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Abstract—Offline parameter tuning (OPT) of multi-objective
evolutionary algorithms (MOEAs) has the goal of finding an
appropriate set of parameters for solving a large number of
problems. According to the no free lunch theorem (NFL), no
algorithm can have the best performance in all classes of opti-
mization problems. However, it is possible to find an appropriate
set of parameters of an algorithm for solving a particular class
of problems. For that sake, we need to study how to estimate
the aggregation quality function for an algorithmic configuration
assessed on a set of optimization problems.

In this paper, we study robustness measures for dealing with
the parameter settings of stochastic algorithms. We focus on
decomposition-based MOEAs and we propose to tune scalarizing
functions for solving some classes of problems based on the
Pareto front shapes using up to 7 objective functions. Based
on our experimental results, we were able to derive interesting
guidelines to evaluate the quality of algorithmic configurations
using a combination of descriptive statistics.

Index Terms—Offline parameter tuning, robustness measures,
multiobjective evolutionary algorithms, scalarizing functions.

I. INTRODUCTION

The challenge for offline parameter tuning (OPT) techniques
is to find the best parameter configuration of an evolutionary
algorithm that successfully solves a large number of multi-
objective optimization problems (MOPs). In multiobjective
evolutionary algorithms (MOEAs), each parameter has a sig-
nificant influence on their performance such as its rate of
convergence and the quality of the solutions obtained. OPT is
subject to uncertainty which originates from two main sources:
1) the stochastic procedures involved in MOEAs, 2) the opti-
mal configuration for an MOEA optimizing a set of problem
instances at the same time.

The goal of this paper is to study robustness measures used
in the area of uncertainty [1], [2] to compute the performance
of an algorithmic configuration used in the offline tuning me-
thods. Our main contribution is to provide a set of guidelines
on the use of robustness measures for solving multi-objective
optimization problems (MOPs). We adopt a particular case
study to improve the performance of a MOEA based on

decomposition (MOEA/D) and we employ an evolutionary
OPT tool which has been adopted in other studies [3]–[5]. We
focus on an important component of MOEA/D: the scalarizing
function (SF), which is a strategy to transform a MOP into
several single objective problems. Some SFs involve additional
parameters inR that require to be tuned according to particular
characteristics on the MOP such as the Pareto front shape or
the number of objective functions.

The remainder of this paper is organized as follows. Pre-
vious works on parameter settings are briefly discussed in
Section II with a particular focus on the MOPs detailed in
Section IV. Then, uncertainty and robustness measures are
introduced in Section III. Decomposition-based MOEAs based
on scalarizing functions are described in Section V. Section VI
presents our methodology for studying robustness. Section VII
presents our results and their discussion. We finally conclude
the paper and present some possible paths for future work in
Section VIII.

II. PARAMETERS SETTINGS

The performance of EAs is strongly related to the definition
of appropriate parameter values. Typically, before running an
EA, the user empirically determines the proper encoding, se-
lection mechanism, and evolutionary operators, as well as their
numerical parameters such as the population size, mutation
and crossover rates. There exist two main possibilities for
dealing with the parameter setting problem: the use of offline
parameter tuning and the use of online parameter control
strategies [6]. The first one refers to selecting a set of pa-
rameter values which can be established by hand according to
the user’s prior experience or by applying experimental design
methods. In these cases, the same set of parameters is used
in all the iterations of an EA. The second strategy includes
adaptive mechanisms where the parameter values are modified
using information gathered during the evolutionary search
process. Adaptive and self-adaptive strategies are feedback-
based approaches. The former uses indicators to monitor the



performance of the evolutionary process. The second strategy
encodes the parameter values in each individual of the popu-
lation and solves at the same time the optimization and the
configuration problems.

In this work, we focus on the OPT problem which can be
formalized as a 6-tuple T = (A,P,C,O, ψ, bmax) as follows:

• A is a target algorithm to be tuned. In this work, we
concentrate on MOEA/D, which is the most popular
decomposition-based MOEA;

• P is the set of parameters of A to be tuned. For instance,
if A is an EA, then population size, maximum number
of generations, crossover rate, etc. belong to P .

