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Spectral Image Fusion From
Compressive Measurements

Edwin Vargas, Oscar Espitia, Henry Arguello and Jean-Yves Tourneret

Abstract— Compressive spectral imagers reduce the number of
sampled pixels by coding and combining the spectral information.
However, sampling compressed information with simultaneous
high spatial and high spectral resolution demands expensive
high-resolution sensors. This paper introduces a model allowing
data from high spatial/low spectral and low spatial/high spectral
resolution compressive sensors to be fused. Based on this model,
the compressive fusion process is formulated as an inverse
problem that minimizes an objective function defined as the sum
of a quadratic data fidelity term and smoothness and sparsity
regularization penalties. The parameters of the different sensors
are optimized and the choice of an appropriate regularization is
studied in order to improve the quality of the high resolution
reconstructed images. Simulation results conducted on synthetic
and real data, with different compressive sampling imagers, allow
the quality of the proposed fusion method to be appreciated.

Index Terms—Spectral imaging, compressive sampling, data
fusion, remote sensing.

I. INTRODUCTION

YPERSPECTRAL imaging allows the identification and

visualization of materials in a scene via spectroscopic
analysis. It is important in many applications such as Earth
observation [1]-[3], geology [4], food safety [1], [2] and
medical imaging [5]. The extraction of useful information
from hyperspectral (HS) images involves advanced infer-
ence methods trying to overcome the problems related to
the high dimensionality of these images and to their low
spatial or spectral resolutions. These methods often require
solving inverse problems that are considered in many research
topics, including compressive acquisition, super-resolution,
and fusion (see [1] for descriptions).
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Remote sensing imagers usually deliver images with either
high spatial/low spectral or high spectral/low spatial resolu-
tions. However, applications involving detection, tracking, and
classification require images with both high spectral and high
spatial resolutions. These requirements are at the origin of
many works related to the fusion of images with different spa-
tial and spectral resolutions [6]. On the other hand, most imag-
ing systems deliver data with a significant redundancy, which
can be reduced by using compressive sampling (CS) [7], [8].
CS is based on the fact that many natural signals can be
represented with a few coefficients in some basis and can thus
be efficiently compressed. It has been shown that the use of
appropriate sensing matrices allows the performance of signal
reconstruction methods to be close to the one obtained without
using CS [9]. However, designing systems characterized by
low-cost compressed measurements with high spatial and high
spectral resolutions is still a challenging problem.

There are several approaches for compressing spectral data.
This paper focusses on two classes of imagers that have
been implemented in practical applications, which capture a
spectral scene using a single or multiple 2D snapshots obtained
with different sampling patterns: i) spatial coding-based CS
imagers, such as the coded aperture snapshot spectral imager
(CASSI) [10] and i) spectral coding-based spectral imagers,
such as the spatio-spectral encoded compressive spectral
imager (SSCSI) [11], or the colored-CASSI [8]. At this point,
it is interesting to mention that other theoretical approaches
have been studied for compressive spectral imaging, such
as the hyperspectral coded aperture (HYCA) [12] or the
compressive-projection principal component analysis [13].
However, these approaches have, to the author knowledge,
never been applied in practical applications.

This paper introduces a model allowing high spatial and
spectral resolution images to be reconstructed from two images
acquired with compressive spectral imagers. The observed
images are assumed to result from spectral and/or spatial
degradations of a high resolution (HR) image (to be recovered)
acquired with a CS operation. The HR image of interest, is
stacked into a column vector f = [fj, ...,szL]T e RV'L,
where N2 is the number of image pixels and L is the number
of spectral bands. We also assume that f can be decomposed as
f = ¥x, where x € RNZL contains only N; « N2L nonzero
elementsand W € RV L*ML jgan operator expressing the fact
that the image is sparse in a given domain. This decomposition
assumes that the image of interest can be described as a linear
combination of a few atoms belonging to the dictionary W.



The noiseless observations considered in this work are
HS and multispectral (MS) compressed images denoted as
yh = ®uf and y, = &,f. Note that the variables with
subindex  and subindex p, used in this paper will refer to
variables associated with HS and MS images, respectively.
The matrices ®p, and ®,, are defined in the general case of
Ky and Ky, snapshots as & = [((D,l‘)T,--- s (&bfh)T]T and
&, = [(@)T, -, (®K)T]T | where (bﬁ“ = & (Ny, L)B,
&km = dkn(N, L)L and where & (Ny, L) € R"*ML and
& (N, L) € RYmxN?Lm gre appropriate sensing matrices,
with Vg, Vi < N?L, kzh =1,---,Kpand ky =1, --- , K.
The matrix B € RMLxN'L (Mp « N) is an operator
associated with spatial blurring and downsampling, and L €
RN’ LmxNL (Lym < L) is a filtering operator transforming
the spectral content of the reference image into the spectral
bands of the MS image. Note that d>£“ e R%W*N’L apd
fm ¢ RVaxN’L are HS and MS CS matrices that perform
both compression and decimation operations simultaneously.

The problem addressed in this paper is the estimation of
the HR image f (assumed to be sparse in the ¥ domain) from
the noisy measurements ¥, = y, + np and ¥ = ym + N,
where np and n,, are the HS and MS noise vectors (after
compression). Note that the observation model defined by
¥h and ¥, is similar to the one introduced in [14], except
that the unknown image f has been vectorized and that the
observed images have been compressed leading to a reduced
cost for their acquisition. The main objective of this paper is to
show that we can exploit sparsity to fuse compressed spectral
images. Note that sparsity guarantees that the inverse problem
consisting of estimating f from yy and yp, is well-posed [15].

