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Abstract: In this paper, online Gaussian process regression (GPR) is used to model and forecast
Global Horizontal Irradiance, at forecast horizons ranging from 30min to 5 h. It is shown that
the covariance function (or kernel) is a key element, deeply influencing forecast results. As a
consequence, Gaussian processes with simple kernels and with more complex kernels have been
tested and compared to the classic persistence model. Using two datasets of 45 days, it is shown
that online GPR models based on quasiperiodic kernels outperform both the persistence model
and GPR models based on simple kernels, including the widely used squared exponential kernel.
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1. INTRODUCTION

Integration of fluctuating power generation (from renew-
able energy sources) in the electricity grid has always
represented a major challenge. A grid operator has to
ensure balance between electricity supply and demand.
Unfortunately, many difficulties oppose the fulfillment of
this goal, even more so in the context of smart grids due
to the deployment of distributed power generators. The
intermittency of solar power aggravates the problem of
voltage regulation in distribution grids (Moreno-Munoz
et al., 2008). Therefore, the stability of the network becomes
dependent upon its successful compensation of supply-
demand variations. As a result, maintaining the continuity
and quality of service requires the ability to account for
changes in the state of the network in real-time. To answer
this question, statistical models, have been extensively used
in recent years to forecast Global Horizontal Irradiance
(GHI). These predictive models include the persistence
model and auto-regressive models (AR) (Boland, 2008). Dif-
ferent models based on Artificial Neural Networks (ANN)
can be found in the literature to forecast solar irradiance
from meteorological and geographical data (Mellit and
Pavan, 2010; Marquez and Coimbra, 2011). A comparative
analysis of these methods can be found in (Lauret et al.,
2015; Reikard, 2009), among others. However, the use of so-
phisticated methods remains scarce in the literature of solar
irradiance. Especially, the relatively recent development in
non-linear modeling, such as Gaussian Process Regression
(GPR), remains very limited. In Lauret et al. (2015) and
Voyant et al. (2017), a GPR model is used to forecast GHI
and is compared with other models. The conclusion is that
using GPR models lead most of the time to the best results.
However, in these studies, no procedure has been conducted
to select an optimal kernel for the GPR model. In fact,
only the Squared Exponential (SE) kernel, i.e. the default

choice, has been considered. The present paper will show
that this approach can be drastically improved by choosing
an adapted kernel.

2. GAUSSIAN PROCESSES

2.1 Definition

A Gaussian Process (GP) is a collection of random variables,
any finite number of which have a joint Gaussian distribu-
tion (Rasmussen and Williams, 2006). A Gaussian process
defines a prior over functions, which can be converted into a
posterior over functions once some data has been observed.
To indicate that a random function f(x) follows a Gaussian
process, we write f(x) ∼ GP(µ(x), k(x,x′)), where x
and x′ are arbitrary input variables, µ(x) = E [f(x)]
is the mean function (usually assumed to be zero) and
k(x,x′) = E

[
(f(x)− µ(x))(f(x′)− µ(x′)T)

]
is the covari-

ance function or kernel.

2.2 Covariance function (kernel)

A covariance function encodes our assumptions about the
function which we wish to learn. This initial belief could
be how smooth the function is or whether the function
is periodic. The covariance function is also known as the
kernel. Any function could be a covariance function as long
as the resulting covariance matrix is positive semi-definite.
For scalar-valued inputs, we briefly describe commonly
used kernels (see (Rasmussen and Williams, 2006) for an
exhaustive list of kernels).

The Squared Exponential (SE) kernel is given by:
kSE(x, x′) = σ2 exp

(
−(x−x′)2/2`2

)
(1)

where σ > 0 is the amplitude and ` > 0 is the correlation
length parameter or characteristic length-scale. Intuitively,



` controls how fast the functions sampled from your GP
oscillate.

