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Spectral Image Fusion From 

Compressive Measurements 

Edwin Vargas, Oscar Espitia, Henry Arguello and Jean-Yves Tourneret 

Abstract-Compressive spectral imagers reduce the number of 
sampled pixels by coding and combining the spectral information. 
However, sampling compressed information with simultaneous 
high spatial and high spectral resolution demands expensive 
high-resolution sensors. This paper introduces a model allowing 
data from high spatial/low spectral and low spatial/high spectral 
resolution compressive sensors to be fused. Based on titis model, 
the compressive fusion process is formulated as an inverse 
problem that minimizes an objective function defined as the sum 
of a quadratic data fidelity terin and smoothness and sparsity 
regularization penalties. The parameters of the different sensors 
are optimized and the choice of an appropriate regularization is 
studied in order to improve the quality of the high resolution 
reconstructed images. Simulation results conducted on synthetic 
and real data, with different compressive sampling imagers, allow 
the quality of the proposed fusion method to be appreciated. 

Index Tenns-Spectral imaging, compressive sampling, data 
fusion, remote sensing. 

1. INTRODUCTION

H
YPERSPECTRAL imaging allows the identification and 

visualization of materials in a scene via spectroscopie 

analysis. It is important in many applications such as Earth 

observation [1)-[3], geology [4], food safety [l], [2] and 

medical imaging [5]. The extraction of useful information 

from hyperspectral (HS) images involves advanced infer

ence methods trying to overcome the problems related to 

the high dimensionality of these images and to their low 

spatial or spectral resolutions. These methods often require 

solving inverse problems that are considered in many research 

topics, including compressive acquisition, super-resolution, 
and fusion (see [l] for descriptions). 
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Remote sensing imagers usually deliver images with either 
high spatial/low spectral or high spectral/low spatial resolu

tions. However, applications involving detection, tracking, and 

classification require images with both high spectral and high 

spatial resolutions. These requirements are at the origin of 

many works related to the fusion of images with different spa

tial and spectral resolutions [6]. On the other hand, most imag

ing systems deliver data with a significant redundancy, which 

can be reduced by using compressive sampling (CS) [7], [8]. 

CS is based on the fact that many natural signais can be 

represented with a few coefficients in some basis and can thus 

be efficiently compressed. It has been shown that the use of 
appropriate sensing matrices allows the performance of signal 

reconstruction methods to be close to the one obtained without 

using CS [9]. However, designing systems characterized by 

low-cost compressed measurements with high spatial and high 

spectral resolutions is still a challenging problem. 
There are several approaches for compressing spectral data. 

This paper focusses on two classes of imagers that have 

been implemented in practical applications, which capture a 

spectral scene using a single or multiple 20 snapshots obtained 

with different sampling patterns: i) spatial coding-based CS 

imagers, such as the coded aperture snapshot spectral imager 

(CASSI) [10) and ii) spectral coding-based spectral imagers, 

such as the spatio-spectral encoded compressive spectral 
imager (SSCSI) [l l], or the colored-CASSI [8]. At this point, 

it is interesting to mention that other theoretical approaches 

have been studied for compressive spectral imaging, such 

as the hyperspectral coded aperture (HYCA) [12) or the 

compressive-projection principal component analysis [13). 

However, these approaches have, to the author knowledge, 

never been applied in practical applications. 
This paper introduces a mode! allowing high spatial and 

spectral resolution images to be reconstructed from two images 

acquired with compressive spectral imagers. The observed 

images are assumed to result from spectral and/or spatial 

degradations of a high resolution (HR) image (to be recovered) 
acquired with a CS operation. The HR image of interest is 

stacked into a column vector f = [/1 , ... , ftfld T E RN2

L, 
where N2 is the number of image pixels and L is the number 

of spectral bands. We also assume that f can be decomposed as 

f = '11x, where x E RN2 

L contains only Nz « N2 L nonzero

elements and '11 E RN2 

Lxtfl L is an operator expressing the fact
that the image is sparse in a given domain. This decomposition 

assumes that the image of interest can be described as a linear 

combination of a few atoms belonging to the dictionary '11.









where r j = j/(N2). Note that that the matrix �k
m is fully

characterized by the vector tk
m.