• C is the set of values for each parameter of P . An
instance c ∈ C is called a configuration of A;

• O is called a scenario and is a set of several pro-
blem instances (for example, {DTLZ1, DTLZ3, DTLZ5,
DTLZ7} from the Deb-Thiele-Laumanns-Zitzler (DTLZ)
test suite [7]);

• ψ is a scalar fitness measure used by T to assess the
quality of a configuration e.g., hypervolume (HV) [8],
inverted generational distance (IGD) [9] or the R2 [10]
indicator.

• bmax is the maximum budget of function evaluations
available to tune A on O;

Here, the goal is to find the ‘best’ configuration c ∈ C,
based on ψ, for tuning A in an scenario O with bmax function
evaluations.

OPT is computationally expensive, but it is useful for deri-
ving knowledge about the relationships among the parameters
involved in an EA. This procedure can tackle the problem
from two perspectives: specialization or generalization of
algorithms. From the first perspective, given an algorithm’s
configuration, the aim is to find a subset of optimization
problems on which this algorithm obtains good results. In
the case of generalization of algorithms, the aim is to find
an algorithm configuration which solves the major quantity
of problems with different features [11]. Both perspectives
need to deal with the so-called no free lunch (NFL) theorem
which proves that, under certain assumptions, no optimization
algorithm is superior to any other on all possible optimization
problems [12].

In recent years, several tuning methods have been designed
to search automatically the most appropriate configuration
in the parameter values of the stochastic search based algo-
rithms. One of the first was sequential parameter optimization
(SPO) [13] which is based on statistical techniques such as
design and analysis of computer experiments. In [14]–[16],
the so-called ParamILS method is introduced. This approach
consists of a steady state algorithm that uses an iterated local
search to improve only categorical parameters using an initial
configuration. The relevance estimation and value calibration
(REVAC) method was proposed in [17]. This approach works
with a population of parameter configurations for estimating
the distribution of the target algorithm. Here, the relevance of
each parameter is determined according to the entropy mea-
surement. Examples of tuning tools that work on categorical

and numerical parameters at the same time are the iterated
racing for configuration (I-RACE) framework [18] and the
evolutionary algorithm called EVOCA [19]. I-RACE samples
a set of configurations according to a particular distribution
and incorporates an iterative racing procedure for selecting the
best configurations. EVOCA is a steady state EA that, at each
iteration generates two new individuals via wheel-crossover
and a local search procedure. It can find good parameter values
without requiring an in-depth knowledge of parameter tuning
methods.

III. UNCERTAINTY

The typical goal in optimization is to identify optimal solu-
tions. In the case of parameters settings, we want to optimize
the configuration c ∈ C of an MOEA in an scenario O. As
defined in Section II, O contains several problems o1..k to be
optimized, one at a time. However, the optimal configuration
for solving one problem oi can be poor for another problem oj
of one scenario O. Thus, the additional challenge is to have a
set of configurations that have a ‘good’ performance in a set of
scenarios. The main issue is how to define this performance.
For that sake, we propose to use robustness measures, some
of the concepts of robust optimization [20], to solve the OPT
problem represented by Equation (1).

max
c∈C,o∈O

ψA(c, o) (1)

In order to do it, we substitute the nominal objective for a
robust measure that aggregates on the results from the different
problems measured by the scalar fitness function ψ. In the
following, we present the robust measures that we use in this
work.
• Mean: it is one of the most commonly used measures in

the literature. With this measure, we are looking for the
configuration that works best in the mean of the cases.
However, this measure is not appropriate when the results
contain outliers since an outlier value has a big impact
on the mean value itself.

• Median: it is quite useful since it removes outliers.
However, removing outliers would mean that we are not
interested in all cases but instead, in most of them. Thus,
using this measure would mean that we are interested in
the configuration that works well for most scenarios but
it could fail completely in the others.