The problem of fusing multi-resolution images has received
much attention in the literature [14], [16]-[19]. Some recent
works have also been devoted to the fusion of compressive
data in order to increase the interpretability of the images
[20], [21]. We argue that the use of compressive measurements
with appropriate sensing matrices can lead to high-quality
image reconstruction and that compressive measurements have
favorable properties to solve the multisensor fusion problem.
We propose to formulate the fusion problem as an inverse
problem that minimizes an appropriate objective function. This
function is classically built as the sum of a quadratic data
fidelity term and appropriate regularizations. The regulariza-
tions considered in this paper include a total variation (TV)
term ensuring smoothness of the solution and a sparsity
term ensuring that the solution is sparse in a given dictio-
nary. To ensure a good performance of the proposed image
reconstruction method, a specific attention will be devoted to
the design of the sensing matrices in order to obtain good
reconstruction performance.

The outline of this paper is as follows: Section 2 gives
a detailed background on compressive spectral imagers.
Section 3 recalls how HS and MS compressed data can be
practically constructed using the principles of the CASSI
system. Section 4 introduces the inverse problem investigated
in this work for the fusion of HS and MS measurements.
Experimental results are presented in Section 5, allowing the
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Fig. 1. Compression with spatial coding. The spectral scene is coded and
dispersed by a dispersive element (grating or prism). Thus, the detector creates
a 2D projection of the coded and shifted scene.

performance of the proposed fusion method to be appreciated.
Concluding remarks are finally reported in Section 6.

II. COMPRESSIVE SPECTRAL IMAGERS

This section recalls the principles of two classes of imagers
that have been implemented in practical applications, based on
spatial and spectral coding, and other theoretical approaches
that have been studied for compressive spectral imaging are
also presented. The structure of the sensing matrices ®*(N, L)
will be introduced.

A. Spatial Coding Based Imager: CASSI

CS imagers capture a spectral scene using 2D projections
that are obtained with different sampling patterns. For instance,
the coded aperture snapshot spectral imager (CASSI) system
uses a coded aperture that replaces the entrance slit of a
dispersive spectrometer by a much wider field stop, inside
which is inserted a binary-coded mask. This mask attempts to
create a transmission pattern. The encoded light, transmitted
by the coded mask within the field stop is then passed through
a standard spectrometer back-end (i.e., collimating lens, dis-
perser, reimaging lens, and detector array). This compression
procedure is illustrated in Fig. 1.

The CASSI projections can be discretized as

v* = &* (N, L)f (1)

where k = 1, ..., K corresponds to the kth single snapshot of a
scene, y* ¢ RN (N+L=1) contains the measurement stacked into
a column vector, f € RV ? L contains the values of the discrete
source spectral density, and ®*(N, L) € RVW +L=DxN2L g
the sparse modulation matrix of the sth CASSI snapshot (that
performs both coding and shifting operations, as mentioned
before). The matrix ®X(N, L) has ideally binary entries,
as illustrated in Fig. 2. Note that its structure consists of a set
of diagonal patterns, that repeat along the horizontal direction,
such that one spatial dimension is shifted downward, as many
times as the number of spectral bands. Each diagonal element
is due to a transmission pattern T¢ € R¥*N | that has been
vectorized column-wise. Note that other patterns of diagonal
elements are vertically stacked when several snapshots are
considered by the system.
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Fig. 2. CASSI coded projection operator (for capturing 4 spectral bands by
using 2 different sampling patterns and K = 2 snapshots).

The matrix ®*(N, L) used in the CASSI system can be
constructed from the following n x n permutation matrix

0 0 1
1 0 0
An = . (2)
0 - 10 9
& B T 9

More precisely, if we discretize the transmission pattern as

2 . 1
the column vector t € RY", the matrix d)L(N, L) can be
expressed as

L—1
K (N, L) = D (Av) N [diag(t"), 01" Ic(Ay2 ) 7N (3)
i=0
where V = N(N + L — 1), diag(x) is a diagonal matrix
formed from the vector g, Q isvthe N? x N(L —1) zero
matrix, Ic = [I,0¢c], I € RV *N" is the N2 x N? identity
matrix, and Oc is the N2 x N2(L — 1) zero matrix.

B. Spatio-Spectral Coding Based Imager: SSCSI

Another state-of-the-art compressive imager is the spatio
spectral encoded compressive spectral imager (SSCSI). Here,
the coded sensor image is achieved by applying a diffraction
grating to disperse the light into the spectrum plane and
inserting a coded attenuation mask between the spectrum plane
and the sensor plane. The diffraction grating on the image
plane maps the spectral dimension of the light to its angular
dimension. A ray incident on the diffraction grating produces
multiple diffracted outgoing rays in different directions with
different spectral bands, as illustrated in Fig. 3. The compres-
sion procedure of the SSCSI can also be’ discretized as in (1),
i.e., as yk = d>k(N, L)f, where yk c R’N_ is the kth vectorized
sensor image, and ® (N, L) e RN**N2L is the kth modulation
matrix. The L vectorized spectral bands, stacked in a column
vector, are modulated by each modulation matrix ok (N,L) €
RNZXNZL, which contains the sheared pattern from the mask
Tk ¢ RNx(W+L=1) on jts diagonal. The resulting sparse
modulation matrix with binary entries is displayed in Fig. 4.
Note that it is also structured as a set of diagonal patterns.

