/2.

Consider now (t, x) ∈ E such that ω(t, x) < 1 and C ≤ ζ(t, x) ≤ C + ξε. One has |x| ≥
−(c + ε/2)(t − τε) + R − Bε −C′ε −C − ξε ≥ Cε ≥ 3 > 0 by (3.30) and

0 < U x̃(ζ(t, x)) ≤ δ and ω̄(t, x) ≤ δ + δε ≤ σ.

After some calculations and from (3.31), there holds that

Lω̄ =ω̄t − ∆ω̄ − f (x, ω̄)

=(cx̃ − c̄ − ε
2

)∂ξU x̃hε − (c̄ +
ε

2
)(U x̃ − δ)h′ε + ∂ξU x̃

N − 1

|x| hε − 2∂ξU x̃h
′
ε

+ 2∇yU x̃ ·
x

|x|h
′
ε − (U x̃ − δ)h′′ε + (U x̃ − δ)

N − 1

|x| h′ε + f (x,U x̃)hε

− f (x,U x̃hε + δ(1 − hε) + δε) + 2

N
∑

i=1

∂ξU
′
x̃(x̃xi

)(ζ(t, x), x)
xi

|x|hε

− 2

N
∑

i=1

∂yi
U′x̃(x̃xi

)(ζ(t, x), x)hε + 2

N
∑

i=1

U′x̃(x̃xi
)(ζ(t, x), x)

xi

|x|h
′
ε

−
N

∑

i=1

U′′x̃ (x̃xi
)(x̃xi

)(ζ(t, x), x)hε −
N

∑

i=1

U′x̃(x̃xi xi
)(ζ(t, x), x)hε
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where ω and all its derivatives are taken at (t, x), hε0
and all its derivatives are taken at ζ(t, x),

U x̃ and all its derivatives are taken at (ζ(t, x), x), and

x̃xi
=

(

x1xi

|x|3 , · · · ,−
1

|x| +
x2

i

|x|3 , · · · ,
xN xi

|x|3

)

,

x̃xi xi
=

(

x1

|x|3 − 3
x1x2

i

|x|5 , · · · , 3
xi

|x|3 − 3
x3

i

|x|5 , · · · ,
xN

|x|3 − 3
xN x2

i

|x|5

)

.

Notice that |x̃xi
| ≤
√

N/|x| and |x̃xi xi
| ≤
√

N/|x| for all i = 1, · · · ,N (remember that |x| ≥ Cε ≥ 3).

Hence,

Lω ≥ − ε
2
∂ξU x̃hε − (c̄ +

ε

2
)(U x̃ − δ)h′ε + ∂ξU x̃

N − 1

|x| hε +

(

−2∂ξU x̃ + 2∇yU x̃ ·
x

|x|

)

h′ε

− (U x̃ − δ)h′′ε + f (x,U x̃)hε − f (x,U x̃hε + δ(1 − hε) + δε)

− N
√

N

|x| sup
e∈SN−1















3‖U′e‖ + 2‖∂ξU′e‖ +
2

N

N
∑

i=1

‖∂yi
U′e‖ + ‖U′′e ‖















,

since cx̃ ≤ c̄, 0 < U x̃ ≤ δ, hε ≤ 1, and −1 ≤ h′ε ≤ 0. From |x| ≥ Cε and (3.7), one has that

− ε
2
∂ξU x̃hε + ∂ξU x̃

N − 1

|x|
hε ≥ −

ε

4
∂ξU x̃hε ≥ 0. (3.34)

Then, from (3.6), (3.26) and (3.27), it follows that

(

−2∂ξU x̃ + 2∇yU x̃ ·
x

|x|

)

h′ε − (U x̃ − δ)h′′ε ≥ −
2

3
γδε, (3.35)

and

− N
√

N

|x| sup
e∈SN−1















3‖U′e‖ + 2‖∂ξU′e‖ +
2

N

N
∑

i=1

‖∂yi
U′e‖ + ‖U′′e ‖















≥ −1

3
γδε. (3.36)

On the other hand, one can calculate that,

f (x,U x̃)hε − f (x,U x̃hε + δ(1 − hε) + δε)