• Worst case: in this case, the fitness would be represented
by the worst result in the given scenario. This would
optimize over worst cases and thus ensure that the confi-
guration would work at least with that quality. However,
this measure can be over-conservative, since the worst
case could never happen in practice.

Each of those measures has some advantages and drawbacks.
The decision to use them should include the preference of the
decision maker as well as the aim of the algorithm that we
are tuning.

Moreover, since the MOEA has uncertainty itself (the same
configuration can give different quality), it is also required
to treat it in the same form as for the scenario. We first
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approximate the fitness for the MOEA and afterwards, for the
scenario. Namely, we combine: mean-mean, median-median,
best-worst, mean-worst, median-worst and worst-worst. We
emphasize the worst-case since we are aiming for a confi-
guration that works in all problem instances.

IV. MULTI-OBJECTIVE OPTIMIZATION

A MOP can be represented as follows:

Minimize f(x) :=
(
f1(x), f2(x), . . . , fm(x)

)
(2)

subject to x ∈ S, (3)

where S ⊂ IRn is the feasible region and each decision
variables vector x ∈ S is related to an objective vector
f(x) ∈ IRm. The solution to a MOP, called the Pareto optimal
set (POS), is given by:

POS := {x ∈ S : 6 ∃y ∈ S,y ≺ x}, (4)

and its image in IRm, is called the Pareto optimal front (POF).
Some MOPs have complicated characteristics that cause di-

fficulties to MOEAs for converging to the POS such as a large
number of decision variables (large-scale MOPs) or a large
number of objective functions (many-objective problems).
Furthermore, there are several Pareto front shapes such as
linear, convex, concave, mixed, disconnected and degenerated
geometries (see Fig. 1). Additionally, multi-frontal problems
can cause a premature convergence for MOEAs, which results
in the generation of false Pareto fronts.

There are three main classes of MOEAs: (1) based on Pareto
dominance, (2) based on a performance indicator, and (3)
based on decomposition. The last class has an efficient search
ability to deal with many-objective optimization problems
in a low computational time. However, the performance of
decomposition-based MOEAs strongly depends on a scalari-
zing function and a set of target directions. The most popular
decomposition-based MOEA is MOEA/D [21], which have
been widely used and modified with the aim of improving its
performance when solving a wide variety of MOPs.

MOEA/D transforms a MOP into several single-objective
subproblems which are solved in a collaborative manner.
Each solution from the population is associated with a search
direction (weight vector) to optimize a transformation method

called the scalarizing function (SF). Two goals should be
accomplished during the search process. The first goal is to
minimize the distance between a candidate solution and the
reference point (typically, the ideal vector) in order to achieve
convergence towards the POF. The second goal is the use of
different search directions defined by a uniform distribution
around all regions in the objective space. It aims to promote
diversity for covering the entire POF. MOEA/D establishes
neighborhoods at each target direction and applies iteratively
a mating selection mechanism and evolutionary operators to
enhance individuals. After that, an update process modifies the
reference points and the current population according to the
SF values. The first version of MOEA/D used the simulated
binary crossover (SBX) and polynomial-based mutation (PM).

V. SCALARIZING FUNCTIONS

A scalarizing function (SF) is a mathematical programming
technique that transforms a MOP into a single-objective one.
Its goal is to combine a vector of objective functions
y = [f1, . . . , fm]T with a reference direction
λ = {λ1, . . . , λm} to obtain a scalar value g(y) : IRm → IR.

This paper is focused on SFs that can be stated as:

minimize g(f ′(x);λ) (5)
subject to x ∈ S, (6)

where λ is a weight vector that must satisfy
∑m
i=1 λ

i = 1
and λi ≥ 0 for all i ∈ {1, . . . ,m}. Each component value
represents the relative importance assigned to each objective
function.
f ′(x) is a transformation function (see equation (7)) to

handle negative or incommensurable objective functions.

f ′(x) := f(x)− z ∗, (7)

where z ∗ = [z1, · · · , zm]T is the ideal point that denotes the
optimum value of the ith objective functions of a MOP. An
estimation of the ideal point can be obtained by minimizing
each of the objective functions individually.