Scene i ' j’
Dispersion y i
Coding
Sampling
Fig. 3. Compression with spectral coding.
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Fig. 4. SSCSI coded projection operator (for capturing 4 spectral bands by
spectral coding and a single snapshot, i.e., L=4 and K = 1).

However, the patterns do not repeat horizontally, allowing
spectral coding. If we discretize the transmission pattern as the
column vector t¢ € RY, the &% (N, L) matrix for the SSCSI
is defined as

®5(N, L)
L—1 . ' Ny
= > Is(Av) M [diag(t)I(Av) VI Ic(Ap2 )T @)
i=0
where Is = [I, 0].

C. Gaussian Measurement Matrices

Some CS systems compute a few random projections of
the observations using, e.g., Gaussian independent and identi-
cally distributed (i.i.d.) vectors allowing spatial/spectral coding
[12], [13], [22]. These systems have proved their efficiency
for data reconstruction and will be used as a benchmark com-
pared with the proposed methods. These systems can be also
described by the matrix-vector form (1). However, the coded
projection operator is expressed as a sparse modulation matrix
with Gaussian entries, as illustrated in Fig. 5. Note that the
measurement matrix in Fig. 5 is built using diagonal Gaussian
vectors. After discretizing the Gaussian patterns into a column
vector tf € RV (i = 0,---, L — 1), the matrix (N, L) is
constructed as

L—1 i
K (N, L) = D " [diag(t))llc(A y2 )~ . (5)
i=0
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Fig. 5. Gaussian coded projection operator (for capturing 4 spectral bands
by using i.i.d. vectors as sampling patterns and a single snapshot, i.e., L =4
and K = 1).

K- -y

Fig. 6. HS CASSI measurement matrix &, for L =6, K =2 and p = 2.

III. MEASUREMENT MATRICES USED IN THE CASSI
SYSTEM FOR THE CS IMAGE FUSION PROBLEM

The structure of the measurement matrices ®; and &,
can have a strong impact on the quality of the reconstructed
images. This section introduces the constraints associated with
these matrices for the CASSI system and proposes a way to
design these matrices for the fusion of HS and MS images.
Note that these considerations have also to be taken into
account for the SSCSI and Gaussian systems.

A. Structure of the Sensing Matrices ®;, and ®,,

Fig. 6 shows an instance of the structure of the HS sparse
modulation matrix @y, for the CASSI system. Each row of this
matrix performs a linear combinations of p? adjacent pixels,
which means that the scene projected onto this matrix, besides
being compressed, will be degraded spatially by a factor p
(e.g., p =2 in Fig. 6). The matrix (bﬁ associated with the kth
HS snapshot can be expressed as

L—1

of = (Z(A w) M [diag(th), 01" Tn(A 2 )~ ) B (6)
i=0

where Nh = N/p, Vo = No(Nh + L — 1), tﬁ is the vectorized

coded aperture Tp* of the HS imager, diag(tf) € RM*M, 0 is

the Nﬁ x Np(L — 1) zero matrix, Iy =[1,04], I € RM *M; is

q=3

Fig. 7. MS CASSI measurement matrix @, for L =6, K, =2 and g = 3.

the identity matrix, and Oy, is the N& X N,‘?(L — 1) zero matrix.
Equivalently, (6) can be rewritten
L—1 . .
of = > (Av,) ™ [diag(tf), 01" Balc(Ay2)) ™ (7)
i=0

2 N2 - . N
where B, € RM *N" is a spatial decimation operator. More
specifically, the entries of the matrix d>ﬁ are defined as

k W —=rrs \ )
((b{‘,) s [(’h)a,+thj+N§cj if i —{1/ + Ma(bj +¢j) @)
ij 0 otherwise
where a; = L%J, bj = pf—'NJ — LL,;,J, cj = NLZJ and |.]

denotes the integer part. Note that the matrix <I>§ is fully
characterized by the vector tﬁ.

Similarly, Fig. 7 shows the structure of the CASSI measure-
ment matrix ®,, for the MS measurements. Note that each
row of this matrix performs a linear combination between the
pixels of the g adjacent bands, which means that the spectral
resolution of the MS sensor is ¢ times smaller than the one
of the reference scene (e.g., ¢ = 4 in Fig. 7). The matrix d>f‘;,
associated with the kth MS snapshot can be expressed as

Lm—1
ok = ( > (Av) N [diag(ts), 01Tlm(ANsz>“’”‘)L 9

i=0

where Ly, = L/q, t& is the vectorized coded aperture TX, of
the MS imager, diag(tk) € RN’V 0 is the N2 x N(Ly — 1)
zero matrix, I, = [, 0,], I € RN XN is the identity matrix,
and 0y, is the N2 x N2(Ly, — 1) zero matrix. Equivalently, (9)
can be rewritten
Lm—1
of = > (Av)¥[diag(th), 0" Lalmc(Ap2,) ™V (10)
i=0

where L, € RN**N?q s a spatial decimation operator, and
Imc = [, Oc], I € RN"9%N°4 s the identity matrix, and Opc
is the N2g x N2g(Ly — 1) zero matrix.

More precisely, the entries of the matrix (I>f;1 can be written
as follows
if i = j mod N> + Nj/(gN?)
(d’ﬁm)i. = and j —r;jN >0
g 0 otherwise

(tfn)i_rj(/vl—zv)

(1D



where rj = j/(N?). Note that that the matrix <I>ﬁ1 is fully
characterized by the vector t¥,.