B. Designing the Matrices �h and �m

In CS theory, a suitable measurement matrix � =
[�T

h ,�
T
m]T is desired to be as incoherent as possible with the

sparse dictionary � [9]. The mutual coherence of the Gram
matrix G = (��)T (��) is defined as the off-diagonal entry
in G with the largest absolute magnitude. As a consequence,
we propose to optimize the sensing matrix by minimizing
the mutual coherence of G. Considering that the dictionary
is known, a sensing matrix can be chosen such that the
corresponding Gram matrix is as close as possible to the
identity [23], i.e.,

G = �T �T �� ≈ I. (12)

Note that if the dictionary � is an orthogonal basis
(�T � = I), in order to have (12), it make sense to choose
� such that �T � ≈ I. Thus, the design of the sensing matrix
reduces to an appropriate choice of �. The choice of an
appropriate sensing matrix for CS has been investigated before
(independently of the dictionary), e.g., in [8], [24], and [25].
In [24], an approach for making the matrices associated with
the different snapshots as complementary as possible was
investigated. We propose to apply this concept to our problem
to choose the matrix � as a binary matrix containing only one
1 per column. Denote as c = [c0, · · · , cN2 L−1]T the vector
such that

c j =
KhVh−1∑

i=0

(�h)i, j +
KmVm−1∑

i=0

(�m)i, j (13)

where c j corresponds to the number of ones in the j th column
of �. Note that j = 0, ..., N2 L − 1 where N2 L is the number
of columns of the matrix �, and that (�h)i, j and (�m)i, j are
the elements of the i th row and j th column of the sensing
matrices �h and �m, respectively. When each column of �

contains exactly one 1 and all other values are 0, the matrix
� satisfies the following relations

σ 2
c = 1

N2 L

N2 L−1∑
j=0

(c j − c)2 = 0, c = 1. (14)

Since these conditions are too restrictive in practice, we pro-
pose to design the matrix � by minimizing the variance σ 2

c
with the constraint c = 1. Since the entries of c are binary, this
problem can be solved using the direct binary search algorithm
for generating the patterns Tk (see [24] for more details).
Finally, it is worth noting that the design of the matrix � takes
into account two different systems (with different spatial and
spectral resolutions), which has (to the best of our knowledge)
never been addressed in CS imaging.

IV. FUSING COMPRESSED HS AND MS IMAGES USING

A REGULARIZED INVERSE PROBLEM

A. Problem Formulation

The fusion strategy adopted in this work is based on the
following inverse problem

̂f = arg min
f

1

2
||�hf − ỹh||22 + 1

2
||�mf − ỹm||22 + φ(f) (15)

where the two first terms are the data fidelity terms associated
with the HS and MS observations, || · ||2 is the l2 norm and
the last term ensures an appropriate regularization. In order to
build the regularization term, we decompose the vectorized
image f onto a basis � ∈ R

N2 L×N2 L in order to obtain
a sparse representation. Denoting as x ∈ R

N2 L the vector
containing the coefficients of f in this basis, we introduce the
following regularization term

φ(f) = λ1||�T f ||1 + λ2||Lf ||1 (16)

which attempts to preserve the sparsity of the vector x = �T f
in the domain of the representation basis � , and the smooth-
ness of f in the spatial domain via the operator L, which
enforces piecewise constant solutions and is associated with
the T V regularizer (see [26] for more details). Note that
|| · ||1 is the l1 norm and that λ1, λ2 are two regularization
parameters.

B. Proposed ADMM

The direct resolution of problem (15) involves the inversion
of large matrices, which requires a too high computational
cost. To decouple the original problem into smaller subprob-
lems, we introduce the following notations

�h = [
(
�1

h

)T
, · · · ,

(
�

Kh
h

)T ]T ,

�m = [
(
�1

m

)T
, · · · ,

(
�Km

m

)T ]T ,

ỹ = [ỹT
h , ỹT

m]T (17)

where ỹh, and ỹm are the measurement matrices and vectors
associated with the khth and kmth snapshots for the HS and
MS imagers, respectively. This decomposition allows us to
obtain K = Kh + Km simpler problems with respect to
(w.r.t.) f , where K is the total number of snapshots. More
precisely, we propose an alternative way to solve (15) with the
regularizer (16) by splitting the objective function as follows

minimize
να,u,v

f (να, u, v)

subject to να = f for α = 1, · · · , Kh, · · · , K

f = �u

v = Lf (18)

where

f (να, u, v) = 1

2

Kh∑
kh=1

∥∥∥�
kh
h νkh − ỹkh

h

∥∥∥2

2

+ 1

2

Km∑
km=1

∥∥∥�km
m νKh+km −ỹkm

m

∥∥∥2

2
+ψ(u, v) (19)

with

ψ(u, v) = λ1||u||1 + λ2||v||1 (20)

and where the summations in the two first terms are obtained
after splitting the matrices �h and �m into Kh and Km matri-
ces associated with the different snapshots. Then the procedure
consists of optimizing the objective function f (να, u, v) w.r.t.
να , u and v, which leads to Algorithm 1.