Next, we describe a set of SFs commonly used in
decomposition-based MOEAs, and we provide some infor-
mation that aims to provide a better understanding of the
impact of their model parameters for solving MOPs with



TABLE I: Weighted and unconstrained scalarizing functions.

SF Minimize g(f ′(x);λ) := Parameter values

Chebyshev (CHE) [22] maxi
{
λi|yi|

}
-

Achievement
max

{
yi
λi

}
Scalarizing -Function (ASF) [23]
Augmented

max
{
yi
λi

}
+ α

∑
i
yi
λi

small
ASF (AASF) [24] α > 0

Penalty d1 + θd2, θ ∈ (0,∞)

Boundary where d1 :=
∣∣∣y • λ

‖λ‖

∣∣∣ suggested

Intersection (PBI) [21] and d2 :=
∥∥∥y − d1 λ

‖λ‖

∥∥∥ θ = 5

Exponential ∑
i

(
ep λi − 1

)
ep yi p ∈ [1,∞)Weighted

Criteria (EWC) [25]
Vector Angle ‖y‖(

λ
‖λ‖

•
y
‖y‖

)t t > 0
Distance suggested

Scaling (VADS) [26] t = 100

different Pareto front shapes. Table I shows six SFs compatible
with Pareto dominance which can handle convex, linear and
concave Pareto front shapes. Both CHE and ASF generate at
least weakly Pareto optimal solutions and do not require addi-
tional parameters. The AASF, PBI, EWC and VADS functions
can avoid the generation of weakly Pareto optimal solutions
by introducing additional model parameters. However, these
parameters are very sensitive to the Pareto front shape and the
MOP’s dimensionality.

The parameter α in AASF should take small values. In [27],
it was recommended to set α ≈ 10−4. MOEAs that adopt this
scalarizing function are [27], [28]. The EWC function requires
a large value of p to achieve Pareto optimality, but this can
lead to numerical overflow [29]. In [30], EWC was used to
solve a problem related to a voltage distribution network. For
the VADS function, t = 100 was recommended by its authors.
The PBI function can produce uniformly distributed solutions
in objective space by setting appropriate values for θ. There
are several studies [31]–[33] that provide a sensitivity analysis
of PBI, varying θ ∈ [0.1, 100].

Figure 2 illustrates some boxplots that represent the effect of
the parameter sensitivity in the AASF and PBI functions. Here,
we use the MOEA/D framework with the same parameters
settings, only varying the SF. We compute the normalized hy-
pervolume on 30 independent runs when solving the DTLZ1,
DTLZ2 and DTLZ2−1 test problems. We can see that one
parameter value can be appropriate for a particular Pareto front
shape and can work poorly for others. This effect occurs in
the same way if we vary the MOP’s dimensionality. Such
sensitivity to the parameters settings justifies the need to
find and optimize the ‘best’ configuration when dealing with
several MOPs using the same MOEA configuration.

VI. EXPERIMENTAL METHODOLOGY

The goal of our experiments was to study the effect that ro-
bustness measures cause in the OPT methods. To achieve this
goal, we used the descriptive statistics mentioned in Section III
and the tuning tool called evolutionary calibrator (EVOCA)
was adopted to find the suitable scalarizing function (SF)
and its model parameters to reach the maximum performance
within the MOEA/D framework. Our two particular goals
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were: 1) to verify which measures are the most useful in three
scenarios characterized according to the Pareto front geometry,
and 2) to identify the most robust configurations when scaling
up the number of objective functions in a MOP.

According to the tuple presented in Section II, we use the
next elements in our experimental OPT:

• A : The multi-objective evolutionary algorithm based on
decomposition (MOEA/D).