B. Designing the Matrices @, and ®n,

In CS theory, a suitable measurement matrix ® =
[®, ® 1T is desired to be as incoherent as possible with the
sparse dictionary ¥ [9]. The mutual coherence of the Gram
matrix G = (®W)T (W) is defined as the off-diagonal entry
in G with the largest absolute magnitude. As a consequence,
we propose to optimize the sensing matrix by minimizing
the mutual coherence of G. Considering that the dictionary
is known, a sensing matrix can be chosen such that the
corresponding Gram matrix is as close as possible to the
identity [23], i.e.,

G=V'0"o¥~I (12)
Note that if the dictionary ¥ is an orthogonal basis
(WTW = 1), in order to have (12), it make sense to choose
® such that @' @ ~ I. Thus, the design of the sensing matrix
reduces to an appropriate choice of ®. The choice of an
appropriate sensing matrix for CS has been investigated before
(independently of the dictionary), e.g., in [8], [24], and [25].
In [24], an approach for making the matrices associated with
the different snapshots as complementary as possible was
investigated. We propose to apply this concept to our problem
to choose the matrix @ as a binary matrix containing only one
1 per column. Denote as ¢ = [cp, - - - ,chL,l]T the vector
such that

KhVh— KmVm—1

1
¢ = Z(‘; (®h)i,j + Z;; (®m)i, j
i= 1=

where c;j corresponds to the number of ones in the jth column
of ®. Note that j =0, ..., N2L — 1 where N2L is the number
of columns of the matrix @, and that (®); j and (®m); j are
the elements of the ith row and jth column of the sensing
matrices ®,, and ®p,, respectively. When each column of @
contains exactly one 1 and all other values are 0, the matrix
@ satisfies the following relations
N2L—1

> (-09*=0, ct=1
j=0

Since these conditions are too restrictive in practice, we pro-
pose to design the matrix ® by minimizing the variance acz
with the constraint T = 1. Since the entries of c are binary, this
problem can be solved using the direct binary search algorithm
for generating the patterns TX (see [24] for more details).
Finally, it is worth noting that the design of the matrix ® takes
into account two different systems (with different spatial and
spectral resolutions), which has (to the best of our knowledge)
never been addressed in CS imaging.

(13)

P 1

O'c = m (14)

1V. FUuSING COMPRESSED HS AND MS IMAGES USING
A REGULARIZED INVERSE PROBLEM
A. Problem Formulation

The fusion strategy adopted in this work is based on the
following inverse problem

~ 1 . 1 -
f'=arg min 2| @nf — §nll5 + 51| @mf — ymll3 +¢(F) (15)

where the two first terms are the data fidelity terms associated
with the HS and MS observations, || - ||2 is the |2 norm and
the last term ensures an appropriate regularization. In order to
build the regularization term, we decompose the vectorized
image f onto a basis W e RN’L*NL in order to obtain
a sparse representation. Denoting as X € RN’L the vector
containing the coefficients of f in this basis, we introduce the
following regularization term

¢(F) = 21|19 F||1 + Z2||LF[]1 (16)

which attempts to preserve the sparsity of the vector x = W' f
in the domain of the representation basis ¥, and the smooth-
ness of f in the spatial domain via the operator £, which
enforces piecewise constant solutions and is associated with
the TV regularizer (see [26] for more details). Note that
[l - |1 is the I3 norm and that A1, A2 are two regularization
parameters.

B. Proposed ADMM

The direct resolution of problem (15) involves the inversion
of large matrices, which requires a too high computational
cost. To decouple the original problem into smaller subprob-
lems, we introduce the following notations

T T
T T
q’m = [(q>|!-n) s " (q>n|$]m) ]Ta
y =90 Iml"
where ¥y, and yn, are the measurement matrices and vectors
associated with the knth and knth snapshots for the HS and
MS imagers, respectively. This decomposition allows us to
obtain K = Kp 4+ Ky simpler problems with respect to
(w.rt) f, where K is the total number of snapshots. More

precisely, we propose an alternative way to solve (15) with the
regularizer (16) by splitting the objective function as follows

(17)

minimize f(v,, U, v)

Vg, U,v
subjectto v, =ffora =1,--- ,Kp,---,K
f=wu
v =Lf (18)

where

13k kn || 2
foau o) =5 > [l -9
kn—1

Km
1 12
+5 2 |- [ +vwy @9
km=1

with

w(u,v) = A1llulls + A2[|v]]1 (20)

and where the summations in the two first terms are obtained
after splitting the matrices @y, and ®p, into Ky and Ky, matri-
ces associated with the different snapshots. Then the procedure
consists of optimizing the objective function f (v, u, v) w.r.t.
v,, U and v, which leads to Algorithm 1.



Algorithm 1 ADMM Compressive Spectral Image Fusion

1: Input ®,, ¢,y
2: Initialization (v, u, v, f) =0

3: repeat
% Optimize w.r.t v, (see Algorithm 2)
4 v =minimize f(v,,u’"' vY)
v

% Optimize w.r.t wand v (see Algorithm 3)

5: (u’,v*) = minimize f(v!,u,v)
(u,v)

% Estimate f using (31)
6: f¢ < solve (18) w.rt. f

% update slack variables (see Algorithm 4)
7: until some stopping criterion is satisfied
8: return f*

Algorithm 2
1: Input ®,, ¢,y
2: Imitialization (v,, v,, d, f) =0
3: repeat
% updating v,
4 vl =, (BPT el 4 p]INzL)_l
(o (F1 +df,) + @ 750)
% updating vy
5o vl =K (@ T @k 4 plyay)
(p &e_l +dig 4p,) T 2TT)
6: until some stopping criterion is satisfied

. 0,0
7: return v, v,

An approach for solving (18) is to minimize its augmented
Lagrangian [27]. The Lagrangian and its optimization are
studied independently in the next subsections.