= − f (x,U x̃)(1 − hε) − fu(x,U2(t, x)) ((δ − U x̃)(1 − hε) + δε) . (3.37)

where U2(t, x) = U x̃ − θ(U x̃ − δ)(1 − hε) + θδε for some θ(t, x) ∈ [0, 1]. Since U x̃(ζ(t, x)) ≤ δ for

C ≤ ζ(t, x) ≤ ξε +C and then U2(t, x) ≤ δ + δε ≤ σ, it follows from (1.3) and (3.37) that

f (x,U x̃)hε − f (x,U x̃hε + δ(1 − hε) + δε) ≥ γδε. (3.38)

Thus, it concludes from (3.34)-(3.36) and (3.38) that for any (t, x) ∈ E such that ω(t, x) < 1 and

C ≤ ζ(t, x) ≤ ξε +C,

Lv = v
t
− ∆v − f (x, v) ≥ 0.

For any (t, x) ∈ E such that ω(t, x) < 1 and ζ(t, x) < C, one has that

|x| ≥ Cε, hε(ζ(t, x)) = 1, and ω̄(t, x) = U x̃(ζ(t, x), x) + δε0
,
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and the same properties hold in a neighborhood of (t, x) in E. After some calculations, there

holds

Lω̄ =ω̄t − ∆ω̄ − f (x, ω̄)

=(cx̃ − c̄ − ε
2

)∂ξU x̃ + ∂ξU x̃

N − 1

|x| + f (x,U x̃) − f (x,U x̃ + δε)

+ 2

N
∑

i=1

∂ξU
′
x̃(x̃xi

)(ζ(t, x), x)
xi

|x| − 2

N
∑

i=1

∂yi
U′x̃(x̃xi

)(ζ(t, x), x)

−
N

∑

i=1

U′′x̃ (x̃xi
)(x̃xi

)(ζ(t, x), x) −
N

∑

i=1

U′x̃(x̃xi xi
)(ζ(t, x), x)

≥ − ε
4
∂ξU x̃ + f (x,U x̃) − f (x,U x̃ + δε)

− N
√

N

|x|
sup

e∈SN−1















‖U′e‖ + 2‖∂ξU′e‖ +
2

N

N
∑

i=1

‖∂yi
U′e‖ + ‖U′′e ‖















from (3.34). If −C ≤ ζ(t, x) < C, then

−∂ξU x̃(ζ(t, x)) ≥ k and f (x,U x̃) − f (x,U x̃ + δε) ≥ −Lδε.

From (3.5) and (3.6), one concludes that for any (t, x) ∈ E such that ω(t, x) < 1 and −C ≤
ζ(t, x) < C,

Lω̄ ≥ ε

4
k − εk

8
− εk

8
= 0.

Finally, if ζ(t, x) ≤ −C, then

1 − δ ≤ U x̃(ζ(t, x)) < 1 and f (x,U x̃) − f (x,U x̃ + δε) ≥ γδε.

From (3.6) and ∂ξU x
|x|
< 0, it concludes that for (t, x) ∈ E such that ω(t, x) < 1 and ζ(t, x) ≤ −C

Lω̄ ≥ γδε −
1

3
γδε ≥ 0.

As a conclusion, it follows from the maximum principle that for all (t, x) ∈ [τε,R/(c̄ + ε)] ×
R

N ,

0 ≤ ωR(t, x) ≤ ω̄(t, x) ≤ U x̃(ζ(t, x), x)hε(ζ(t, x)) + δ(1 − hε(ζ(t, x)) + δε.

For all Tε ≤ t ≤ R/(c̄ + ε) and |x| ≤ R − (c̄ + ε)t, it follows from (3.29) that

ζ(t, x) = −|x| −
(

c̄ +
ε

2

)

(t − τε) + R − Bε − C′ε ≥
ε

2
t +

(

c̄ +
ε

2

)

τε − Bε − C′ε ≥ C + ξε.

Thus, hε(ζ(t, x)) = 0 and

ωR(t, x) ≤ ω̄(t, x) = δ + δε ≤ σ.