• P := {CHE,ASF,AASF,EWC, V ADS,PBI} with
their corresponding model parameter values defined in
the ranges α ∈ [0, 10.0], p ∈ [0.1, 10.0], t ∈ [1, 100], and
θ ∈ [0.1, 50.0].

• O := DTLZ1, DTLZ3, DTLZ3−1 from the Deb-Thiele-
Laumanns-Zitzler (DTLZ) test suite [34] and the Lamé
superspheres (LS) test problems [35] varying the parame-
ter γ = {0.3, 0.5, 1.0, 2.0, 4.0} with the goal of achieving
diverse Pareto front shapes. We classified our test MOPs
into three different scenarios according to their Pareto
front geometry as follows.

1) convex = {DTLZ3−1, LS (γ = 0.3), LS (γ =
0.5)}

2) linear = {DTLZ1, LS (γ = 1.0)}
3) concave = {DTLZ3, LS (γ = 2.0), LS (γ = 4.0)}

We tested this approach for m = 3, 5, 7 objectives. The
number of decision variables was set to n = m+ 4.

• ψ := the normalized hypervolume (NHV), defined as:

NHV (A) :=
HV∏
i ri

, (8)



where HV (A, r) = L
(
∪µi=1 [A(i), r]

)
is the hypervolume

indicator [36]. L measures convergence towards the PF
and maximum spread through the union of hypercubes
formed by all non-dominated elements in A and a refe-
rence point r := (r1, . . . , rm)T . It is set to (2, . . . , 2)T

in all our test problems. A high NHV value is better.
• bmax := The maximum budget established in the EVOCA

algorithm is 10, 000 function evaluations and ten seeds
per test problem at each generation.

Table II shows the parameter values used by MOEA/D,
where m is the number of objectives, n is the number of
decision variables, H is a parameter used by the simplex lattice
design (SLD) method to generate uniform weight vectors.
popsize and NFE are the population size and number of
function evaluations adopted. B is the neighborhood size per
weight vector.

TABLE II: The parameters settings used by MOEA/D. The
mark p in column H means that the original set of weight
vectors generated by SLD is pruned in order to obtain the
desirable population size.

m n H popsize NFE B
3 7 15 136 60,000 27
5 9 6p 180 80,000 36
7 11 4 210 90,000 42

Algorithm 1 shows the general structure of EVOCA while
Algorithm 2 shows how we introduce the different robustness
measures. Mean, median or worst are aggregation functions
that could be used instead of σ or ω.

Algorithm 1: EVOCA(A,P )
Input : Metaheuristic A, Parameters P
Output: Population

1 Pop = Generate Initial Population;
2 Evaluate each configuration ∈ Pop using Algorithm 2;
3 while not termination criterion met do
4 New-Pop = Pop;
5 Child = Wheel-crossover(Pop);
6 Evaluate Child using Algorithm 2 ;
7 Replace worst individual by Child in New-Pop;
8 Mut-child = Mutation(Child);
9 Evaluate Mut-child using Algorithm 2;

10 if Mut-Child better than child then
11 Replace 2nd worst individual by Mut-child in

New-Pop
12 Pop=New-Pop;

In EVOCA, the chromosome is represented by a string
where each element corresponds to a parameter, and its value.
Thus, the string length is the number of parameters to be
tuned. In our experiments, we adopted 6 SFs and 4 model
parameters. The population size is computed considering the
number of parameters to be tuned and their initial domain
sizes. The population size adopted in EVOCA is 25.