1) Optimization wir.t. v,: Decomposing the vector » as

v=Dfnl’ (21)
with v, = [vI,~~~ ,v-&h]T and vy = [v-&hﬂ,u' ,v-'P;]T,

the minimizations w.r.t. the variables vy, and vy can be
conducted separately. For instance, when using the scaled form
of the ADMM algorithm, the Lagrangian of (19) w.r.t. vy is

1 &
Lh(vn) = > Z
Kn—1

2 Kn
LA R S L
kn=1
(22)

where dy, is a slack variable. The update term for vy can
be obtained by differentiating (22) w.r.t. v, and forcing it to
be zero. Of course, the Lagrangian of vy, is similar to the
Lagrangian of v, and is obtained by replacing ®, by @,
vh by vy, and yn by ¥m. Algorithm 2 shows how v, and
vy are updated from the minimization of their respectives
Lagrangians. Note that the sparsity of the matrices ®p and
@, allows the matrices (d)ﬁ“T<1>ﬁ“ +p]IN2|_) e RNLxN’L

and (@K T@kn 4 plyo ) € RV'LXNL (where Tz, is the
N2L x N2L identity matrix) to be inverted with reasonable
computational complexity. Note that the scaled and unscaled
forms of the ADMM are equivalent. However, if one do not
wish to emphasize the role of the dual variable, and use

datasets with arbitrary size, it is more convenient to use the
scaled form.
2) Optimization w.r.t. u: Problem (15) can be rewritten

miqiumize Lh(vh) + Lm(vm) + A1llull1 + A21|v]]1

subject to f = Wu and v = Lf. (23)

The minimization w.r.t. u can be solved by introducing auxil-
iary variables to split the data fidelity and regularization terms.
More specifically, by introducing the splittings u = up and
v = vo, (23) leads to

minimize Ln(vh) + Lm(vm) + 41 [Uolly + 42 [lvolly

Vg ,U,v,Up,v0

subject to f = Wu, u = ug, v = Lf, v = vg. (24)

Problem (24) can be solved by optimizing the Lagrangian w.r.t.
all its variables. The optimization w.r.t. ug reduces to

mini&]ize Lo(uo) (25)
where
Lo(uo) = A1 [luoll; + g lu—uo + dk+1) H§ (26)
The optimization w.r.t. u can be written
miniLrpize Ly(u) (27)

with

Lu() = & Ju— o+ dacsn 5 + & [f = wu + dicr |5
(28)

where the variables di are slack variables. Of course, the opti-
mizations w.r.t. vg and v (in (24)) can be solved similarly.
The Lagrangians Lo(ug) and Lo(vg) being non-differentiable,
we update these parameters by using soft thresholding oper-
ations, which result from the computation of appropriate
proximal operators (see [26], [27] for details). Algorithm 3
summarizes how each variable u and v can be updated from
the minimization of their respective Lagrangians where

A

A
X—— ifx>2%2
P

p
A

X4+ —
P .

0 otherwise

S/l/p (X) = (29)

if x < —2
p

3) Estimating f: The final step is to estimate the unknown
image f from (24) by minimizing its Lagrangian w.r.t. f
defined as

K

(Z If — v + dill3 + |[f — Wuo + d(k12) ||§
k=1

Li(f) =

N[

+ ||f —vo + d(k 14 ||§) (30)

where the first term directly results from Lp(vy) and Ln(vm)
in (22), whereas the second and third terms from L, (u) and
L, (v) in (28). The optimization of L (f) can be performed
by forcing its derivative to 0, which yields the update term of
f in line 5 of Algorithm 1.



Algorithm 3
1: Input ¥, £
2: Initialization (u, v, d, f, ug, vg) =0
3: repeat

% updating ug
4 ug = S, /p(u " + dK+1)

% updating u
5: ut :(‘I’T‘I’-i-]INzL)

0—
(\If (f ! +d(K+2)) + uf —
% updating vg
6: ’U% = S)Q/p(
% updating v
7 o =(LTL A Tyap)
0— ¢
(ﬁ (f Lt d(K+4)) +vh+ d(K+3)>
8: until some stopping criterion is satisfied

9: return uf, v/*

-1

-1
d(K+1)>

-1 JrdK+3))

Algorithm 4

% updating slack variables

pdf =f - vl +d !

2: d%h == uﬁﬁ o F i
3 dig gy = u’ —ug+ dﬁ(jl

4 dfje,, = - lIluO +d ()
5 dijers = v =00+ d(ly)

6: diyc g =1~ xpvf +d (g

4) Jack Variables: The slack variables in d have also to
be updated. We propose to update them using the procedure
considered in [27] for the Lasso problem. Algorithm 4 sum-
marizes the different steps for this update.