This completes the proof. �
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3.2 Proof of Theorem 1.6

This section is devoted to prove

inf
e∈SN−1

ce ≤ lim inf
|t−s|→+∞

d(Γt, Γs)

|t − s| ≤ lim sup
|t−s|→+∞

d(Γt, Γs)

|t − s| ≤ sup
e∈SN−1

ce.

Once we have the two-key lemmas, Lemma 3.1 and Lemma 3.2, one can follow the proof of

[14, Theorem 2.7] to get Theorem 1.6. But we still sketch it for completeness. Since the second

inequality is obvious, we only prove the first one and the third one in the following.

Step 1: proof of the first inequality. Let ε > 0 be arbitrary positive real number. Let us

assume by contradiction that

lim inf
|t−s|→+∞

d(Γt, Γs)

|t − s|
< c − 2ε. (3.39)

where c = infe∈SN−1 ce (notice that this yields especially 0 < ε ≤ c/2 < c). There are two

sequences (tk)k∈N and (sk)k∈N in R such that |tk − sk| → +∞ as k → +∞ and

d(Γtk , Γsk
) < (c − 2ε)|tk − sk| for all k ∈ N.

We assume that tk < sk for all k ∈ N without loss of generality. By definition of distance

d(Γtk , Γsk
), there are then two sequences (xk)k∈N and (zk)k∈N in RN such that

xk ∈ Γtk , zk ∈ Γsk
and |xk − zk| < (c − 2ε)(sk − tk) for all k ∈ N.

From Definition 1.2, there is M ≥ 0 such that

{∀t ∈ R, ∀x ∈ Ω+t , (d(x, Γt) ≥ M)⇒ (u(t, x) ≥ 1 − σ),

∀t ∈ R, ∀x ∈ Ω−t , (d(x, Γt) ≥ M)⇒ (u(t, x) ≤ σ).

Let R > 0 such that Lemma 3.1 holds true with vR defined for β = 1 − σ and R. From (1.9),

there are rR+M and y+
k

such that

y+k ∈ Ω+tk , |xk − y+k | ≤ rR+M and d(y+k , Γtk) ≥ R + M,

and rM and y−
k

such that

y−k ∈ Ω−sk
, |zk − y−k | ≤ rM and d(y−k , Γsk

) ≥ M.

These imply that B(y+
k
,R) ⊂ Ω+tk , d(B(y+

k
,R), Γtk) ≥ M and u(sk, y

−
k
) ≤ σ. Thus, u(tk, x) ≥ 1 − σ

for all x ∈ B(y+
k
,R). Therefore, u(tk, x) ≥ vR(0, x − y+

k
) for all x ∈ RN and it follows from the

maximum principle that

u(t, x) ≥ vR(t − tk, x − y+k ) for all k ∈ N, t > tk and x ∈ RN .

Then, by Lemma 3.1, one has that, for every k ∈ N,

u(t, x) ≥ 1 − σ for all t ≥ tk + Tε and |x − y+k | ≤ (c − ε)(t − tk). (3.40)

Since sk − tk → +∞ as k → +∞, there is k large enough such that sk − tk ≥ Tε and ε(sk −
tk) ≥ rR+M + rM . Since |y+

k
− xk| ≤ rR+M and |xk − zk| < (c − 2ε)(sk − tk), it follows that
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|y+
k
− zk| ≤ rR+M + (c − 2ε)(sk − tk). On the other hand, from |zk − y−

k
| ≤ rM, we get that

|y+
k
− y−

k
| ≤ rR+M + (c − 2ε)(sk − tk) + rM ≤ (c − ε)(sk − tk). Thus, from (3.40), u(sk, y

−
k
) ≥ 1 − σ

which contradicts that u(sk, y
−
k
) ≤ σ.

Step 2: proof of the third inequality. Let ε > 0 be arbitrary positive real number. Let us

assume by contradiction that

lim sup
|t−s|→+∞

d(Γt, Γs)

|t − s|
> c̄ + 3ε. (3.41)

where c̄ = supe∈SN−1 ce. Then, there are two sequences (tk)k∈N and (sk)k∈N in R that |tk− sk| → +∞
as k→ +∞ and

d(Γtk , Γsk
) > (c̄ + 3ε)|tk − sk| for all k ∈ N.