Algorithm 1 ADMM Compressive Spectral Image Fusion

Algorithm 2

An approach for solving (18) is to minimize its augmented
Lagrangian [27]. The Lagrangian and its optimization are
studied independently in the next subsections.

1) Optimization w.r.t. να: Decomposing the vector v as

ν = [νT
h , ν

T
m]T (21)

with νh = [νT
1 , · · · , νT

Kh
]T and νm = [νT

Kh+1, · · · , νT
K ]T ,

the minimizations w.r.t. the variables νh and νm can be
conducted separately. For instance, when using the scaled form
of the ADMM algorithm, the Lagrangian of (19) w.r.t. νh is

Lh(νh) = 1

2

Kh∑
kh=1

∥∥∥�
kh
h νkh − ỹkh

h

∥∥∥2

2
+ ρ

2

Kh∑
kh=1

∥∥f − νkh +dkh

∥∥2
2

(22)

where dkh is a slack variable. The update term for νh can
be obtained by differentiating (22) w.r.t. νh and forcing it to
be zero. Of course, the Lagrangian of νm is similar to the
Lagrangian of νh and is obtained by replacing �h by �m,
νh by νm, and ỹh by ỹm. Algorithm 2 shows how νh and
νm are updated from the minimization of their respectives
Lagrangians. Note that the sparsity of the matrices �h and
�m allows the matrices

(
�

khT
h �

kh
h + ρIN2 L

)
∈ R

N2 L×N2 L

and
(
�kmT

m �km
m + ρIN2 L

) ∈ R
N2 L×N2 L (where IN2 L is the

N2 L × N2 L identity matrix) to be inverted with reasonable
computational complexity. Note that the scaled and unscaled
forms of the ADMM are equivalent. However, if one do not
wish to emphasize the role of the dual variable, and use

datasets with arbitrary size, it is more convenient to use the
scaled form.

2) Optimization w.r.t. u: Problem (15) can be rewritten

minimize
ν,u,v

Lh(νh)+ Lm(νm)+ λ1||u||1 + λ2||v||1
subject to f = �u and v = Lf . (23)

The minimization w.r.t. u can be solved by introducing auxil-
iary variables to split the data fidelity and regularization terms.
More specifically, by introducing the splittings u = u0 and
v = v0, (23) leads to

minimize
να,u,v,u0,v0

Lh(νh)+ Lm(νm)+ λ1 �u0�1 + λ2 �v0�1

subject to f = �u, u = u0, v = Lf, v = v0. (24)

Problem (24) can be solved by optimizing the Lagrangian w.r.t.
all its variables. The optimization w.r.t. u0 reduces to

minimize
u0

L0(u0) (25)

where

L0(u0) = λ1 �u0�1 + ρ

2

∥∥u − u0 + d(K+1)
∥∥2

2 . (26)

The optimization w.r.t. u can be written

minimize
u

Lu(u) (27)

with

Lu(u) = ρ

2

∥∥u − u0 + d(K+1)
∥∥2

2 + ρ

2

∥∥f − �u + d(K+2)
∥∥2

2

(28)

where the variables dk are slack variables. Of course, the opti-
mizations w.r.t. v0 and v (in (24)) can be solved similarly.
The Lagrangians L0(u0) and L0(v0) being non-differentiable,
we update these parameters by using soft thresholding oper-
ations, which result from the computation of appropriate
proximal operators (see [26], [27] for details). Algorithm 3
summarizes how each variable u and v can be updated from
the minimization of their respective Lagrangians where

Sλ/ρ(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x − λ

ρ
if x > λ

ρ

x + λ

ρ
if x < − λ

ρ

0 otherwise

(29)

3) Estimating f: The final step is to estimate the unknown
image f from (24) by minimizing its Lagrangian w.r.t. f
defined as

L f (f) = ρ

2

( K∑
k=1

�f − νk + dk�2
2 + ∥∥f − �u0 + d(K+2)

∥∥2
2

+ ∥∥f − v0 + d(K+4)
∥∥2

2

)
(30)

where the first term directly results from Lh(νh) and Lm(νm)
in (22), whereas the second and third terms from Lu(u) and
Lv (v) in (28). The optimization of L f ( f ) can be performed
by forcing its derivative to 0, which yields the update term of
f in line 5 of Algorithm 1.