5) Convergence: The problem solved in this paper is a
convex relaxation of the CS problem. Since the functions
f and ¢ are convex, the subproblems corresponding to the
update of each variable are convex and have a unique solu-
tion. As a consequence, there exist a unique image f that
minimizes the augmented Lagrangian Indeed, if we intro-
duce the vector z = [v],---, v}, uT,»T]T and the matrix
M=Tl---,1,% £"]T, we can rewrite problem (18) as the
minimization of f(z), subject to the constraint Mf = z. Given
that the function f is closed, proper and convex and the matrix
M is full column rank, from Theorem 8 in [37], we know
that the sequence of iterates {f'} generated by Algorithm 1
converges to a solution of (15).

V. SIMULATION RESULTS
A. Smulation Scenario

Two imagers were considered in each experiment to gener-
ate the low spatial/high spectral and high spatial/low spectral
resolution measurements ¥y, and yn,. Both systems used the
same high-resolution image, which was degraded using spatial
and spectral degradations and compressed. The matrices @y,
and @, were generated as described in Section Ill. The
reference image considered in this work is mainly the classical
ROSIS image acquired over Pavia, northern Italy [28] reduced

to 256 x 256 pixels and 92 bands. The HS datacube was
obtained by applying a 5 x 5 Gaussian lowpass filter in each
band and by using a 4:1 decimation ratio (p = 2). Similarly,
the MS data was generated by using a 4:1 decimation ratio
(q = 4). Algorithm 1 was then used to estimate the image f.
The main parameters were obtained as follows

« The values of 11 and 1, were selected by cross-validation
and we found that 11 = A, = 5 x 10~ provides good
reconstruction results.

o The parameter p was initialized close to zero and was
updated as will be explained in Section V-B.

« The dictionary ¥ was selected as the Kronecker product
W ® D, where W is a Symlet wavelet kernel, and D
is a DCT operator. This choice is motivated by the fact
that it has provided good image reconstruction results in
previous works [8].

o The operator £ was decoupled in two operators act-
ing on the rows and columns of each spectral band,
as explained in [29].

« The stopping criterion was selected as in many ADMM
algorithms [27]. More precisely, tolerances were intro-
duced as ||f{ — vl||> < €1 and ||v!~1 — vl]|2 < € with
€1 < 1072, ¢, < 1074, In general, these stopping rules
are satisfied before 30 iterations.

o The amount of data for the simulations was defined as
the compression ratio, which expresses the amount of
data in the measurement vectors with respect to number
of elements in the reference image, that is Compression
Ratio = (KnVh + KmVim) /(N2L + N?Lp)

B. How to Update Parameters 11, 12 and p?

The proposed algorithm requires to adjust three parameters,
i.e., 11, 42 and p. The two first parameters 11 and 1, are
related with the regularization terms of the proposed optimiza-
tion problem. They were chosen by cross-validation for any
dataset in order to obtain the best performance (as classically
done for this kind of problem).

The fusion results also depend on the parameter p appearing
in the augmented Lagrangian (e.g., see (22)). In this work, this
parameter was adjusted using the following rule

. ap’ if [[FE—vlll2 > ulpt =2
ptt=1ple if [t vl > uIfC vl (31)
pt otherwise
where 71 = 7 = 2, © = 10 are common choices [27].

In practice, we have observed that it was sufficient to update
p every 10 iterations of the algorithm, as suggested in [27].
The main motivation behind this update rule is to try to keep
the primal and dual residual norms within a factor of 4 of one
another as they both converge to zero [27].

C. Fusion Quality Metrics

The metrics used to evaluate the quality of the proposed
fusion strategy are summarized and explained below

o« RMSE: The root mean square error (RMSE) is a similarity

measure between the target image f and the fused image



f defined as RMSE(f, ) = 3 [If — f|Z. The smaller
RMSE, the better the fusion quality.

o UIQI: The universal image quality index (UIQI) was
proposed in [30] for evaluating the similarity between
two single band images. It is related to the correla-
tion, luminance distortion and contrast distortion of the
estimated image w.r.t. the reference image. The UIQI

between two single-band images a = [a1, -+, an] and
a=[&,: - ,an] is defined
A A
UIQI(a, &) = Tagzialla (32)

(02 +02) (1§ + u3)

where (ua, ua, 04, 02) are the sample means and vari-
ances of a and &, and o442 is the sample covariance of
(a, &). The range of UIQI is [—1, 1] and UIQIl(a,8) =1
when a = a. For multi-band images, the overall UIQI
is computed by averaging the UIQIs associated with the
different bands.

o SAM: The spectral angle mapper (SAM) measures the
spectral distortion between the actual and estimated
images. The SAM of two spectral vectors x and X
is defined as SAM(x,%) = arccos ({x, X)/IIx[l2]IX[[2)-
The overall SAM is finally obtained by averaging the
SAMs computed from all image pixels. Note that the
value of SAM is expressed in degrees and thus belongs
to (=90, 90]. The smaller the absolute value of SAM,
the less important the spectral distortion.

o ERGAS The relative dimensionless global error in syn-
thesis (ERGAS) calculates the amount of spectral distor-
tion in the image [31]. It is defined as

N2Lp | 1Y /RMSE())?
ERGAS = 100 = = 33
NZL | L é ( i ) (33)

where N2Lm/NZL is the ratio between the pixel sizes of
the MS ans HS images, w; is the mean of the ith band
of the HS image, and L is the number of HS bands. The
smaller ERGAS, the smaller the spectral distortion.

o DD: The degree of distortion (DD) between two images
is defined as DD(f, f) = - [If — f[l1. The smaller DD,
the better the fusion.