The Rational Quadratic (RQ) kernel is given by:

kRQ(x, x′) = σ2
(
1 + (x−x′)2/2α`2

)−α (2)
with α > 0 and ` > 0. This kernel is equivalent to
a scale mixture of SE kernels with different correlation
length distributed according to a Beta distribution with
parameters σ, α and ` (Rasmussen and Williams, 2006).

The Matérn class of kernels is defined by:

kMν (x, x′) = σ2 1

2ν−1Γ(ν)

(√
2ν
|x− x′|

`

)ν
· Bν

(√
2ν
|x− x′|

`

) (3)

where σ is the amplitude, ` is the correlation length
parameter, Γ is the standard Gamma function and Bν
is the modified Bessel function of second kind of order
ν. The parameter ν controls the degree of regularity
(differentiability) of the resultant GP. If ν = 1/2, the
exponential kernel is obtained:

kE(x, x′) = σ2 exp (−|x−x′|/`) (4)
This kernel corresponds to the continuous version of a
classical discrete autoregressive model AR(1) (also known
as Ornstein-Uhlenbeck process). Two other kernels of
Matérn class are widely exploited in the literature. They
correspond to the cases ν = 3/2 and ν = 5/2, respectively,
and are defined by:

kM3/2
(x, x′)=σ2

(
1 +
√

3
|x− x′|

`

)
· exp

(
−
√

3
|x− x′|

`

) (5)

kM5/2
(x, x′)=σ2

(
1+
√

5
|x− x′|

`
+
√

5
(x− x′)2

3`2

)
· exp

(
−
√

5
|x− x′|

`

) (6)

The periodic kernel is given by:

kPer(x, x
′) = σ2 exp

(
−2 sin2 (π(x−x′)/P)

`2

)
(7)

A periodic kernel assumes a globally periodic structure of
period P in the function we wish to learn. The parameters
σ and ` have the same interpretation found in the kernels
previously defined.

2.3 Kernel composition

It is possible to combine several kernel functions to obtain
a more complex kernel function: the only constraint is
that the resulting covariance matrix must be a positive
semi-definite matrix. Addition and multiplication are two
ways of combining covariance functions while keeping the
positive semi-definite property:

k(x, x′) = k1(x, x′) + k2(x, x′) (8)
k(x, x′) = k1(x, x′)× k2(x, x′) (9)

For example, we can model a quasiperiodic GP by mul-
tiplying a periodic kernel by a non periodic kernel: this
gives a way to transform a global periodic structure into
a local periodic structure. In this paper, a wide variety

of kernel structures are built to model GHI by adding or
multiplying two kernels from the kernel families discussed
in subsection 2.2.

3. GAUSSIAN PROCESS REGRESSION (GPR)

3.1 Standard Gaussian process regression

Consider the standard regression model:
y = f(x) + ε (10)

where x ∈ RD×1 is the input vector, f is the regression
function, y is the observed value and ε ∼ N (0, σ2

ε) is
an independent, identically distributed Gaussian noise.
Gaussian process regression is a Bayesian nonparametric
regression which assumes a GP prior over the regression
functions (Rasmussen and Williams, 2006): it consists in
approximating f(x) ∼ GP(µ(x), k(x,x′)) using a training
set of n observations D = {(xi, yi), 1 6 i 6 n}. As
shorthand notation, we merge all the input vectors xi
into a matrix X ∈ Rn×D and all corresponding outputs
yi into a vector y ∈ Rn×1, so that the training set can be
written as (X,y).

From equation (10), it can be seen that:
y ∼ N

(
µ(X),K + σ2

εI
)

(11)
where K = k(X,X) ∈ Rn×n. In this setting, the joint
distribution of the observed data y and the latent noise-
free function on the test points f∗ = f(X∗) is given by:[

y
f∗

]
∼ N

([
µ(X)
µ(X∗)

]
,

[
K + σ2

εI K∗
KT
∗ K∗∗

])
(12)

where K∗ = k(X,X∗) ∈ Rn×n∗ and K∗∗ = k(X∗, X∗) ∈
Rn∗×n∗ .