Algorithm 3

Algorithm 4

4) Slack Variables: The slack variables in d have also to
be updated. We propose to update them using the procedure
considered in [27] for the Lasso problem. Algorithm 4 sum-
marizes the different steps for this update.

5) Convergence: The problem solved in this paper is a
convex relaxation of the CS problem. Since the functions
f and φ are convex, the subproblems corresponding to the
update of each variable are convex and have a unique solu-
tion. As a consequence, there exist a unique image f that
minimizes the augmented Lagrangian. Indeed, if we intro-
duce the vector z = [νT

1 , · · · , νT
K , uT , vT ]T and the matrix

M = [I, · · · , I,�,LT ]T , we can rewrite problem (18) as the
minimization of f (z), subject to the constraint Mf = z. Given
that the function f is closed, proper and convex and the matrix
M is full column rank, from Theorem 8 in [37], we know
that the sequence of iterates {f l} generated by Algorithm 1
converges to a solution of (15).

V. SIMULATION RESULTS

A. Simulation Scenario

Two imagers were considered in each experiment to gener-
ate the low spatial/high spectral and high spatial/low spectral
resolution measurements ỹh and ỹm. Both systems used the
same high-resolution image, which was degraded using spatial
and spectral degradations and compressed. The matrices �h
and �m were generated as described in Section III. The
reference image considered in this work is mainly the classical
ROSIS image acquired over Pavia, northern Italy [28] reduced

to 256 × 256 pixels and 92 bands. The HS datacube was
obtained by applying a 5 × 5 Gaussian lowpass filter in each
band and by using a 4:1 decimation ratio (p = 2). Similarly,
the MS data was generated by using a 4:1 decimation ratio
(q = 4). Algorithm 1 was then used to estimate the image f .
The main parameters were obtained as follows

• The values of λ1 and λ2 were selected by cross-validation
and we found that λ1 = λ2 = 5 × 10−4 provides good
reconstruction results.

• The parameter ρ was initialized close to zero and was
updated as will be explained in Section V-B.

• The dictionary � was selected as the Kronecker product
W ⊗ D, where W is a Symlet wavelet kernel, and D
is a DCT operator. This choice is motivated by the fact
that it has provided good image reconstruction results in
previous works [8].

• The operator L was decoupled in two operators act-
ing on the rows and columns of each spectral band,
as explained in [29].

• The stopping criterion was selected as in many ADMM
algorithms [27]. More precisely, tolerances were intro-
duced as ||f
 − ν
||2 ≤ �1 and ||ν
−1 − ν
||2 ≤ �2 with
�1 ≤ 10−2, �2 ≤ 10−4. In general, these stopping rules
are satisfied before 30 iterations.

• The amount of data for the simulations was defined as
the compression ratio, which expresses the amount of
data in the measurement vectors with respect to number
of elements in the reference image, that is Compression
Ratio = (KhVh + KmVm) /(N2

h L + N2 Lm)

B. How to Update Parameters λ1, λ2 and ρ?

The proposed algorithm requires to adjust three parameters,
i.e., λ1, λ2 and ρ. The two first parameters λ1 and λ2 are
related with the regularization terms of the proposed optimiza-
tion problem. They were chosen by cross-validation for any
dataset in order to obtain the best performance (as classically
done for this kind of problem).

The fusion results also depend on the parameter ρ appearing
in the augmented Lagrangian (e.g., see (22)). In this work, this
parameter was adjusted using the following rule

ρ
+1 =
⎧⎨
⎩
τlρ


 if ||f
 − ν
||2 > μ||ν
−1 − ν
||2
ρ
τr if ||ν
−1 − ν
||2 > μ||f
 − ν
||2
ρ
 otherwise

(31)

where τl = τr = 2, μ = 10 are common choices [27].
In practice, we have observed that it was sufficient to update
ρ every 10 iterations of the algorithm, as suggested in [27].
The main motivation behind this update rule is to try to keep
the primal and dual residual norms within a factor of μ of one
another as they both converge to zero [27].