D. Fusion Results

The first simulation results displayed in Fig. 8 show
the reconstructed image obtained with the proposed fusion
method for a compression ratio of 0.4, which can be com-
pared to the ground truth and the reconstruction obtained
without CS. These results are compared with other fusion
methods designed for compressed measurements [32] or for
non-compressed data [14], [33].1 The method studied in [14]
referred to as “Sparse fusion” exploits the fact that HS images
live in a low dimensional subspace defined by the endmembers
whereas the method of [32] is based on a multi-resolution
analysis and a simple maximum selection fusion rule. The
method of [33] is adapted to multiple multi-focus images. It is

1The authors are very grateful to A. Achim and S. Vorobyov who sent us
their Matlab codes allowing a fair comparison.

Fig. 8.  Fusion results for the Pavia dataset (compression ratio of 0.4).
(Top-Left) Groundtruth. (Top-Right) Hyperspectral/low spatial resolution
image. (Second line-Left) Multispectral/low spectral resolution image. Recon-
structed images using different methods: (Second line-Right) [32] (PSNR =
28 dB), (Third line-Left) [33] (PSNR = 36.99 dB), (Third line-Right) CASSI
(PSNR = 32 dB), (Fourth line-Left) SSCSI (PSNR = 38 dB), (Fourth line-
Right) Gaussian sensing matrix (PSNR = 41 dB), (Bottom) Sparse fusion [14]
(PSNR = 42 dB).

based on a sparse model and formulates the fusion problem
as an inverse-problem regularized with a cosparsity prior in
order to estimate an all-in-focus image. Since the methods
of [32] and [33] require the images to have the same size,
the MS and HS images were interpolated to have the same size
before applying these methods. Note that the images displayed



TABLE 1

PERFORMANCE OF DIFFERENT MS + HS FUSION METHODS (PAVIA
DATA SET): RMSE (x1072), UIQI, SAM (DEGREES), ERGAS,
DD (x1073), TIME (SECONDS) AND THE
AMOUNT OF DATA (%)

Methods RMSE UIQI SAM ERGAS DD  time data
Sparse 1,092 098 1,588 1,055 0,712 980 100%
[33] 3,122 0,990 3,555 1,940 1,521 568 100%
[32] 4562 0,887 6,214 4,935 2,401 6900 50%
Gaussian 1,286 0990 1,210 1,179 0836 900 40%
CASSI 1,157 0987 1,641 1,605 0,809 102 40%
SSCSI 1,406 0995 1,394 1,607 0,893 120 40%
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Fig. 9. PSNRs obtained with the proposed fusion method using CASSI,

SSCSI and Gaussian sensing matrices for (a) different compression ratios
(b) different SNR values.

in Fig. 8 were obtained from the red, green and blue bands of
the spectral datacubes.

In order to complement our qualitative results, we compare
the proposed fusion method with its sparse counterpart without
any CS using quantitative measures. The simulation scenario
was established as in [14]. Table I shows the quantitative
metrics RMSE, SAM, UIQI, ERGAS and DD that were
defined in Section V C. This comparison allows us to appre-
ciate the differences between the different reconstructions in
presence or absence of CS. We can conclude that the proposed
approach provides competitive results, even if it is applied on
a significantly reduced number of data samples.

E. Impact of the Sensing Matrix

Several experiments were performed to test the impact of
the sensing matrix on the reconstructed images. A Gaussian
sensing matrix was used as a theoretical reference and com-
pared to the other reconstructions in terms of PSNR. We are

using the Gaussian matrix as a reference because it exhibits
a very low coherence with any fixed representation, which
is a desirable property for the success of data recovery [9].
However, note that there is currently no device allowing this
kind of sampling to be implemented practically. Fig. 9(a)
shows the reconstruction results (in terms of PSNR) obtained
for the different matrices as a function of the amount of data
expressed as a function of the compression ratio. The results
obtained with Gaussian sensing matrices are better than those
obtained using other matrices, as expected. Note that the PSNR
values are directly proportional to the image size and to the
execution time, which can be adjusted to reach a particular
value for a given application. Similar results obtained with
noisy images with different signal to noise ratios (SNRs) are
displayed in Fig. 9(b). Note that an additive Gaussian noise
was used in all experiments. Despite the loss in reconstruction
quality, the proposed fusion approach provides a PSNR close
to 40 dB for a noise level satisfying SNR > 15 dB, which
is very promising. Note that the performance of the different
systems in presence of noise is better for CASSI and SSCSI
than for the Gaussian matrix for low SNR values.

The next experiments compare the reconstruction results
obtained using the optimized sensing matrix derived in
Section ITI-B and more traditional random matrices. The opti-
mized sensing matrix allows a more incoherent measurement
matrix to be obtained than random realizations, which can
lead to an improved reconstructed image. Fig. 10(a) shows
the reconstruction results in terms of PSNR for the proposed
approach with designed and random sensing matrices for the
CASSI system with different compression ratios. From these
results, we can conclude that the designed sensing matrix
provides better results than random entries, as expected. Note
that the results obtained with the optimized sensing matrix are
close to those obtained by using other methods with incoher-
ent CS matrices, such as Gaussian matrices. Similar results
obtained with the SSCSI system are displayed in Fig. 10(b).
Finally, it is interesting to mention that reconstructed images
obtained for different compression ratios and levels of SNR
are available in the technical report [34].