It can be shown that the posterior predictive density is
then also Gaussian (see Rasmussen and Williams (2006)):

f∗ |X,y, X∗ ∼ N (µ∗,σ
2
∗) (13)

where:
µ∗ = µ(X∗) +KT

∗
(
K + σ2

εI
)−1

(y − µ(X)) (14)

σ2
∗ = K∗∗ −KT

∗
(
K + σ2

εI
)−1

K∗ (15)
Let us examine what happens in the case of a single test
point x∗. Let k∗ be the vector of covariances between the
test point and the n training points:

k∗ = [k(x∗,x1) . . . k(x∗,xn)]T (16)
Equation (14) becomes:

µ∗ = µ(x∗) + kT∗
(
K + σ2

εI
)−1

(y − µ(x∗)) (17)
Thus µ∗, the mean prediction for f(x∗), can be written as
a linear combination of kernel functions, each one centered
on a training point:
µ∗ = µ(x∗) + kT∗α = µ(x∗) +

∑n
i=1 αik(xi,x∗) (18)

where α = (K + σ2
εI)−1(y − µ(x∗)). In the sequel, these

coefficients αi will be referred to as parameters; they
are updated each time a new observation is made (as
opposed to the parameters of the kernel, referred to as
hyperparameters, which are not updated once training is
over (see subsection 3.3).

3.2 Online Gaussian Process Regression (OGPR)

An obstacle that could be met when using the standard
GPR approach is the difficulty with which to incorporate



a new training point or set of points. When a forecasting
algorithm is run in situ, we do not have a fixed data set
D = {(xi, yi), 1 6 i 6 n}. Rather, data is received one
or a few observations at a time, and the total amount of
information keeps growing. Moreover, updates are often
required every hour, minute or even second. Using the
above-mentioned methods in this case would rapidly incur
prohibitive computational overheads, since the matrix
(K + σ2

εI) has to be inverted, with a complexity O(n3).

A solution is to use the so-called Online Gaussian Process
Regression (OGPR) approaches (Csató, 2002; Huber, 2014;
Ranganathan et al., 2011; Kou et al., 2013; Bijl et al., 2015).
Formally, let us suppose that we know the distribution of
the GP given the first n training points (X,y) and for
simplicity, let us consider µ = 0 (without loss of generality).
Suppose that we make n+ new observations regrouped in
the matrix X+. Then:([

K
K+

]
+ σ2

εIn+n+

)−1
=

(
k(X,X) + σ2

εIn k(X,X+)
k(X+, X) k(X+, X+) + σ2

εIn+

)−1
(19)

=


K + σ2

εIn︸ ︷︷ ︸
A

K+︸︷︷︸
B

KT
+︸︷︷︸

BT

K++ + σ2
εIn+︸ ︷︷ ︸

D


−1

(20)

Using the block matrix inversion theorem, we get:([
K
K+

]
+ σ2

εIn+n+

)−1
=

(
A−1 +A−1B∆−1BTA−1 −A−1B∆−1

∆−1BTA−1 ∆−1

) (21)

where ∆ = D − BTA−1B ∈ Rn+×n+ . It can be seen that
the inversion of the (n+ n+)× (n+ n+) matrix now only
requires the inverse of A, which is already known, and the
inversion of a n+ × n+ matrix: the computational cost is
thus O(n3+n

2) rather than O((n+ n+)3) when performing
direct matrix inversion.

3.3 Training a GPR model

As mentioned in subsection 2.2, there is freedom in choosing
the kernel function of a GP. Common choices, such as the
kernel previously covered, include hyperparameters. The
hyperparameters of the GPR model (10), denoted θ, group
those of its kernel and the variance of the noise. For instance,
the squared exponential kSE kernel defined by 1 contains
two hyperparameters: the amplitude σ and the correlation
length `, to which is added the noise variance σ2

ε : thus, in
this case θ = [σ ` σ2

ε ]T.