We assume that tk < sk for all k ∈ N without loss of generality. For each k ∈ N, take a point zk

on Γsk
. There are two sequences (y±

k
)k∈N such that

y±k ∈ Ω±sk
, |zk − y±k | ≤ rM , d(y±k , Γsk

) ≥ M.

It implies that

u(sk, y
−
k ) ≤ σ < 1 − σ ≤ u(sk, y

+

k ). (3.42)

On the other hand, since d(zk, Γtk ) > (c̄ + 3ε)(sk − tk) > 0, there holds

either B(zk, (c̄ + 3ε)(sk − tk)) ⊂ Ω+tk or B(zk, (c̄ + 3ε)(sk − tk)) ⊂ Ω−tk .

Assume by contradiction that, up to a subsequence,

B(zk, (c̄ + 3ε)(sk − tk)) ⊂ Ω+tk ,

for all k ∈ N. Since sk − tk → +∞ as k → +∞, one has B(zk,R) ⊂ Ω+tk with d(B(zk,R), Γtk) ≥ M

for all k large enough. Thus, u(tk, x) ≥ 1 − σ for all x ∈ B(zk,R). Then, u(tk, x) ≥ vR(0, x − zk)

for all x ∈ RN and

u(t, x) ≥ vR(t − tk, x − zk) for all k large enough, t > tk and x ∈ RN ,

from the maximum principle. From Lemma 3.1, for ε′ = c/2, there is Tε′ > 0 such that, for all

k large enough,

u(t, x) ≥ vR(t − tk, x − zk) ≥ 1 − σ for all t ≥ tk + Tε′ and |x − zk| ≤ (c − ε′)(t − tk) =
c

2
(t − tk).

Since c > 0 and sk − tk → +∞, one has sk − tk ≥ Tε′ and |y−
k
− zk| ≤ rM ≤ c/2(sk − tk) for all k

large enough. Therefore, u(sk, y
−
k
) ≥ 1 − σ for all k large enough which contradicts (3.42).

Hence, for all k large enough,

B(zk, (c̄ + 3ε)(sk − tk)) ⊂ Ω−tk .

Since sk − tk → +∞ as k → +∞, it follows that B(zk, (c̄ + 2ε)(sk − tk)) ⊂ Ω−tk and d(B(zk, (c̄ +

2ε)(sk − tk)), Γtk ) ≥ M. Hence, u(tk, x) ≤ σ for all x ∈ B(zk, (c̄ + 2ε)(sk − tk)) and then u(tk, x) ≤
ω(c̄+2ε)(sk−tk)(0, x−zk) for all x ∈ RN where ωR is defined in (3.2) with α = σ. From the maximum

principle, it follows that

u(t, x) ≤ ω(c̄+2ε)(sk−tk)(t − tk, x − zk) for all k large enough, t > tk and x ∈ RN .
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Since (c+2ε)(sk−tk)→ +∞ as k → +∞, if follows from Lemma 3.2 that, for all k large enough,

u(t, x) ≤ ω(c̄+2ε)(sk−tk)(t − tk, x − zk) ≤ σ,

for all Tε ≤ t − tk ≤ (c̄+ 2ε)(sk − tk)/(c̄+ ε) and |x− zk| ≤ (c̄+ 2ε)(sk − tk)− (c̄+ ε)(t − tk), where

Tε > 0 is given in Lemma 3.2. Since for all k large enough, Tε ≤ sk− tk ≤ (c̄+2ε)(sk− tk)/(c̄+ε)

and |y+
k
− zk| ≤ rM ≤ (c̄ + 2ε)(sk − tk) − (c̄ + ε)(sk − tk), it follows that

u(sk, y
+

k ) ≤ σ.

which contradicts (3.42).

In conclusion, we have shown that (3.39) and (3.41) are impossible for arbitrary ε > 0. The

proof of Theorem 1.6 thereby complete. �
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38


	1 Introduction
	2 Properties
	2.1 General properties
	2.2 Continuity
	2.3 Differentiability

	3 Propagating speed of transition fronts
	3.1 Two key-lemmas
	3.2 Proof of Theorem 1.6