F. Motivations for Fusing HS and MS Images

In order to illustrate the motivation for fusing HS and MS
images, we have experimentally compared three reconstruction
methods for the Pavia dataset using (1) yp only, (2) ym only
and (3) yn and yp (proposed method). Quantitative results
in terms of PSNR are reported in Table II showing the
advantage of the proposed joint reconstruction method. For
this experiments all the measurements has been simulated with
the CASSI system with a compression ratio of 0.4. When we
use the compressed HS image yy only, the spectral signatures
are estimated accurately at the price of a degraded spatial
resolution. Conversely, when the reconstruction is performed
using the compressed MS image ¥y, only, the spatial reso-
lution of the reconstructed image is good with a degraded
spectral signature. Combining the two measurements allows a
good compromise in terms of spatial and spectral resolutions
to be obtained. Fig. 11 shows the spectral signatures of a
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Fig. 10. PSNR comparison for the proposed fusion approach using random
and designed random matrices with different compression ratios for (a) the
CASSI system (b) the SSCSI system.

TABLE I

PSNR (dB) OF THE RECONSTRUCTED IMAGE USING
SCENARIOS (1), (2), AND (3) (PAVIA DATASET)

0.45 0.5

Scenario PSNR [dB]
(1) 27,79
(2) 31,46
3) 34,45

reconstructed pixel using the three methods confirming this
conclusion.

G. Test With Another Dataset

This section presents some results obtained with the pro-
posed fusion method applied to another dataset. The reference
image is the high spatio-spectral image acquired over Moffett
Field, CA, in 2009 by the JPL/NASA airborne visible/infrared
imaging spectrometer (AVIRIS) [35]. This image was reduced
to 256 x 256 pixels and 128 bands. Fig. 13 shows the RGB
images (constructed from the red, green and blue bands of the
spectral images) that result for the proposed fusion method for
a compression ratio of 0.4 using different sensing matrices,
which can be compared to the reconstruction obtained by
using the Sparse Fusion method. Note that the reconstructed
images are close to the groundtruth. The reader is invited
to consult the technical report [34] for additional simulation
results performed on two other datasets.

H. Algorithm Convergence

Even though the convergence of Algorithm 1 can be proved,
an exact recovery of the image f depends on its sparsity in the
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Fig. 12.  Variations of the proposed cost function versus the number of
iterations.

basis ¥ and the number of considered measurements (number
of snapshots) due to the ill-posedness of the reconstruction
problem. In order to show the good convergence of the pro-
posed optimization algorithm, we are displaying in Fig. 12 the
evolution of the cost function versus the number of iterations,
showing that 20 iterations are sufficient to ensure a good
reconstruction. This kind of result has been observed in all
our experiments.

I. Computational Complexity Analysis

The number of operations per iteration in Algorithm 1
depends on the underlying image size and the number of
spectral bands. In particular, the computational complexity
of Algorithm 2 is proportional to the number of nonzero



Fig. 13. fusion results for the Moffett Field dataset.

Spatial
(Top) Groundtruth. (Left-2) Hyperspectral/low spatial resolution image.
(Right-2) Multispectral/low spectral resolution image. (Left-3) CASSI Recon-
struction with the proposed fusion method (PSRN = 30 dB). (Right-3)
SSCSI Reconstruction with the proposed fusion method (PSNR = 37 dB).
(Left-4) Gaussian reconstruction with the proposed fusion method (PSNR =
42 dB). (Right-4) Sparse fusion (PSNR = 43 dB).

elements of the matrix @ @ + ply2,, with ® € R™". The
sparsity of this matrix can be exploited for its inversion by
using efficient matrix factorizations and backsolve routines
(e.g., Cholesky factorization [27], [35]). In this case, this
operation can be carried out with O(nm?) operations plus the
cost of forming the matrix @ @ + pl2, . The computational
complexity of Algorithm 3 is known to be O(N?L). Note
that the matrix inversions have to be computed at each time
p is updated. Thus, the total complexity of Algorithm 1 is
O(N2L(KpVh + KmVin)?).

V1. CONCLUSION
This work showed that compressive projections can be used
to fuse high spectral/low spatial and high spatial/low spectral
resolution images without the need of expensive image recon-
struction methods. The image fusion problem was formulated
as an inverse problem with two data fidelity terms related to the

images to be fused and two regularizations ensuring a smooth
reconstructed image a sparse decomposition of the image in
an appropriate dictionary. An ADMM algorithm was studied
for solving this inverse problem. Our experiments showed that
algorithms based on compressed sensing can recover images
with high spatial and spectral resolutions using as few as 50%
of the data with PSNRs larger than 40dB, which is comparable
with results obtained with other fusion approaches processing
images without compressed sensing. The main advantage of
the proposed fusion rule is the reduced amount of data required
to estimate the target multi-band image yielding a reconstruc-
tion performance close to the one obtained with other fusion
methods designed without compressed sensing. Future work
includes the study of methods allowing the hyperparameters
to be automatically estimated from the data, as the ones
presented in [36]. In this work, the sensing matrices have been
optimized considering the compressed sensing architecture
only (i.e., CASSI or SSCSI). However an interesting problem
would be to optimize the dictionary used in the sensing matrix.
New methods exploiting the low rank properties of HS images
(e.g., using the linear mixing model) would also deserved
to be explored. Finally, determining the optimal number of
measurements from the two images in order to optimize an
appropriate fusion criterion is also an interesting prospect,
which was suggested by one of the reviewers of this paper.
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