These hyperparameters have to be estimated from the data.
To do so, the probability of the data given the aforesaid
hyperparameters is computed. Assuming a GPR model
with Gaussian noise (10), the log marginal likelihood is
given by (Rasmussen and Williams, 2006):
L(θ) = log [P(y|X,θ)] (22)

= −1

2

(
yT
(
K + σ2

εI
)−1

y

+ log
(

det
(
K + σ2

εI
))

+ n log(2π)
) (23)

Estimation of the hyperparameters θ is usually achieved
by maximizing the log marginal likelihood (22). The
maximization process may be accelerated if the gradient of
the log likelihood is known and a gradient-based algorithm,
such as a conjugate gradient method, can be used (Blum
and Riedmiller, 2013). The interested reader can turn
to (Moore et al., 2016), (Ambikasaran et al., 2016) or
(Rasmussen and Williams, 2006) for more information.

4. DATA DESCRIPTION

The dataset is derived from measurements taken in Perpig-
nan (southern France), at the PROMES-CNRS laboratory,
using a Rotating Shadowband Irradiometer (RSI). Typical
uncertainties of the RSI are about ±5%. The station is
located approximately 20 km west of the Mediterranean
Sea. Winter is mild and summer is hot and dry. In addition,
there is a lot of wind, often resulting in a cloudless sky.

Evaluation of the GPR models included in the comparative
study has been made using a dataset covering a period of
45 days, from June 5th, 2015 to July 18th, 2015, containing
GHI data with a 30min time step. If not specified otherwise,
the first 30 days of the dataset are used for training (see
subsection 5.1), whereas the last 15 days are used to
evaluate models’ forecasting skill.

5. MODELING AND FORECASTING RESULTS

5.1 Initialization and estimation of hyperparameters

For modelling GHI using a GPR model, we first need to
identify the kernel function most adapted to this type
of time series. The procedure of kernel identification
adopted in this study is inspired by the work developed in
(Duvenaud et al., 2013). The idea is to construct a wide
variety of kernel structures by adding or multiplying kernels.
In particular, the kernel families discussed in subsection 2.2,
as well as their sum and product are considered. While all
the possible combinations have been evaluated, only the
following kernels have been included in this study:

• simple kernels: kE, kSE, kRQ, kM3/2 , kM5/2 , kPeriodic;
• quasiperiodic kernels; products: kPer×E, kPer×SE,
kPer×RQ, kPer×M3/2

, kPer×M5/2
; sums: kPer+E, kPer+SE,

kPer+RQ, kPer+M3/2
, kPer+M5/2

.

Indeed, the other combinations of non-periodic kernels
exhibited the same behavior as simple kernels. For clarity’s
sake, their results have not been displayed.

The hyperparameters of each kernel have been estimated
from GHI training data via the minimization of the log
marginal likelihood (22). Due to the non-convexity of
L(θ), the optimization may not converge to the global
maximum. The classical approach to tackle this issue is
to use multiple starting points randomly selected from a
specific prior distribution. In (Chen and Wang, 2018), the
authors consider different types of priors for the initial
values of hyperparameters and investigate the influence of
the priors on the predictability of GPR models. The results
reveal that the estimates for kSE are robust regardless
of the prior distributions, whilst they are very different
using different priors for kPer which implies that the prior



distributions have a considerable impact on the estimates
of the parameters in the case of a periodic kernel.

Regarding the initial values of the hyperparameters θ, the
following choices have been made.

• The correlation length ` has been chosen to be equal
to the standard deviation of the training data.
• When the tested kernels involve a periodic kernel,
an initial value of one day has been chosen for the
period P , in order to overcome problems that could
be encountered in its estimation.
• The initial values of remaining hyperparameters, if

any, are randomly drawn from a uniform distribution:
θi ∼ Uniform(0, 1).

5.2 Forecasting results using online GPR

The evaluation metric considered in this study is the
normalized Root Mean Square Error (nRMSE):

nRMSE =

√
1
n∗

∑n∗
i=1

(
ytest(i)− yforecast(i)

)2
1
n∗

∑n∗
i=1 ytest(i)

(24)

where ytest ∈ Rn∗×1 is the test data and yforecast ∈ Rn∗×1
is the forecast given by the considered models.