Algorithm 2: EvaluateConf(c, O, S, ψ, σ, ω, A) ∈ R
Input : Configuration c, Scenario O, Seeds S

Fitness func. ψ, Aggregation func. σ, ω,
Algorithm A

Output: evaluate quality of one configuration
1 begin
2 Σ← ∅
3 foreach o ∈ O do
4 Ω← ∅
5 foreach s ∈ S do
6 apf ← A(c, o, s) // MOEA execution
7 Ω← Ω ∪ ψ(apf)

8 Σ← Σ ∪ ω(Ω)

9 return σ(Σ)

EVOCA uses two operators: a wheel-crossover operator
that constructs one child from the whole population. It uses
a roulette wheel procedure [37] to select the value of the
gene of each offspring. The child generated replaces the worst
individual on the current population. The crossover procedure
is performed at each iteration. The mutation operator is a hill
climbing first improvement procedure, which takes a copy
of the child generated by the crossover operator and tries
to improve it by modifying one of its parameter values.
The mutation operator is always applied. When a numerical
parameter is selected, it tries to randomly take a new value
within a continuous range that represents the parameter do-
main. The mutated child generated replaces the second worst
individual on the current population, in case of producing a
better performance.

VII. RESULTS

Table III shows the scalarizing functions obtained by
EVOCA for each of the approaches in the different scenarios
related to the Pareto front shapes. It is interesting to see
that the approaches select not only different parameters for
the scalarizing function but also different functions in several
cases. This is an interesting result since it shows the impact
of changing the robustness measure that is adopted.

For all scenarios, the experimental results are shown in
Table IV. In gray, we show the best result among the different
robustness measures. An arrow upwards indicates that the
approach is outperformed in a statistically significant way by
the baseline algorithm (EVOCA with mean-mean). An arrow
downwards means that the baseline algorithm outperforms the
robustness measure. Furthermore, Figures 3, 4 and 5 show the
box plots for the different scenarios using the hypervolume
indicator without applying a normalization process. Marks a,
b, c, d, e, f correspond to each robustness measures presented
in Table IV. We can see in Figure 3 that EVOCA’s recommen-
dation for convex scenarios outperforms the baseline version
only in the Lamé supersphere with α = 0.3 and α = 0.5 using
median-median and best-worst measures. But in multifrontal
MOPs, the median-median fails and other measures obtain



a b c d e f

7
.9
9
3

7
.9
9
6

7
.9
9
9

L (0.3), 03D

H
V

a b c d e f

3
1
.9
9
2

3
1
.9
9
6

3
2
.0
0
0

L (0.3), 05D

H
V

a b c d e f

1
2
7
.9
7
5

1
2
7
.9
9
0

L (0.3), 07D

H
V

a b c d e f

7
.9
6
5

7
.9
7
5

L (0.5), 03D

H
V

a b c d e f

3
1
.9
9
0

3
1
.9
9
6

L (0.5), 05D

H
V

a b c d e f

1
2
7
.9
7

1
2
7
.9
9

L (0.5), 07D

H
V

a b c d e f

0
2

4
6

8

DTLZ3X, 03D

H
V

a b c d e f

0
5

1
5

2
5

DTLZ3X, 05D

H
V

a b c d e f

0
4
0

8
0

1
2
0

DTLZ3X, 07D

H
V

Fig. 3: Scenario with convex geometry and 3, 5, 7 objectives

similar results. This is because the median statistics discard
the outlier results. Figure 4 shows the linear scenario, where
there is an evident trend: the best-worst measure outperforms
the baseline version in MOPs with more than 3 objectives.
Finally, we obtain similar results in Figure 5, where EVOCA’s
recommendation improved the baseline version only in uni-
modal MOPs.

From these results, it is possible to observe that the best-
worst approach, is capable of outperforming the baseline
algorithm in most cases when the problems are unimodal. A
similar case occurs with the median. However, for the multi-
modal problems we can observe a deterioration of the quality
of the results. This suggests that such problems should be in
a different scenario and have their own configuration to find
good solutions.

Also, we can notice that the configurations found work well
when increasing the number of objectives. Furthermore, we
can observe that the different robustness measures outperform
the baseline algorithm in most of the problems (except for the
multi-modal problems). This suggests that alternative measures
to treat uncertainty can have a positive impact while searching
for configurations for a set of scenarios.