C. Fusion Quality Metrics

The metrics used to evaluate the quality of the proposed
fusion strategy are summarized and explained below

• RMSE: The root mean square error (RMSE) is a similarity
measure between the target image f and the fused image



f̂ defined as RMSE(f, f̂) = 1
N2 L

�f − f̂�2
2. The smaller

RMSE, the better the fusion quality.
• UIQI: The universal image quality index (UIQI) was

proposed in [30] for evaluating the similarity between
two single band images. It is related to the correla-
tion, luminance distortion and contrast distortion of the
estimated image w.r.t. the reference image. The UIQI
between two single-band images a = [a1, · · · , aN ] and
â = [â1, · · · , âN ] is defined

UIQI(a, â) = 4σaâ2μaμâ

(σ 2
a + σ 2

â )(μ
2
a + μ2

â)
(32)

where (μa, μâ, σ
2
a , σ

2
â ) are the sample means and vari-

ances of a and â, and σaâ2 is the sample covariance of
(a, â). The range of UIQI is [−1, 1] and UIQI(a, â) = 1
when a = â. For multi-band images, the overall UIQI
is computed by averaging the UIQIs associated with the
different bands.

• SAM: The spectral angle mapper (SAM) measures the
spectral distortion between the actual and estimated
images. The SAM of two spectral vectors x and x̂
is defined as SAM(x, x̂) = arccos

(�x, x̂�/�x�2�x̂�2
)
.

The overall SAM is finally obtained by averaging the
SAMs computed from all image pixels. Note that the
value of SAM is expressed in degrees and thus belongs
to (−90, 90]. The smaller the absolute value of SAM,
the less important the spectral distortion.

• ERGAS: The relative dimensionless global error in syn-
thesis (ERGAS) calculates the amount of spectral distor-
tion in the image [31]. It is defined as

ERGAS = 100
N2 Lm

N2
h L

√√√√ 1

L

L−1∑
i=0

(
RMSE(i)

μi

)2

(33)

where N2 Lm/N2
h L is the ratio between the pixel sizes of

the MS ans HS images, μi is the mean of the i th band
of the HS image, and L is the number of HS bands. The
smaller ERGAS, the smaller the spectral distortion.

• DD: The degree of distortion (DD) between two images
is defined as DD(f, f̂) = 1

N2 L
�f − f̂�1. The smaller DD,

the better the fusion.

D. Fusion Results

The first simulation results displayed in Fig. 8 show
the reconstructed image obtained with the proposed fusion
method for a compression ratio of 0.4, which can be com-
pared to the ground truth and the reconstruction obtained
without CS. These results are compared with other fusion
methods designed for compressed measurements [32] or for
non-compressed data [14], [33].1 The method studied in [14]
referred to as “Sparse fusion” exploits the fact that HS images
live in a low dimensional subspace defined by the endmembers
whereas the method of [32] is based on a multi-resolution
analysis and a simple maximum selection fusion rule. The
method of [33] is adapted to multiple multi-focus images. It is

1The authors are very grateful to A. Achim and S. Vorobyov who sent us
their Matlab codes allowing a fair comparison.

Fig. 8. Fusion results for the Pavia dataset (compression ratio of 0.4).
(Top-Left) Groundtruth. (Top-Right) Hyperspectral/low spatial resolution
image. (Second line-Left) Multispectral/low spectral resolution image. Recon-
structed images using different methods: (Second line-Right) [32] (PSNR =
28 dB), (Third line-Left) [33] (PSNR = 36.99 dB), (Third line-Right) CASSI
(PSNR = 32 dB), (Fourth line-Left) SSCSI (PSNR = 38 dB), (Fourth line-
Right) Gaussian sensing matrix (PSNR = 41 dB), (Bottom) Sparse fusion [14]
(PSNR = 42 dB).

based on a sparse model and formulates the fusion problem
as an inverse-problem regularized with a cosparsity prior in
order to estimate an all-in-focus image. Since the methods
of [32] and [33] require the images to have the same size,
the MS and HS images were interpolated to have the same size
before applying these methods. Note that the images displayed







Fig. 13. Spatial fusion results for the Moffett Field dataset.
(Top) Groundtruth. (Left-2) Hyperspectral/low spatial resolution image.
(Right-2) Multispectral/low spectral resolution image. (Left-3) CASSI Recon-
struction with the proposed fusion method (PSRN = 30 dB). (Right-3)
SSCSI Reconstruction with the proposed fusion method (PSNR = 37 dB).
(Left-4) Gaussian reconstruction with the proposed fusion method (PSNR =
42 dB). (Right-4) Sparse fusion (PSNR = 43 dB).

elements of the matrix �T � + ρIN2 L , with � ∈ R
m×n . The

sparsity of this matrix can be exploited for its inversion by
using efficient matrix factorizations and backsolve routines
(e.g., Cholesky factorization [27], [35]). In this case, this
operation can be carried out with O(nm2) operations plus the
cost of forming the matrix �T � + ρIN2 L . The computational
complexity of Algorithm 3 is known to be O(N2 L). Note
that the matrix inversions have to be computed at each time
ρ is updated. Thus, the total complexity of Algorithm 1 is
O(N2 L(KhVh + KmVm)

2).