Let us assess the models’ performance globally by compar-
ing their forecasts at different time horizons. In Figure 1,
nRMSE is plotted versus forecast horizon, for all GPR
models listed in subsection 5.1, as well as the persistence
model, used for reference. Detailed numerical results can
be found in Table 1.
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Fig. 1. nRMSE versus forecast horizon for all models.

First, it can be seen that considered models can be divided
into three classes: persistence, which gives the worst results;
GPR models based on simple kernels, with improved
performance; and GPR models based on quasiperiodic
kernels, which perform considerably better, especially at
higher forecast horizons.

Even at the lowest forecast horizon (30min), GPR models
based on simple kernels give results comparable to the

Table 1. Values of nRMSE obtained for all
models. The best results are highlighted.

F. horizon 30min 1 h 2 h 3 h 4 h 5 h

Persistence 0.2177 0.3485 0.5833 0.7935 0.9749 1.1130

kE 0.2183 0.2818 0.4028 0.4737 0.5998 0.6382
kM3/2

0.2125 0.2652 0.3574 0.3815 0.5075 0.5263
kM5/2

0.2126 0.2651 0.3558 0.3792 0.5042 0.5235
kRQ 0.2179 0.2743 0.3739 0.4144 0.5377 0.5532
kSE 0.2153 0.2666 0.3387 0.3707 0.4660 0.5427

kPer 0.2340 0.2441 0.2596 0.2720 0.2772 0.2779

kPer+E 0.1689 0.1931 0.2209 0.2292 0.2538 0.2518
kPer+M3/2

0.1703 0.1954 0.2223 0.2308 0.2508 0.2548
kPer+M5/2

0.1705 0.1956 0.2226 0.2312 0.2510 0.2553
kPer+RQ 0.1692 0.1929 0.2200 0.2355 0.2526 0.2529
kPer+SE 0.1714 0.1986 0.2268 0.2345 0.2548 0.2588

kPer×E 0.1779 0.2098 0.2585 0.2480 0.3118 0.3192
kPer×M3/2

0.1922 0.2280 0.2660 0.2920 0.3211 0.3188
kPer×M5/2

0.1927 0.2289 0.2677 0.2947 0.3237 0.3220
kPer×RQ 0.1675 0.1899 0.2176 0.2197 0.2484 0.2424
kPer×SE 0.2045 0.2506 0.3061 0.3462 0.3825 0.3886

persistence model (nRMSE ' 0.22), while quasiperiodic
kernels already give better results (nRMSE ' 0.18). As
the horizon increases, performance of the persistence model
degrades quickly, while those of GPR models degrade
more slowly. At the highest horizon (5 h), persistence gives
nRMSE ' 1.11; for simple kernels nRMSE ' 0.55; for
quasiperiodic kernels nRMSE ' 0.30.

Regarding GPR models based on simple kernels, there does
not seem to be a clear best-performing kernel. Depending
on the forecast horizon, kM3/2 , kM3/2 , kRQ, and kSE all
alternatively give the best results, while kE lags behind. It
should also be noted that kSE – the kernel usually chosen
in previous work on GHI forecasting – does not always
provide the best results among simple kernels.

A realization of a GPR model based on a periodic kernel
is a periodic signal. As a consequence, this model gives
rather constant results in terms of nRMSE as the horizon
increases. This GPR model gives good forecasting results
for clear days, but it cannot explain the variability in GHI
data due to atmospheric disturbances.

GPR models based on quasiperiodic kernels, however, are
being composed of both a periodic and a non-periodic
kernel. As a consequence, they have the advantage of
the periodic kernel, while still being able to explain GHI
rapid changes during the day. Among quasiperiodic kernels,
kPer×RQ outperforms other kernels, but followed closely by
kPer+M3/2

, kPer+M5/2
and kPer+E (see Table 1).