VIII. CONCLUSIONS AND FUTURE WORK

In this work, we have presented a comparative study to
analyze the effect of different robustness measures in the
offline parameter tuning procedure applied to MOEA/D. We
found that AASF showed the best results for the convex case,
VADS for the concave case and PBI for the linear case. This
shows evidence that the shape of the Pareto front has an effect
on the scalarizing function to be used. Furthermore, the values
for the scalarizing functions are different among the robustness
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Fig. 4: Scenario with linear geometry and 3, 5, 7 objectives
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Fig. 5: Scenario with concave geometry and 3, 5, 7 objectives



TABLE III: EVOCA’s recommendation for different scenarios using 3, 5 and 7 objectives

Geo mean-mean median-median best-worst worst-worst mean-worst median-worst
Convex AASF (α = 5.3727) EWC (p = 7.2) CHE AASF (α = 1.5305) AASF (α = 0.6977) AASF (α = 1.4065)
Concave VADS (p = 11.9) PBI (θ = 8.2) PBI (θ = 2.6) VADS (p = 6.3) VADS (p = 11.9) VADS (p = 12.1)
Linear PBI (θ = 15.9) PBI (θ = 10.4) AASF (α = 0.0469) PBI (θ = 4.2) PBI (θ = 8.4) PBI (θ = 11.3)

TABLE IV: Results reported by EVOCA with different robust measures for different scenarios
Sc Geo Dim mean-mean median-median best-worst worst-worst mean-worst med-worst

C
on

ve
x

L γ = 0.3
03D 0.99949(7.6989e-06) ↑ 0.99994(2.4944e-08) ↑0.9968(7.6713e-07) ↓0.99937(1.6849e-05) ↓0.99916(2.2555e-05) ↓0.99935(1.4162e-05)
05D 0.99978(3.6113e-06) ↑ 1.0000(4.0000e-08) ↑0.99999(4.4408e-16) ↓0.99976(5.9568e-06) ↓0.99973(1.1476e-05) ↓0.99976(6.4822e-06)
07D 0.99982(8.5306e-06) ↑ 1.0000(1.7950e-08) ↑ 1.0000(0.0000e+00) ↓0.99981(8.6050e-06) ↓0.99979(1.0696e-05) ↓0.99981(9.7633e-06)

L γ = 0.5
03D 0.99778(3.6635e-06) ↓0.99758(4.4021e-07) ↓0.99557(3.0983e-06) ↓0.99768(9.3282e-06) ↓0.99748(1.5878e-05) ↓0.99767(8.3159e-06)
05D 0.99976(9.1288e-06) ↑ 0.99997(5.1207e-08) ↑0.99993(2.5377e-07) ↓0.99973(1.0707e-05) ↓0.99968(1.9492e-05) ↓0.99973(1.0752e-05)
07D 0.99981(2.0659e-05) ↑ 0.99999(3.3306e-16) ↑0.99999(4.4457e-06) ↓0.99978(2.2967e-05) ↓0.99975(2.4902e-05) ↓0.99977(2.8233e-05)

DTLZ3−1
03D 0.99335(2.0098e-04) ↓0.0000(0.0000e+00) ↓0.99010(3.0459e-04) 0.99334(1.6041e-04) 0.99340(1.3607e-04) 0.99342(7.1454e-05)
05D 0.99991(1.4226e-05) ↓0.0000(0.0000e+00) ↓0.99978(1.0693e-05) ↓0.99989(2.1022e-05) ↓0.99983(4.3120e-05) ↓0.99989(2.0928e-05)
07D 0.99996(1.4068e-05) ↓0.0000(0.0000e+00) ↓0.99983(2.1933e-04) ↓0.99995(2.5509e-05) ↓0.99994(2.3587e-05) ↓0.99995(2.0053e-05)