VI. CONCLUSION

This work showed that compressive projections can be used
to fuse high spectral/low spatial and high spatial/low spectral
resolution images without the need of expensive image recon-
struction methods. The image fusion problem was formulated
as an inverse problem with two data fidelity terms related to the

images to be fused and two regularizations ensuring a smooth
reconstructed image a sparse decomposition of the image in
an appropriate dictionary. An ADMM algorithm was studied
for solving this inverse problem. Our experiments showed that
algorithms based on compressed sensing can recover images
with high spatial and spectral resolutions using as few as 50%
of the data with PSNRs larger than 40dB, which is comparable
with results obtained with other fusion approaches processing
images without compressed sensing. The main advantage of
the proposed fusion rule is the reduced amount of data required
to estimate the target multi-band image yielding a reconstruc-
tion performance close to the one obtained with other fusion
methods designed without compressed sensing. Future work
includes the study of methods allowing the hyperparameters
to be automatically estimated from the data, as the ones
presented in [36]. In this work, the sensing matrices have been
optimized considering the compressed sensing architecture
only (i.e., CASSI or SSCSI). However an interesting problem
would be to optimize the dictionary used in the sensing matrix.
New methods exploiting the low rank properties of HS images
(e.g., using the linear mixing model) would also deserved
to be explored. Finally, determining the optimal number of
measurements from the two images in order to optimize an
appropriate fusion criterion is also an interesting prospect,
which was suggested by one of the reviewers of this paper.

REFERENCES

[1] J. M. Bioucas-Dias, A. Plaza, G. Camps-Valls, P. Scheunders,
N. M. Nasrabadi, and J. Chanussot, “Hyperspectral remote sensing data
analysis and future challenges,” IEEE Geosci. Remote Sens. Mag., vol. 1,
no. 2, pp. 6–36, Jun. 2013.

[2] Z. Xiong, A. Xie, D.-W. Sun, X.-A. Zeng, and D. Liu, “Applications
of hyperspectral imaging in chicken meat safety and quality detection
and evaluation: A review,” Crit. Rev. Food Sci. Nutrition, vol. 55, no. 9,
pp. 1287–1301, Apr. 2014.

[3] J. P. Ryan, C. O. Davis, N. B. Tufillaro, R. M. Kudela, and
B.-C. Gao, “Application of the hyperspectral imager for the coastal ocean
to phytoplankton ecology studies in Monterey bay, CA, USA,” Remote
Sens., vol. 6, no. 2, pp. 1007–1025, Jan. 2014.

[4] G. J. Bellante, S. L. Powell, R. L. Lawrence, K. S. Repasky, and
T. O. Dougher, “Aerial detection of a simulated CO2 leak from a geo-
logic sequestration site using hyperspectral imagery,” Int. J. Greenhouse
Gas Control, vol. 13, pp. 124–137, Mar. 2013.

[5] G. Lu and B. Fei, “Medical hyperspectral imaging: A review,” J. Biomed.
Opt., vol. 19, no. 1, p. 10901, Jan. 2014.

[6] L. Loncan et al., “Hyperspectral pansharpening: A review,” IEEE Trans.
Geosci. Remote Sens., vol. 3, no. 3, pp. 27–46, Sep. 2015.

[7] G. R. Arce, D. J. Brady, L. Carin, H. Arguello, and D. S. Kittle,
“Compressive coded aperture spectral imaging: An introduction,” IEEE
Signal Process. Mag., vol. 31, no. 1, pp. 105–115, Jan. 2014.

[8] H. Arguello and G. R. Arce, “Colored coded aperture design by
concentration of measure in compressive spectral imaging,” IEEE Trans.
Image Process., vol. 23, no. 4, pp. 1896–1908, Apr. 2014.

[9] E. J. Candès and M. B. Wakin, “An introduction to compressive
sampling,” IEEE Signal Process. Mag., vol. 25, no. 2, pp. 21–30,
Mar. 2008.