To get further insight into models’ performance, let us
study the temporal evolution of GHI during both training
and testing. Figures 2, 3 and 4 show 30min, 4 h and 48 h
forecasts obtained using the persistence model, displayed
for reference, and three selected GPR models: the classic
kSE kernel and two of the best-performing quasiperiodic
kernels, kPer+SE and kPer×RQ. Here, a dataset of nine days
is used (seven days for training and two days for testing).

Recall that during training each data sample is used, while
during testing a new observation is incorporated each whole
multiple of the forecast horizon. So, a new observation is
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Fig. 2. 30min forecasts, for the persistence model and OGPR models based on three different kernels: kSE, kPer×RQ and
kPer+SE (dataset of nine days, with a training dataset of seven days and a testing dataset of two days).
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Fig. 3. 4 h forecasts, for the persistence model and OGPR models based on three different kernels: kSE, kPer×RQ and
kPer+SE (dataset of nine days, with a training dataset of seven days and a testing dataset of two days).

300

600

900

(a) GPR model based on kSE kernel.

G
H
I
[W

m
−

2
]

(b) GPR model based on kPer+SE kernel.

Training data Test data Models 95% confidence interval

300

600

900

(c) Persistence model.

G
H
I
[W

m
−

2
]

(d) GPR model based on kPer×RQ kernel.

Fig. 4. 48 h forecasts, for the persistence model and OGPR models based on three different kernels: kSE, kPer×RQ and
kPer+SE (dataset of nine days, with a training dataset of seven days and a testing dataset of two days).



taken into account every 30min in Figure 2, every 4 h in
Figure 3 and every 48 h in Figure 4 (which results in no
update at all, since the testing dataset lasts two days). It
also implies that training is identical in these three figures;
only testing differs.

When looking at the training stage, it can be seen that
each GPR model fits the data quite well. There are very
few differences between kSE and kPer+SE, because they
both generate rather smooth signals; the kPer×RQ kernel,
however, allows for more irregular signals and thus follows
GHI more closely during atmospheric disturbances.

Now turn to the testing stage. When there is a new
observation each 30min (Figure 2), the persistence model
is excellent and all GPR models give good results, with
a slight advantage to quasiperiodic kernels, especially
kPer×RQ. But when the horizon increases the difference
between the models become apparent. When there is a
new observation each 4 h, the simple kernel kSE struggles
to explain GHI variation, as demonstrated by the large
confidence interval obtained (Figure 3a). When no update
is available it simply converges to its mean value (around
280Wm−2). This phenomenon is accentuated in Figure 4a:
no updates are made during the entire testing and since
this GPR model does not have additional information on
the GHI behavior, it simply gives a constant value equal
to its mean. On the contrary, quasiperiodic kernels have
an additional information on GHI: it has a daily pattern.
Therefore, when no update is available they converge to
a periodic value. This is the advantage of quasiperiodic
kernels: when no additional information is available, they
reproduce the periodic behavior learned during training (see
Figures 4b and 4d). When comparing the quasiperiodic
kernels, kPer×RQ is preferred because it allows for more
drastic changes in the modeled signal, as can be seen in
Figures 3b and 3d.

6. CONCLUSION

The main objective of this paper was the elaboration of
a Gaussian process regression model adapted to multi-
horizon GHI forecasting. In previous research on GHI
forecasting using GPR models, the squared exponential
kernel kSE was used as the default choice (see e.g. (Lauret
et al., 2015; Voyant et al., 2017)). However, as it has
been explained throughout the present document, the
kernel is a key element of GPR models. A comparison
between several GPR models based on simple kernels and
more complex kernels has shown that, while GPR models
globally outperform the persistence model, GPR models
based on quasiperiodic kernels are better suited to model
and forecast GHI. The proposed interpretation is that the
structure of GHI is better modeled through an omnipresent
periodic component representing its global structure and a
random latent component explaining rapid variations due
to atmospheric disturbances.
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