L
in

ea
r L γ = 1.0

03D 0.97481(9.1966e-07) 0.97481(3.1155e-07) ↓0.97481(1.1706e-06) 0.97481(2.3795e-07) 0.97481(2.6042e-07) 0.97481(3.3757e-07)
05D 0.99886(1.4922e-07) 0.99886(1.4083e-07) ↑ 0.99886(4.1831e-07) 0.99886(2.8511e-07) 0.99886(1.5205e-07) 0.99886(1.3743e-07)
07D 0.99994(2.8481e-07) 0.99994(4.0573e-07) ↑ 0.99994(3.3306e-16) ↓0.99994(9.7262e-07) ↓0.99994(4.9379e-07) ↑0.99994(2.5289e-07)

DTLZ1
03D 0.99681(3.2364e-05) 0.99681(2.5263e-05) ↑ 0.99683(1.1418e-05) 0.99681(2.3043e-05) 0.99680(2.7473e-05) 0.99681(2.3141e-05)
05D 0.99995(3.9159e-06) 0.99995(3.7555e-06) ↑ 0.99996(5.0619e-07) ↓0.99995(3.9932e-06) 0.99995(2.3360e-06) ↑0.99995(3.7648e-06)
07D 0.99999(2.5451e-06) 0.99999(3.7277e-06) ↑ 0.99999(4.3969e-07) ↓0.99997(1.1753e-05) ↓0.99998(4.1686e-06) 0.99999(2.9046e-06)

C
on

ca
ve

L γ = 2.0
03D 0.92821(2.0129e-06) 0.92821(1.2526e-06) ↑ 0.92821(1.3764e-06) ↑ 0.92821(1.0095e-06) ↑0.92821(2.0129e-06) 0.92821(2.0137e-06)
05D 0.99017(1.2045e-06) 0.99017(9.6148e-07) ↑ 0.99017(6.5248e-07) 0.99017(1.0589e-06) ↑0.99017(1.2045e-06) 0.99017(1.1618e-06)
07D 0.99863(1.5886e-06) ↑0.99863(1.0217e-06) ↑ 0.99863(7.1644e-07) 0.99863(2.2111e-06) ↑0.99863(1.5886e-06) 0.99863(1.9602e-06)

L γ = 4.0
03D 0.89376(1.8281e-05) ↑ 0.89419(1.3943e-05) ↑0.89419(1.2420e-05) ↓0.89328(1.2611e-05) ↑0.89376(1.8281e-05) 0.89377(1.8035e-05)
05D 0.97715(1.1496e-05) ↑ 0.97754(8.2635e-06) ↑0.97753(1.0646e-05) ↓0.97682(1.0701e-05) ↑0.97715(1.1496e-05) ↑0.97716(1.2953e-05)
07D 0.99482(5.2873e-05) ↑ 0.99500(3.4305e-05) ↑0.99494(6.3347e-05) ↓0.99479(4.2571e-05) ↑0.99482(5.2873e-05) 0.99483(4.2165e-05)

DTLZ3
03D 0.92623(8.8163e-04) ↓0.91765(6.6721e-03) ↓0.92330(1.9209e-03) 0.92632(6.7448e-04) ↑0.92623(8.8163e-04) 0.92643(1.0158e-03)
05D 0.98925(3.7990e-04) ↓0.66321(4.5688e-01) ↓0.98887(4.2865e-04) 0.98921(3.2035e-04) ↑ 0.98925(3.7990e-04) 0.98907(4.3676e-04)
07D 0.99051(3.6548e-02) ↓0.67700(4.3885e-01) ↓0.96755(1.1470e-01) ↑ 0.99781(3.7914e-04) ↑0.99051(3.6548e-02) 0.93313(2.0597e-01)

measures. We have observed that the median and best-worst
cases have interesting results for the unimodal problems. Thus,
they are worth studying in more depth.

As part of our future work, we are interested in scaling
this study regarding the number of objectives in order to find
robust configurations that scale up with a higher number of
objectives. Furthermore, we intend to increase the number of
test problems and their characteristics. Our preliminary results
suggest that multi-modal problems deserve a special scenario.
Finally, we plan to use more sophisticated robustness measures
and to adopt them as a starting point for the design of self-
adaptive models.
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