[10] A. Wagadarikar, R. John, R. Willett, and D. Brady, “Single disperser
design for coded aperture snapshot spectral imaging,” Appl. Opt., vol. 47,
no. 10, pp. B44–B51, Apr. 2008.

[11] X. Lin, Y. Liu, J. Wu, and Q. Dai, “Spatial-spectral encoded com-
pressive hyperspectral imaging,” ACM Trans. Graph., vol. 33, no. 6,
pp. 233:1–233:11, Nov. 2014.

[12] G. Martín, J. M. Bioucas-Dias, and A. Plaza, “HYCA: A new technique
for hyperspectral compressive sensing,” IEEE Trans. Geosci. Remote
Sens., vol. 53, no. 5, pp. 2819–2831, May 2015.

[13] J. E. Fowler, “Compressive-projection principal component analysis,”
IEEE Trans. Image Process., vol. 18, no. 10, pp. 2230–2242, Oct. 2009.



[14] Q. Wei, J. Bioucas-Dias, N. Dobigeon, and J. Y. Tourneret, “Hyperspec-
tral and multispectral image fusion based on a sparse representation,”
IEEE Trans. Geosci. Remote Sens., vol. 53, no. 7, pp. 3658–3668,
Jul. 2015.

[15] D. Needell and R. Ward, “Stable image reconstruction using
total variation minimization,” SIAM J. Imag. Sci., vol. 6, no. 2,
pp. 1035–1058, Mar. 2013.

[16] Q. Wei, J. Bioucas-Dias, N. Dobigeon, and J.-Y. Tourneret, “Hyperspec-
tral and multispectral image fusion based on a sparse representation,”
IEEE Trans. Geosci. Remote Sens., vol. 53, no. 7, pp. 3658–3668,
Jul. 2015.

[17] Q. Wei, N. Dobigeon, and J. Y. Tourneret, “Bayesian fusion of multi-
band images,” IEEE J. Sel. Topics Signal Process., vol. 9, no. 6,
pp. 1117–1127, Sep. 2015.

[18] Q. Wei, S. Godsill, J. M. Bioucas-Dias, N. Dobigeon, and
J.-Y. Tourneret, “High-resolution hyperspectral image fusion based on
spectral unmixing,” in Proc. 19th Int. Conf. Inf. Fusion (FUSION),
Heidelberg, Germany, Jul. 2016, pp. 1714–1719.

[19] N. Yokoya and A. Iwasaki, “Hyperspectral and multispectral data fusion
mission on hyperspectral imager suite (HISUI),” in Proc. IEEE Int.
Symp. Geosci. Remote Sens. (IGARSS), Melbourne, VIC, Australia,
Jul. 2013, pp. 4086–4089.

[20] X. Luo, J. Zhang, J. Yang, and Q. Dai, “Classification-based image-
fusion framework for compressive imaging,” J. Electron. Imag., vol. 19,
no. 3, p. 033009, Jul. 2010.

[21] H. Yin, Z. Liu, B. Fang, and Y. Li, “A novel image fusion approach
based on compressive sensing,” Opt. Commun., vol. 354, pp. 299–313,
Nov. 2015.

[22] I. August, Y. Oiknine, M. AbuLeil, I. Abdulhalim, and A. Stern,
“Miniature compressive ultra-spectral imaging system utilizing a single
liquid crystal phase retarder,” Sci. Rep., vol. 6, Mar. 2016, Art. no. 23524.

[23] H. Bai, G. Li, S. Li, Q. Li, Q. Jiang, and L. Chang, “Alternating
optimization of sensing matrix and sparsifying dictionary for compressed
sensing,” IEEE Trans. Signal Process., vol. 63, no. 6, pp. 1581–1594,
Mar. 2015.

[24] A. P. Cuadros, C. Peitsch, H. Arguello, and G. R. Arce, “Coded aper-
ture optimization for compressive X-ray tomosynthesis,” Opt. Express,
vol. 23, no. 25, pp. 32788–32802, Dec. 2015.

[25] C. V. Correa, H. Arguello, and G. R. Arce, “Spatiotemporal blue noise
coded aperture design for multi-shot compressive spectral imaging,”
J. Opt. Soc. Amer. A, Opt. Image Sci., vol. 33, no. 12, pp. 2312–2322,
2016.

[26] N. B. Bras, J. Bioucas-Dias, R. C. Martins, and A. C. Serra, “An alter-
nating direction algorithm for total variation reconstruction of distributed
parameters,” IEEE Trans. Image Process., vol. 21, no. 6, pp. 3004–3016,
Jun. 2012.

[27] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1–122,
Jan. 2011.

[28] B. Kunkel, F. Blechinger, D. Viehmann, H. Van Der Piepen, and
R. Doerffer, “ROSIS imaging spectrometer and its potential for ocean
parameter measurements (airborne and space-borne),” Int. J. Remote
Sens., vol. 12, no. 4, pp. 753–761, Apr. 1991.

[29] Á. Barbero and S. Sra. (Nov. 2014). “Modular proximal optimization
for multidimensional total-variation regularization.” [Online]. Available:
https://arxiv.org/abs/1411.0589

[30] Z. Wang and A. C. Bovik, “A universal image quality index,” IEEE
Signal Process. Lett., vol. 9, no. 3, pp. 81–84, Mar. 2002.

[31] L. Wald, “Quality of high resolution synthesised images: Is there a
simple criterion?” in Proc. 3rd Conf. Fusion Earth Data, Merging Point
Meas., Raster Maps Remotely Sensed Images (SEE/URISCA), 2000,
pp. 99–103.

[32] T. Wan, N. Canagarajah, and A. Achim, “Compressive image fusion,”
in Proc. 15th Int. Conf. Image Process. (ICIP), San Diego, CA, USA,
Oct. 2008, pp. 1308–1311.

[33] R. Gao, S. A. Vorobyov, and H. Zhao, “Image fusion with cosparse
analysis operator,” IEEE Signal Process Lett., vol. 24, no. 7,
pp. 943–947, Jul. 2017.

[34] E. Vargas, Ó. Espitia, H. Arguello, and J.-Y. Tourneret, “Techni-
cal report associated with the paper ‘Spectral image fusion from
compressive measurements,”’ Univ. Toulouse, Toulouse, France, Tech.
Rep., Nov. 2018. [Online]. Available: http://tourneret.perso.enseeiht.fr/
publis_fichiers/technical_report.pdf%

[35] R. O. Green et al., “Imaging spectroscopy and the airborne visi-
ble/infrared imaging spectrometer (AVIRIS),” Remote Sens. Environ.,
vol. 65, no. 3, pp. 227–248, Sep. 1998.

[36] M. Pereyra et al., “A survey of stochastic simulation and optimization
methods in signal processing,” IEEE J. Sel. Topics Signal Process.,
vol. 10, no. 2, pp. 224–241, Mar. 2016.

[37] J. Eckstein and D. F. Bertsekas, “On the Douglas–Rachford splitting
method and the proximal point algorithm for maximal monotone oper-
ators,” Math. Program., vol. 55, nos. 1–3, pp. 293–318, 1992.

Edwin Vargas received the B.S. degree in electronic
engineering from the Universidad Industrial de San-
tander, Bucaramanga, Colombia, in 2016, where he
is currently pursuing the master’s degree with the
Department of the Electrical and Computer Engi-
neering. His research interests focus on the areas
of high dimensional signal processing, compressive
sensing, and dictionary learning.

Henry Arguello (SM’17) received the master’s
degree in electrical engineering from the
Universidad Industrial de Santander, Bucaramanga,
Colombia, and the Ph.D. degree from the
Electrical and Computer Engineering Department,
University of Delaware, Newark. He is currently
a Titular Professor with the Systems Engineering
Department, Universidad Industrial de Santander.
His current research interests include statistical
signal processing, high dimensional signal coding
and processing, optical imaging, optical code

design, and computational imaging.

Jean-Yves Tourneret (SM’08) received the
Ingénieur degree in electrical engineering from
the École Nationale Supérieure d’Electronique,
d’Electrotechnique, d’Informatique, d’Hydraulique
et des Télécommunications (ENSEEIHT), Toulouse,
in 1989, and the Ph.D. degree from the National
Polytechnic Institute of Toulouse in 1992. He
is currently a Professor with the University of
Toulouse (ENSEEIHT) and a member of the
IRIT Laboratory (UMR 5505 of the CNRS). His
research activities are centered around statistical

signal and image processing with a particular interest in Bayesian
and Markov chain Monte Carlo methods. He has been a member of
different technical committees, including the Signal Processing Theory and
Methods Committee of the IEEE Signal Processing Society (2001–2007,
2010–2015) and the EURASIP SAT Committee on Theoretical and
Methodological Trends in Signal Processing. He has been serving as an
Associate Editor for IEEE TRANSACTIONS ON SIGNAL PROCESSING
(2008–2011, 2015–present) and the EURASIP Journal on Signal Processing
(2013–present).




